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Foreword

46 Workouts in Thermodynamics, c©Tore Haug-Warberg 17 January 2007

The topics included in this text are intended for PhD students coming from
the departments of chemical and mechanical engineering, material science,
physics and chemistry alike—students who want to boost their thermodynam-
ics knowledge and learn about practical calculations to support their own re-
search activities. This means that the student should acquire the theoretical
insight, and the necessary hands-on training, to solve thermodynamic equi-
librium problems in a generic manner. Much emphasis is therefore put on
the understanding of Euler functions and Legendre transformations put into a
thermodynamic context, but besides this a thorough understanding of common
equations of state, residual functions and equilibrium calculations is also re-
quired. To make the best out of the material it is important that the student
has some prior knowledge in multivariate calculus, linear algebra and optimi-
sation theory. He and she must also know how to computerise mathematical
algorithms into modern script languages like Matlab, Maple, Python, etc.

ix





CHAPTER 1

Thermodynamic Concepts

46 Workouts in Thermodynamics, c©Tore Haug-Warberg 17 January 2007

The use of abstractions and theoretical models is very important for the
progress of learning, and especially so in the field of natural sciences. Ob-
viously, the ability to share complex ideas and thoughts with other people is
unevenly shared outa, but a sound awareness of this issue will nevertheless
increase the technical understanding of the subject at hand, and reduce mis-
understandings. For this reason we shall revise some of the concepts used in
applied thermodynamics analysisb, ranging in complexity from trivial defini-
tions to abstract idioms. A thermodynamic state description is always idealized
to some extent, and a thorough understanding of the basic concepts is one of
the key premises for digesting the material presented in this book.

§1 Explain the following concepts: System (control volume),system
boundary and environment (surroundings).

S. A thermodynamicsystemis a bounded part of the universe. The
systemboundarydefines an abstract, or, in some cases, a physical distinctionc

from theenvironment. An opensystem can exchange mass with the environ-
ment while aclosedsystem cannot. Anisolatedsystem does neither exchange
mass nor energy. A controlsurfaceis synonymous to a system boundary for
an open system, and a controlvolumeis synonymous to an open system. The
world outside the system is called theenvironmentor surroundings. An adi-
abaticboundary acts as a perfect isolator while adiabaticboundary acts as a
perfect heat conductor. Areservoir is a thermodynamic system that interacts
with other systems without changing its state description.Recipients like air,
sea, and soil make reservoirs for you and me, but not for mankind. Likewise,
the water (behind a dam) is a reservoir for the turbine, but not for the energy
company. �

a It was, I presume, the politicians’ poor gifts in this respect that made the late Professor Gus-
tav Lorentzen write his article: “Should the Parliament suspend the second law of thermody-
namics?” (original title “Bør Stortinget oppheve termodynamikkens 2. lov?”) as a contribution
to the (already) heated debate on thermal power plants in Norway. b James A. Beattie and
Irwin Oppenheim.Principles of Thermodynamics. Elsevier, 1979. c The system boundary is
instrumental in the active control of the system’s mass and energy, or, alternatively, in the pas-
sive observation of these quantities. The boundary itself is a mathematical surface with zero
thickness. Intensive properties which are defined on this surface are common to the system
and the environment. This presumption is similar to the continuum hypothesis used in fluid
dynamics.

1



2 1. THERMODYNAMIC CONCEPTS

§2 Explain the difference between intensive and extensive properties.
Where do the specific and molar properties fit in?

P. An intensiveproperty is independent of the system size. Exam-
ples are the temperature, pressure and density of a fluid. A property that is
proportional to the system size is calledextensivea in volume and energy. The
difference between aspecificand amolar property is simply that the first is
given on a mass basis (per kilogramme) while the second is given on a mole
basis (per mol). �

§3 Explain the following concepts: State, property, processand path.

P. The thermodynamicstateis uniquely defined in terms of the ther-
modynamic statepropertiesb which at the same time act as state functions.
This makes the state definition circular and it must be emphasised that the
state properties depend only on the current state, and that the evolution (his-
tory) of the system is irrelevant for its measured (or derived) properties. In
short, a simple thermodynamic system has no memory effect like the viscosity
of a tixotropic paint or other examples of rheology. This makes the definition
of state rather simple, but in practise the proper identification of state variables
is one of the great challenges in thermodynamics. A thermodynamicprocess
describes the state change along an abstractpath taking the system from one
state to another. The path contains a full state descriptionof the process viz.
state change history. Acycle is equivalent to a closed path in which the state
variables take on the same values periodically. Adynamicstate depends on
time while astaticstate does not. Aquasi-staticstate is something interme-
diate; the state changes dynamically, but the system remains at equilibrium all
the timec. The thermodynamic equilibrium is static on a macroscopic scale
while it is highly dynamic on a molecular level. This impliesthat the equilib-
rium principles must be reformulated if the system is of small size i.e. when
the particle numbern→ 0. At this limit the intensive properties like temper-
ature, pressure and chemical potential lose their usual meaning. A dynamic
process which is time invariant, such as steady fluid flow, is calledstationary.
The state change of areversibleprocess can be reversed anytime by making an
infinitesimal change to the environment. Anirreversibleprocess is not influ-
enced by the surroundings at all, or it needs at least a finite stimulus to change
or reverse its direction. A stone in free fall undergoes an irreversible change of
state when it hits the ground, while a submarine with an accurately balanced
buoyancy undergoes a reversible change of state. �

§4 Explain the following concepts: Material phase, phase boundary, equi-
a The two conceptsintensiveandextensiveare explained somewhat vaguely here and will later
be rigorously defined as thehomogeneousproperties ofzeroth and first orderrespectively.
b Note that transport properties like heat and mass diffusion coefficients depend on the ther-
modynamic but do not take part in the state description.c The state is actually drifting along
the equilibrium manifold.



1. THERMODYNAMIC CONCEPTS 3

librium, state of aggregation and stability. Where does transport theory and
kinetics fit in?

E. A materialphaseis a homogeneous subsystem that is sepa-
rated from the rest by a phaseboundary. The densities of energy and compo-
nent masses are uniform within the subsystem, but vary discontinuously across
the phase boundary. The fields of temperature, pressure and chemical poten-
tials, however, are uniform across the phase boundary. A phase can be lumped
into a single region in space, or it can be dispersed into e.g.smog particles in
air or droplets of fat in milk. Ahomogeneoussystem contains only one single
phase, while aheterogeneoussystem is made up of two or more phases. A
material phase may exist in two possible states ofaggregation; crystalline or
non-crystalline (the latter as fluid or glass). The equilibrium state is achieved
at t → ∞. If the system returns to the same state after an arbitrarilylarge per-
turbation the equilibrium isstable. A metastableequilibrium is conditionally
stable for small perturbations, while anunstableequilibrium is not stable at
all, not even for infinitesimal perturbations. The unstableequilibrium cannot
be realised in any physical system, but it does neverthelessprovide important
theoretical knowledge.Transport theoryis a discipline of physics that stud-
ies the transfer of mass, energy and momentum which occur faraway from
thermodynamic equilibrium. Kinetics is about forces and bodies in motion.
Chemical kineticsis another field of science that aims at chemical reactions
and phase transitions. In general, transport phenomena must be formulated
(and solved) as partial differential equations, while thermodynamic equilib-
rium problems can be expressed as algebraic equationsa. �

§5 Explain the thermodynamic meanings of heat, work and energy.

H & . Heat and work are closely related mechanisms for trans-
ferring energybetween the system and its surroundings.Work is an energy
transfer that is related to the displacement of matter against an external force,
for example by a rotating shaft, electrons moving across a voltage drop, water
flowing through a turbine.Heatis the microscopic equivalent of work and does
not naturally bring about any net displacement of matter. Heat can be partially
converted into work, but only if a large number of microscopic fluctuations
are aligned into one macroscopic displacement. The second law of thermo-
dynamics tells that this conversion is not possible withoutlosing some heat to
the environmentb. Energy dissipation is a phrase which is used to stress that
spontaneous energy processes always proceed towards a lower energy poten-
tial. Conventionally, delivered work and supplied heat areconsidered positive
when seen from the system point of view. �

§6 What is the definition of a “mole” in thermodynamics? How does this
quantity correspond with mass?

a Distributed versus lumped state description.b I.e. to a thermal reservoir having the same
temperature as the environment.
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M & . Themassof a system is closely related to the inertia forces
acting on an accelerated body (Newton’s second law), and it is also a principle
factor of the gravitational potential. It remains an unsolved problem in theo-
retical physics to prove that the two definitions are equivalent. A moleis the
numbera of atoms that make exactly 0.012 kg of the carbon isotope12C. In ev-�
eryday context this is known as Avogadro’s numberb Av = 6.022136736· 1023.
Molal andmolar are concentration units given as moles per kilogramme sol-
vent and moles per litre solution respectively. They do not play any significant
roles in thermodynamics, but they are important to the physical chemistry of
dilute solutions. �

§7 Define the following thermodynamic state changes: Isothermal, iso-
baric, isochoric, isentropic, isenthalpic, isopiestic and isotonic. What is an
isopleth in this context?

I. The descriptions mentioned above define processes which occur
at constant temperature, pressure, volume, entropy, enthalpy, vapour pressure,
and osmotic pressure respectively. An isopleth is a genericterm originally
used in meteorology to cover any of the aforementioned statechanges. �

§8 Give a mathematical understanding of: State variable, state function,
total differential and exact differential.

S . An examplestate functionis f (x, y) = xy+ c wherex and
y arestate variables. Here, df = ydx + xdy is thetotal differentialof f and
the right hand side is then said to beexact. Replacing+ by − yieldsy2 dg =
ydx− xdy where dg is the total differential ofg(x, y) = xy−1+c, butydx− xdy
is inexactsince it can no longer be written as a total differential. Small changes
sometimes make large effects! More about this in ChapterPrelude. �

a The mole depends on the kilogramme prototype in Paris, not the other way around.
Atomic masses are measured in so-calledatomic mass unitswhere the mass of a single atom
12C-isotope is defined as 12 amu independent of the mole concept(however, it is of course
not purely coincidental that 12 pops up both places).b Count Lorenzo Romano Amedeo
Carlo Avogadro di Quaregna e Cerreto, 1776–1856. Italian chemist.
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F 2.1 Legendre transfor-
mation ofU into H.

The transformation properties of canonical
potentialsa make one of the pillars of modern
thermodynamicsb,c, but what practical merits
does a mathematical formalism bring to the
engineering student? Why is it not sufficient
to remember thatU is suitable for dynamic
simulation,H for stationary simulation, etc?
Well, if a feasible solution is at hand this is a
quite adequate strategy, but if a new solution is
sought the theoretical insight must be deeper.
Here, the Legendred transformation comes in
as a key to increased understanding, and with
it a simple formula is provided which let us re-
place the free variable of a function with the
corresponding function derivativee. E.g. the
variableV in internal energyU(S,V,N) can be
replaced by (∂U/∂V)S,N, see Figure 2.1. The

new variable can be interpreted as the negative pressureπ and the resulting
transformed function, called enthalpyH(S, π,N), is in many cases more ver-
satile thanU itself. Even more so because it will be proved (later) thatH has
the same information content asU. This makes the Legendre transformation
a strong point in the theories of thermodynamics and mechanics. Mathemati-
cally, the Legendre transformationfi of the functionf◦ is defined by:

fi(ξi, xj , xk, . . . , xn) =̂ f◦(xi , xj, xk, . . . , xn) − ξi xi

ξi =̂
(
∂ f◦
∂xi

)
xj ,xk,...,xn

(2.1)

Repeated transformations are easy:

fi j (ξi , ξ j, xk, . . . , xn) =̂ fi(ξi, xj , xk, . . . , xn) − ξ j xj

ξ j =̂
(
∂ fi
∂xj

)
ξi ,xk,...,xn

(2.2)

a The functionsU(S,V,N), H(S, p,N), A(T,V,N), etc. b Herbert Callen.Thermodynam-
ics and an Introduction to Thermostatistics. Wiley, 2nd edition, 1985. c Michael Mod-
ell and Robert C. Reid.Thermodynamics and Its Applications. Prentice Hall, 2nd edition,
1983. d Adrien-Marie Legendre, 1752–1833. French mathematician.e Quite remarkably
this proves to be advantageous in many cases.

5



6 2. LEGENDRE TRANSFORMATION

The Definitions 2.1 and 2.2 are readily combined into the alternative formula

(2.3) fi j (ξi, ξ j, xk, . . . , xn) = f◦(xi , xj, xk, . . . , xn) − ξi xi − ξ j xj

but the (re)interpretation ofξi andξ j needs more attention. Whereas Eqs. 2.1
and 2.2 seem to imply a sequential procedure for the Legendretransformation
this is really not required because (∂ fi/∂xj)ξi ,xk,...,xn and (∂ f◦/∂xj)xi ,xk,...,xn take
on the same valueξ j in Eq. 2.3, see Paragraph 10 on the facing page for more
details. The state descriptions (xi , xj, . . . , xn), (ξi, xj , . . . , xn) and (ξi, ξ j, . . . , xn)
are thecanonicalvariables of the functionsf◦, fi and fi j . The knowledge of
just one variable set is sufficient to define an arbitrary Legendre transform.
Even better, the Legendre transformation is independent ofthe order of differ-
entiation becausefi j = f ji . Mathematically we say that the Legendre operatora

commutes.

§9 Make a table of all possible Legendre transforms of internal energy.
Identify thecanonicalvariables for each of the transforms using the defini-
tionsb τ =̂ (∂U/∂S)V,N, π =̂ (∂U/∂V)S,N andµ =̂ (∂U/∂N)S,V.

E . For a thermodynamic function withm= dim(n)+2
variables there are 2m − 1 Legendre transforms. Given a single component
system this means there will be 23 − 1 = 7 different transformations possible.�
By using Definition 2.1 on each of the variables in turn we get:

A(τ,V,N) = U(S,V,N) −
(
∂U
∂S

)
V,N

S =̂ U − τS(2.4)

H(S, π,N) = U(S,V,N) −
(
∂U
∂V

)
π,N

V =̂ U − πV(2.5)

X(S,V, µ) = U(S,V,N) −
(
∂U
∂N

)
S,V

N =̂ U − µN(2.6)

Using Definitions 2.2 on pairs of two variables there are three more transforms
emerging:

G(τ, π,N) = U(S,V,N) −
(
∂U
∂V

)
S,N

V −
(
∂U
∂S

)
V,N

S

=̂ U − πV − τS(2.7)

Y(S, π, µ) = U(S,V,N) −
(
∂U
∂V

)
S,N

V −
(
∂U
∂N

)
S,V

N

=̂ U − πV − µN(2.8)

Ω(τ,V, µ) = U(S,V,N) −
(
∂U
∂S

)
V,N

S −
(
∂U
∂N

)
S,V

N

=̂ U − τS − µN(2.9)

Finally, by using Eq. 2.2 repeatedly on all three variables the result is the null�
a There is no dedicated symbol for this operator.b Here,τ is used for temperature andπ
for negativepressure in order to stress that these are transformed properties. The chemical
potential is given the (usual) symbolµ.
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potential:

O(τ, π, µ) = U(S,V,N) −
(
∂U
∂V

)
S,N

V −
(
∂U
∂S

)
V,N

S −
(
∂U
∂N

)
S,V

N

=̂ U − πV − τS − µN

≡ 0(2.10) �

Most of the energy transforms have dedicated names: Internal energyU(S,
V,N) is used for closed systems and is in many respects the base function of
thermodynamics. Helmholtz energyA(τ,V,N) is central for fluid state descrip-
tion. Gibbs energyG(τ, π,N) has traditionally been the focus of chemical ther-
modynamics and physical metallurgy. EnthalpyH(S, π,N) is important for the
understanding of fluid flow calculations in engineering thermodynamics. The
grand canonical potentialΩ(τ,V, µ) is used for the description of open systems
discussed in statistical mechanics. The null potentialO(τ, π, µ) has received
very little attention in the literature and has no internationally accepted name,
even though the function has several interesting properties as we shall see later.
Left behind are the two functionsX(S, π, µ) andY(S,V, µ) which are without
practical importance.

§10 The variableξ j was defined as (∂ fi/∂xj)ξi ,xk,...,xn in Eq. 2.2, but from
Eq. 2.3 an alternative definition would be (∂ f◦/∂xj)xi ,xk,...,xn. Prove that the two
definitions are equivalent.

D I. Note that the variablesxk, . . . , xn are common to bothfi
and f◦ and may hence be omitted to make the text simpler. The currentstudy is
therefore restricted to the functionsf◦(xi , xj) and fi(ξi, xj). It is natural to start
with Eq. 2.1 which is differentiated with respect toxj:

(
∂ fi
∂xj

)
ξi
=

(
∂ f◦
∂xj

)
ξi
−

(
∂(ξi xi )
∂xj

)
ξi

=
(
∂ f◦
∂xj

)
ξi
− ξi

(
∂xi

∂xj

)
ξi

(2.11)

Further progress requires the derivative off◦. This quantity must be deter-
mined indirectly and the simplest(?) way is to first calculate the total differ-
ential of f◦(xi , xj),

d f◦ =
(
∂ f◦
∂xi

)
xj

dxi +
(
∂ f◦
∂xj

)
xi

dxj

= ξi dxi +
(
∂ f◦
∂xj

)
xi

dxj(2.12)

whereξi is defined in Eq. 2.1. At constantξi Eq. 2.12 gives:

(2.13)
(
d f◦
dxj

)
ξi
= ξi

(
dxi

dxj

)
ξi
+

(
∂ f◦
∂xj

)
xi

The differential quotients take on the values of the corresponding partial deriva-
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tives (one degree of freedom). Substitution of Eq. 2.13 intoEq. 2.11 yields:

(2.14)
(
∂ fi
∂xj

)
ξi
=

(
∂ f◦
∂xj

)
xi

The conclusion is that the differentiation offi with respect to the untransformed
variablexj yields the same derivative as the original functionf◦. �

§11 Make use of the result from Paragraph 10 on the previous page to
show that the chemical potential has four equivalent definitions µ =̂ (∂U/
∂N)S,V =̂ (∂H/∂N)S,π =̂ (∂A/∂N)τ,V =̂ (∂G/∂N)τ,π. Put up a similar table of
alternative definitions for temperatureτ and negative pressureπ.

I I. Let f◦ = U(S,V,N) be the base function for the transforma-
tions. The text asks for the derivatives with respect to the mole numberN and it
is tacitly understood that onlyS andV shall be transformed. From the Eqs. 2.4
and 2.5 we havef1 = A(τ,V,N) and f2 = H(S, π,N) which on substitution into
Eq. 2.14 gives:

(
∂A
∂N

)
τ,V
=

(
∂U
∂N

)
S,V

(2.15)
(
∂H
∂N

)
S,π
=

(
∂U
∂N

)
S,V

(2.16)

The transformf12 = f21 = G(τ, π,N) in Eq. 2.7 can be reached either viaA or
H. Inserted into Eq. 2.14 the two alternatives become:

(
∂G
∂N

)
τ,π
=

(
∂A
∂N

)
τ,V

(2.17)
(
∂G
∂N

)
τ,π
=

(
∂H
∂N

)
S,π

(2.18)

Note that all the Eqs. 2.15–2.18 have one variable in common on the left and
right hand sides (V, S, τ andπ respectively). For multicomponent systems
this variable has a vectorial nature, comparexk, . . . , xn in Paragraph 10. To
conclude this session the following is true for any single component system:

(2.19) µ =
(
∂A
∂N

)
τ,V
=̂

(
∂H
∂N

)
S,π
=̂

(
∂G
∂N

)
τ,π
=̂

(
∂U
∂N

)
S,V

Performing the same kind of operations on temperature and negative pressure:

τ =
(
∂H
∂S

)
π,N
=̂

(
∂X
∂S

)
V,µ
=̂

(
∂Y
∂S

)
π,µ
=̂

(
∂U
∂S

)
V,N

(2.20)

π =
(
∂A
∂V

)
τ,N
=̂

(
∂X
∂V

)
S,µ
=̂

(
∂Ω
∂V

)
τ,µ
=̂

(
∂U
∂V

)
S,N

(2.21) �

§12 The Legendre transform was differentiated with respect to an untrans-
formed variable in Paragraph 10. It remains to determine thederivative with
respect to a transformed variable. Show that (∂ fi/∂ξi)xj ,xk,...,xn = −xi.

D II. Analogously to Paragraph 10 the variablesxk, . . . , xn

are omitted to make the analysis simpler. The basis for the operation is fi(ξi,
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xj) = f◦(xi , xj) − ξi xi taken from Eq. 2.1. The equation is first differentiated
with respect toξi. Be aware that the chain rule of differentiation

(
∂ f◦
∂ξi

)
xj
=

(
∂ f◦
∂xi

)
xj

(
∂xi

∂ξi

)
xj

is used in the last line below:
(
∂ fi
∂ξi

)
xj
=

(
∂ f◦
∂ξi

)
xj
−

(
∂(ξi xi )
∂ξi

)
xj

=
(
∂ f◦
∂ξi

)
xj
− xi − ξi

(
∂xi

∂ξi

)
xj

=
(
∂ f◦
∂xi

)
xj

(
∂xi

∂ξi

)
xj
− xi − ξi

(
∂xi

∂ξi

)
xj

(2.22)

From the Eq. 2.3 we can write (∂ f◦/∂xi)xj = ξi which is readily substituted
into Eq. 2.22. The result is

(2.23)
(
∂ fi
∂ξi

)
xj
= −xi

which leads to the conclusion: The derivative offi with respect to a trans-�
formed variableξi gives back the original variablexi, but with an induced sign
shift. The variablexi in f◦(xi , xj) corresponds in other words toξi i fi(ξi, xj) in
a natural waya. Due to the simple relationship in Eq. 2.23 the variables (ξi , xj)
are said to be the canonical variables of the transformfi(ξi, xj). �

§13 Make use of Paragraph 12 on the facing page to prove thatV = (∂H/
∂π)S,N = (∂G/∂π)τ,N = (∂Y/∂π)S,µ. Put up a table of similar identities for the
entropyS and the mole numberN.

I II. Starts once more withf◦ = U(S,V,N) and defines the trans-
form f2 = H(S, π,N) = U − πV. Inserted into Eq. 2.23 this formula yieldsb

(∂H/∂π)S,N = −V. A systematic application of Eq. 2.23 on all the the energy
transforms of Paragraph 9 on page 6 yieldsc:

−V =
(
∂H
∂π

)
S,N
=̂

(
∂G
∂π

)
τ,N
=̂

(
∂Y
∂π

)
S,µ

(2.24)

−S =
(
∂A
∂τ

)
V,N
=̂

(
∂G
∂τ

)
π,N
=̂

(
∂Ω
∂τ

)
V,µ

(2.25)

−N =
(
∂X
∂µ

)
S,V
=̂

(
∂Y
∂µ

)
S,π
=̂

(
∂Ω
∂µ

)
τ,V

(2.26) �

a The variablesx andξ are said to be conjugated.b The symbolπ = −p is used here to
signify the pressure variable. This choice is quite deliberate to avoid the eternal discussion
about the sign convention ofp. In the literature it is common practise that−p is simply
replaced byp in the transformations, leaving the question of sign to the reader as an intellectual
obstacle. Note, however, that it does not matter whether−p or p are held constant during the
differentiation. c The sharp-minded student will miss−S = (∂O/∂τ)π,µ, V = (∂O/∂π)τ,µ
and−N = (∂O/∂µ)τ,p. These relations have no clear thermodynamic interpretation, however,
becauseτ, π, µ are experimentally dependent quantities, see also Paragraph 16 on page 11.
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§14 Make use of the Paragraphs 11 and 13 on pages 8 and 9 to find the
total differentials of all the energy transforms mentioned in Paragraph 9.

D. The total differentials of the energy transforms can be put
up using the results from Eqs. 2.19–2.21 and 2.24–2.26 as thestarting point:

dU(S,V,N) = τ dS + π dV + µ dN(2.27)

dA(τ,V,N) = −S dτ + π dV + µ dN(2.28)

dH(S, π,N) = τ dS − V dπ + µ dN(2.29)

dX(S,V, µ) = τ dS + π dV −Ndµ(2.30)

dG(τ, π,N) = −S dτ − V dπ + µ dN(2.31)

dY(S, π, µ) = τ dS − V dπ −Ndµ(2.32)

dΩ(τ,V, µ) = −S dτ + π dV −Ndµ(2.33)

dO(τ, π, µ) = −S dτ − V dπ −Ndµ(2.34) �

§15 Show from Paragraph 12 on page 8 that the repeated use of a Legendre
transformation gives back the original function.

I . With the basis in Definition 2.1 and Eq. 2.23 the in-
verse Legendre transformation can be written,

(2.35) fi −
(
∂ fi
∂ξi

)
xj
ξi = fi − (−xi) ξi ≡ f◦

but it is not entirely clear what variable set should be attached to f◦. To under-
stand the problem a small example is needed, and from Eq. 2.4 it follows:

(2.36) U(S,V,N) −
(
∂U(S,V,N)

∂S

)
V,N

S = U(S,V,N) − τS =̂ A(τ,V,N)

To go the other way around we have to calculate the Legendre transformation
of A(τ,V,N) with respect to the variableτ, that is:

(2.37) A(τ,V,N) −
(
∂A(τ,V,N)

∂τ

)
V,N
τ = A(τ,V,N) − (−S)τ ≡ U(−S,V,N)

This yields the original functionU back, but the canonical variable set has been
changed fromS,V,N to −S,V,N! In order to get back to where we started the
Legendre transformation must be employed two more times:

U(−S,V,N) −
(
∂U(−S,V,N)

∂(−S)

)
V,N

(−S) = U(−S,V,N) − (−τ)(−S)

=̂ A(−τ,V,N)(2.38)

A(−τ,V,N) −
(
∂A(−τ,V,N)
∂(−τ)

)
V,N

(−τ) = A(−τ,V,N) − S(−τ)
≡ U(S,V,N)(2.39)

Clearly, the repeated use of a Legendre transformation results in the cyclic�
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operationa:

U(S,V,N)
S−→ A(τ,V,N)

↑ −τ ↓ τ
A(−τ,V,N)

−S←− U(−S,V,N) �

§16 Show that a Legendre transformation of internal energyU(S,V,N)
with respect to all the canonical variablesS,V,N ends up in the null potential
O(τ, π, µ) = 0. Show next that the total differential ofO is identical to the
Gibbs–Duhem equation, see also Paragraph 24 on page 22 in Chapter 3.

N . The differential of the null potential in Eq. 2.10 is of
course 0. However, this result is valid for the entire definition domain and
it must logically enforce some kind of restriction on the intensive degrees of
freedom of the system. Mathematically, theO-function forms a hyperplane in�
dim(n) + 2 dimensions. This feature is made visible by differentiatingO(τ, π,
µ) in Eq. 2.10: dU − τ dS−S dτ−V dπ−π dV−µ dN−N dµ = 0. Recognises
τ dS + π dV + µ dN as the total differential of internal energy and simplifies
the expression:

(2.40) S dτ + V dπ + N dµ = 0

This result is identical to the Gibbs–Duhem’s Eq. 3.23 on page 22 which plays
an important role in consistency checks of thermodynamic measurements. A
consistency check means that Eq. 2.40 says something about the dependencies
of τ, π, µ. If a series of measurements are conducted independently such that
experimental values are provided for all the variablesτ, π, µ, then the Gibbs–
Duhem equation raises the opportunity to check the quality of the measure-
ments in the sense that Eq. 2.40, or Eq. 2.10 for that sake, must be fulfilled. In
practise this shows up in the chemical potentialb being expressed as a function
of temperature and negative pressure, i.e.f (τ, π, µ) = 0. �

§17 Make a complete table of all Maxwell relations that originates from
the Leibnitzc rule ∂2 f /∂xi∂xj = ∂

2 f /∂xj∂xi when applied to the functionsU,
A,H,Y,G,Ω,X andO. Restrict yourself to single component systems!

M . First, the meaning of a Maxwelld relation is illustrated
usingU(S,V,N) as the base function. From the definitions ofτ andπ it fol-
lows:

(
∂2U
∂S∂V

)
N
=

(
∂2U
∂V∂S

)
N
⇒

[
∂
∂S

(
∂U
∂V

)
S,N

]

V,N
=

[
∂
∂V

(
∂U
∂S

)
V,N

]

S,N

⇒
(
∂π
∂S

)
V,N
=

(
∂τ
∂V

)
S,N

a A one-step reversal is possible if the transformed canonical variables are defined as
(x, y) = (−(∂g/∂z)y, y) and not (x, y) = ((∂g/∂z)y, y) as in the current text. b For single com-

ponent or multicomponent systems at fixed concentration.c . d James Clerk Maxwell,
1831–1879. Scottish physicist.
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Cyclic permutation of the variablesS,V andN yields in a similar way:
(
∂2U
∂S∂N

)
V
=

(
∂2U
∂N∂S

)
V
⇒

(
∂µ

∂S

)
V,N
=

(
∂τ
∂N

)
S,V(

∂2U
∂V∂N

)
S
=

(
∂2U
∂N∂V

)
S
⇒

(
∂µ

∂V

)
S,N
=

(
∂τ
∂N

)
S,V

By systematically comparing the second derivatives of all the Legendre trans-
forms mentioned in Paragraph 9 on page 6, we get the result shown below. See
also Paragraph 14 on page 10 for a table of total differentials and first deriva-
tives. Note that the Maxwell relations which originate fromthe null potential
O(τ, π, µ) are physically inaccessible and therefore excluded from the table.

(
∂π
∂S

)
V,N
=

(
∂τ
∂V

)
S,N

(
∂µ

∂S

)
V,N
=

(
∂τ
∂N

)
S,V

(
∂µ

∂V

)
S,N
=

(
∂τ
∂N

)
S,V

−
(
∂S
∂V

)
τ,N
=

(
∂π
∂τ

)
V,N

−
(
∂S
∂N

)
τ,V
=

(
∂µ

∂τ

)
V,N

(
∂π
∂N

)
τ,V
=

(
∂µ

∂V

)
τ,N

−
(
∂τ
∂π

)
S,N
=

(
∂V
∂S

)
π,N

(
∂τ
∂N

)
S,π
=

(
∂µ

∂S

)
π,N

−
(
∂V
∂N

)
S,π
=

(
∂µ

∂π

)
S,N(

∂τ
∂V

)
S,µ
=

(
∂π
∂S

)
V,µ

−
(
∂τ
∂µ

)
S,V
=

(
∂N
∂S

)
V,µ

−
(
∂π
∂µ

)
S,V
=

(
∂N
∂V

)
S,µ(

∂S
∂π

)
τ,N
=

(
∂V
∂τ

)
π,N

−
(
∂S
∂N

)
τ,π
=

(
∂µ

∂τ

)
π,N

−
(
∂V
∂N

)
τ,π
=

(
∂µ

∂π

)
τ,N

−
(
∂τ
∂π

)
S,µ
=

(
∂V
∂S

)
π,µ

−
(
∂τ
∂µ

)
S,π
=

(
∂N
∂S

)
π,µ

(
∂V
∂µ

)
S,π
=

(
∂N
∂π

)
S,µ

−
(
∂S
∂V

)
τ,µ
=

(
∂π
∂τ

)
V,µ

(
∂S
∂µ

)
τ,V
=

(
∂N
∂τ

)
V,µ

−
(
∂π
∂µ

)
τ,V
=

(
∂N
∂V

)
τ,µ

�

§18 Prove the Gibbs–Helmholtz equation (∂(G/τ)/∂(1/τ))π,N ≡ H. See if
you can generalise this result.

G–H. Plain differentiation and substitution of (∂G/∂τ)π,N =
−S andG+ TS = H confirms that the equation is correct, but there is more to
it than that. From the mathematical identity

∂(y/x)
∂(1/x) ≡ y+ 1

x
∂y

∂(1/x) ≡ y− x∂y
∂x

we can conclude that

(2.41)
(
∂( f◦/xi )
∂(1/xi )

)
xj ,xk,...,xn

≡ f◦ − ξi xi =̂ fi

for the Legendre transform in Eq. 2.1. The identity applies equally well to fi j
and to any of the higher transforms, which means Eq. 2.41 provides an alter-
native way of calculating thenumericalvalue of the Legendre transform. The
definitionof the transformation is of course not altered. Another useful equa-
tion is (∂(A/τ)/∂(1/τ))V,N ≡ U. The analogy does not stop here and a whole
world of similar equations can be built on the same principle. Quite interest-
ingly, the differentiation of these equations is also comparatively simple. The
derivative of the Gibbs–Helmholtz equation may serve as an example:

(2.42)
(
∂H
∂π

)
τ,N
=

(
∂2(G/τ)
∂π∂(1/τ)

)
N
=

(
∂(V/τ)
∂(1/τ)

)
π,N
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Note that the enthalpy is differentiated with respect to a non-canonical variable.
This subject is taken up again in ChapterConstant Compositionbut then in a
different setting (systematic elimination of total differential variables). �
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Amaryllis Hippeastrum equestre(Christmas 2004).



CHAPTER 3

Euler’s Theorem on Homogeneous Functions

46 Workouts in Thermodynamics, c©Tore Haug-Warberg 17 January 2007

The thermodynamic state is mathematically described by themappingf :
Rn+2 → R wheren ≥ 0a stands for the number of chemical components in
the system (assumed macroscopically homogenous). The definition domain is
quite arbitrary, but the theory is relieved from the fact that f is observed to
be linear along vectorial directions departing from the origin. The practical
consequence of the linearityb will be elucidated when we start investigating
the mathematical properties off , but first we need to state that the function
f (x1, . . . , xn) is homogeneous of orderk ∈ Z provided the parametrised func-
tion f (λx) is proportional to λk in the direction ofx = (x1, . . . , xn). Here,
the parameterλ ∈ R is a dimensionless measure of the distance from the ori-
gin to the coordinate tupleλx ∈Rn. More precisely, the functionf (x1, . . . , xn,

ξn+1, . . . , ξm) is homogeneous of orderk in the variablesx1, . . . , xn if the fol-
lowing criteria are satisfied:

F = λk f(3.1)

f =̂ f (x1, . . . , xn, ξn+1, . . . , ξm)

F =̂ f (X1, . . . ,Xn, ξn+1, . . . , ξm)

Xi =̂ λxi(3.2)

It is tacitly understood thatf does not have any homogeneity (at least not
of orderk) in the variablesξn+1, . . . , ξm. Strange at the first sight maybe, but
grouping the variables into disjoint subsets is quite natural in physics. For
example the kinetic energy of ann-particle ensembleEk(m, v) =̂ 1

2

∑n
i miυ

2
i

is homogeneous of order 1 with respect to the massesmi and homogeneous
of order 2 with respect to the velocitiesυi. Pushed to the extreme one can
say thatf = xyzis homogeneous of order 1 inx if y, z are taken to be constant
parameters(the same argument holds circularly fory andz), and homogeneous
of order 3 inx, y, z if all quantities are treated as free function variables.

Of particular interest to us are the energy functionsc U,A, . . . ,O with state
variables belonging toS,V,N or τ, π, µ. The energy functions, and entropy,
volume and mole number, are homogeneous functions of order 1, while tem-
a An empty chamber has no chemical components but is still a thermodynamic system.
b Herbert Callen.Thermodynamics and an Introduction to Thermostatistics. Wiley, 2nd edi-
tion, 1985. c From Eqs. 3.1–3.2 the total Gibbs energy isG(N, τ, π) = |N|g(1 mol, τ, π), or,
alternatively,G = Ng(τ, π). The latter form is accepted in thermodynamic literature and g is
then referred to as the molar Gibbs energy (or specific Gibbs energy if a mass basis is being
used).

15
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perature, pressurea and chemical potential are homogeneous functions of or-
der 0. In a thermodynamic context these quantities are referred to asextensive
and intensivestate variables respectivelyb.

§19 The Gibbs energy of a binary mixture is homogeneous of order 1 in
the mole numbersN1 andN2 (at fixedT andp). Make a contour diagram illus-
trating the functionG = aN1x2+N1 ln x1+N2lnx2 whereN2 is plotted along the
ordinate axis andN1 along the abscissa. Show that the isopleths corresponding
to constantG (the contour lines) are equidistant for evenly distributedGibbs
energy values. Usea = 2.4 in your calculations.

C . Gibbs energy is nonlinear inN1,N2 and the isopleths
must be calculated iteratively:N2,k+1 = N2,k − (Gk −G)/µ2, whereµ2 = ax2

1 +

ln x2 is the partial derivative ofG with respect toN2. A fixed value is selected
for N1 andN2 is iterated tillG has converged (Gk→∞ = G), see the Matlab-
program 1.2 in Appendix F. The calculated result is shown in Figure 3.1 on
the facing page. Note that each isopleth defines anon-convexregion which can
be interpreted as a fundamental thermodynamic instability. The corresponding
two-phase region (the symmetry of the model reduces the phase equilibrium
criterion toµ1 = µ2) can be calculated from the total differential ofG, rewritten
here into the tangent of the isopleth:

(
dN2
dN1

)
T,p,G
= −µ1

µ2

It can be proved (do this) that the tangent intersects with the y andx-axes at�
G/µ2 andG/µ1 respectively. This indicates that the phase equilibrium condi-
tion is fulfilled whenever two points on the same isopleth hascommon tangents
(remember thatG takes on constant values along each isopleth such that the
criterion is reduced toµ1 = µ2). �

Further contemplations on homogeneity should always be based on the
proper identification of the canonical state variables of the function. This is not
an absolute issue, however, because the thermodynamic state of any system is
uniquely determined ifanyof its possible variable sets is fully specified. For
exampleU is extensive inS,V,N while G is extensive inN at givenτ andπ,
but we can alternatively state the opposite and say thatU is extensive inN at
givenτ andπ and thatG is extensive inS,V,N. There are plenty of alternative
state descriptions, but a combination of three arbitrary state variables is not
always sufficient. A simple counter-example is the redundant specification H,
τ,Nc. To avoid problems of this kind we shall therefore make use ofcanonical
a Here,τ andπ are used for temperature and negative pressure respectively, as already intro-
duced in Chapter 2. In this context it is important to stress that the properties (in common with
the chemical potentialµ) are intensive quantities. b A physical quantity isextensiveif it is
proportional to the system size andintensiveif it is insensitive to the system size.c E.g. the
ideal gas enthalpy can be writtenHıg = H(τ,N). At given τ,N the system is underspecified
because there is no way we can fix the pressure. If we try to specify H in addition toτ andN
this will be a redundant (or even a contradictory) statement.
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variables if nothing else is stated.
We shall also avoid the general description of multicomponent functions

in Eq. 3.1, and rather go for a detailed analysis of the simpler two-variable
functions f (x, ξ) and f (X, ξ). The results will later be generalised in Chap-
ter General Theoryand nothing is spoilt by taking it easy here. In order to
exploit the function properties it is appropriate to make use of the total differ-
ential ofF = f (X, ξ) expressed inX andξ-coordinates:

dF =
(
∂F
∂X

)
ξ
dX +

(
∂F
∂ξ

)
X

dξ

The variableX is defined as a function ofx andλ in Eq. 3.2 and by substituting
the total differential ofX, or more precisely dX = λ dx+ xdλ, we get:

(3.3) dF =
(
∂F
∂X

)
ξ
xdλ +

(
∂F
∂X

)
ξ
λ dx+

(
∂F
∂ξ

)
X

dξ

An alternative would be to make use ofF = λk f from Eq. 3.1 as the starting
point for the derivation:

dF = kλk−1 f dλ + λk d f

Substitution of the total differential off expressed inxandξ-coordinates gives:

(3.4) dF = kλk−1 f dλ + λk
(
∂ f
∂x

)
ξ
dx+ λk

(
∂ f
∂ξ

)
x
dξ

Note that Eq. 3.3 and Eq. 3.4 are two alternative expressionsfor the same
differential dF(λ, x, ξ). Comparing the equations term-by-term reveals three
relations of great importance to thermodynamic methodology:

C dλ. Comparing the dλ-terms reveals that (∂F/∂X)ξx = kλk−1 f . Multi-
plication on both sides byλ gives (∂F/∂X)ξλx = kλk f , which upon substitution



18 3. EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS

of Eq. 3.1 and Definition 3.2 can be transformed to:

(3.5)
(
∂F
∂X

)
ξ
X = kF

The closed form of Eq. 3.5 indicates that there is a general solution to the
undetermined integralF(X, ξ) =

∫
(dF)ξ =

∫
(∂F/∂X)ξ dX. The result is known

as Euler’s first theorema on homogeneous functions, or simply as the Euler
integration ofF. �

C dx. Comparing the dx-terms reveals that (∂F/∂X)ξλ = λk(∂ f /∂x)ξ.
Dividing on each side byλ leads to:

(3.6)
(
∂F
∂X

)
ξ
= λk−1

(
∂ f
∂x

)
ξ

The derivative ofF with respect toX can be written on the formG(X, ξ) = λk−1

g(x, ξ) which implies that∂F/∂X is a homogeneous function of orderk − 1.
Differentiation with respect toX therefore reduces the homogeneity ofF by
one order. �

C dξ. Comparing the dξ-terms reveals that the homogeneity of the de-
rivative with respect toξ is unchanged:

(3.7)
(
∂F
∂ξ

)
X
= λk

(
∂ f
∂ξ

)
x

This implies that the derivative ofF with respect toξ is a new homogeneous
function of degreek. Differentiation with respect toξ therefore conserves the
homogeneity inX. �

R. It should be stressed that the Euler integration in Eq. 3.5 isnot
limited to one particular value ofX. In fact, any scaled variablex = λ-1X
satisfies the equation:

(
∂ f
∂x

)
ξ
x = k f

The validity of this statement is ensured by first combining Eqs. 3.5 and 3.6,
and thereafter substituting Eq. 3.1 and Definition 3.2. Thisresult emphasises
the practical importance of Euler’s theorem as outlined in Eq. 3.5. �

G. The general properties of homogeneous functions will be
elucidated in ChapterGeneral Theory, but to get an impression of the overall
picture we shall briefly mention what changes are required inEqs. 3.5–3.7 to

a Leonhard Euler, 1707–1783. Swiss mathematician.



3. EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS 19

make these valid for multivariate functions:
n∑

i=1
Xi

(
∂F
∂Xi

)
X j,i ,ξl

= kF(3.8)
(
∂F
∂Xi

)
X j,i ,ξl

= λk−1
(
∂ f
∂xi

)
xj,i ,ξl

(3.9)
(
∂F
∂ξk

)
X j ,ξl,k

= λk
(
∂ f
∂ξk

)
xj ,ξl,k

(3.10) �

§20 Internal energyU = U(S,V,N) is an extensive function in the vari-
ablesS,V and N. The total differential ofU is dU = τ dS + π dV + µ dN.
Explore the homogeneity associated with the functionsτ andπ andµ.

I . The variablesτ, π andµ mentioned above must be
identified. Mathematically, the total differential ofU(S,V,N) can also be writ-
ten:

dU =
(
∂U
∂S

)
V,N

dS +
(
∂U
∂V

)
V,N

dV +
(
∂U
∂N

)
S,V

dN
Compared with the differential given in the text this means thatτ =̂ (∂U/∂S)V,N

andπ =̂ (∂U/∂V)S,N andµ =̂ (∂U/∂N)S,V, see also Paragraph 9 on page 6 in
Chapter 2. Substitution ofk = 1 andXi = S andX j ∈ {V,N} andξl = ∅

a in
Eq. 3.9 yields:

(3.11) τ(S,V,N) =̂
(
∂U(S,V,N)

∂S

)
V,N
= λ0

(
∂u(s,v,n)

∂s

)
v,n
= τ(s, v, n)

The functionτ(S,V,N) is obviously homogeneous of order 0 in the variables
S,V,N because it is independent of the scaling factorλ. In common speech the
temperature is said to be an intensive variable and is taken to be independent�
of the system sizeb. Differentiation ofU with respect toV andN yield in a
similar manner,

π(S,V,N) =̂
(
∂U(S,V,N)

∂V

)
S,N
= λ0

(
∂u(s,v,n)

∂v

)
s,n
= π(s, v, n)(3.12)

µ(S,V,N) =̂
(
∂U(S,V,N)

∂N

)
S,V
= λ0

(
∂u(s,v,n)

∂n

)
s,v
= µ(s, v, n)(3.13)

where the (negative) pressure and the chemical potential are intensive variables
as well. �

§21 Internal energyU = U(S,V,N) is an extensive function in the vari-
ablesS,V and N. The total differential ofU is dU = τ dS + π dV + µ dN.
What is the correct integral form ofU? Make a physical reasoning about this
integral.

E . Substitution ofk = 1 andXi ∈ {S,V,N} andξl = ∅

in Eq. 3.8 together with the definitions from Paragraph 20 i.e. τ =̂ (∂U/∂S)V,N

andπ =̂ (∂U/∂V)S,N andµ =̂ (∂U/∂N)S,V yields Euler’s equation applied to�
a Actually an empty set. Here it is used to denote a missing variable or an empty vector.
b Valid only if the system is sufficiently big i.e. the number of particles is large enough to fix
the temperature!
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internal energy:

(3.14) U = τS + πV + µN

The paragraph does not question us about multicomponent mixtures, but Eq. 3.14
is quite general and can in (analogy with Eq. 3.8) be extendedto:

(3.15) U = τS + πV +
n∑

i=1
µiNi =̂ τS + πV + µTn �

R. The total differential of internal energy for a single component
system is dU = τ dS+ π dV + µ dN. The differential can be integrated without
actually solving any partial differential equation becauseτ, π, µ are intensive
(mass independent) variables. Physically, this means thatthe system can be
built from zero sizea in a manner that keepsτ, π, µ constant during the process.
This process is achieved by agglomerating a large number of small systems
at fixed temperature, (negative) pressure and chemical potential. When these
subsystems are collected into one big system there will be nochanges to the
intensive properties because the requirements forthermodynamic equilibrium
are intrinsically fulfilled, see also Chapter 8. �

§22 Gibbs energyG(τ, π,N) is an extensive function of the mole number
N at a given temperatureτ and (negative) pressureπ. The total differential of
G is dG = −S dτ − V dπ + µ dN. Explore the homogeneity associated with
the functionsS andV.

E . Applies the same procedure as was used in Para-
graph 20 on the previous page. First of all the functionsS,V andµ mentioned
in the text must be identified. Mathematically, the total differential ofG(τ, π,
N) is:

dG =
(
∂G
∂τ

)
π,N

dτ +
(
∂G
∂π

)
τ,N

dπ +
(
∂G
∂N

)
τ,π

dN

Compared to the differential in the text this yields−S(τ, π,N) = (∂G/∂τ)π,N
and−V(τ, π,N) = (∂G/∂π)τ,N andµ = (∂G/∂N)τ,π. From Eq. 3.10 we can
deduce that both volume and entropy are homogeneous functions of order 1 in
the mole number at specified temperature and (negative) pressure, i.e. they are
extensive variables. From Eq. 3.9 it is seen that the chemical potential (still) is�
a homogeneous function of order 0, see also Eq. 3.13. �

§23 Homogeneity causes a whole range of remarkable results. One for-
mula obtained by differentiating Eq. 3.5 is:

X d
(
∂F
∂X

)
ξ
− k

(
∂F
∂ξ

)
X

dξ = (k− 1)
(
∂F
∂X

)
ξ
dX

a A system of zero size has by definition null internal energy, i.e. U = 0. The meaning of
“zero size” refers in this context to zero volume, zero mass and zero entropy. Note, however,
that it is not sufficient to say zero mass because even an evacuated volume will have a radiation
energy witch is proportional toT4!
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For k = 1 this implies that (∂2F/∂X∂X)ξ = 0 and (∂F/∂ξ)X = (∂2F/∂X∂ξ)X.
Verify these results and give a physical explanation for thebehaviour.

H. The left side of Eq. 3.5 is differentiated and the right side is
replaced by the total differential ofF:

X d
(
∂F
∂X

)
ξ
+

(
∂F
∂X

)
ξ
dX = k

(
∂F
∂X

)
ξ
dX + k

(
∂F
∂ξ

)
X

dξ

For k = 1 the equation reduces toX d(∂F/∂X)ξ = (∂F/∂ξ)X dξ. Note thatX
and dξ are arbitrary. To proceed we must know the differential of∂F/∂X, but
becauseF is a function ofX andξ this can be written as the total differential

d
(
∂F
∂X

)
ξ
=

(
∂2F
∂X∂X

)
ξ
dX +

(
∂2F
∂X∂ξ

)
dξ

where dX is also arbitrary. Substituted into the equation above, andplugging
in k = 1, this gives the intermediate result:

(3.16) X
(
∂2F
∂X∂X

)
ξ
dX + X

(
∂2F
∂X∂ξ

)
dξ =

(
∂F
∂ξ

)
X

dξ

The trick is to recognise thatX, dX and dξ are independent variables. This
implies the existence of two non-trivial relations connected to Eq. 3.16 (one
equation in three variables leaves two non-trivial relations), irrespective of the
actual values ofX andξ:

(
∂2F
∂X∂X

)
ξ
= 0(3.17)

X
(
∂2F
∂X∂ξ

)
=

(
∂F
∂ξ

)
X

(3.18) �

From a physical point of view any extensive functionF(X, ξ) can be ex-
pressed on the formF = β(ξ)X. This stems from the fact thatF(0, ξ) = 0 in
addition to∂2F/∂X∂X = 0, see Eq. 3.17a.

The derivative ofF with respect toξ is therefore an extensive function
β′(ξ)X where the second derivative ofF with respect to bothX andξ is equal
to the intensive functionβ′(ξ). The numerical value of∂F/∂ξ is easily obtained
by Euler integration of∂2F/∂X∂ξ as shown in Eq. 3.18. �

G. In the general casex andξ would be vectorial quantities.
If F(x, ξ) is extensive inx it can be shown that the differential in Paragraph 23
on the facing page takes the form,

(3.19) xT d
(
∂F
∂x

)
ξ
−

(
∂F
∂ξ

)T

x
dξ = 0

where the differential of∂F/∂x is written:

(3.20) d
(
∂F
∂x

)
ξ
=

(
∂2F
∂x∂x

)
dx +

(
∂2F
∂x∂ξ

)
dξ

a It should be remarked that it is the second derivativefunctionwhich is zero. It is not sufficient
to say that the second derivative has a zero value at one particular point!
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The two quantities dx and dξ are independent and by substitution of the differ-
ential 3.20 in Eq. 3.19 it follows that:

(
∂2F
∂x∂x

)
ξ
x = 0(3.21)

(
∂2F
∂ξ∂x

)
x =

(
∂F
∂ξ

)
x

(3.22)

Note that Eq. 3.22 is ageneralisationof 3.18 whereas Eq. 3.17 represents
a specialisationof 3.21. That means the second derivative ofF(X, ξ) with�
respect toX is zero for all single-variable functions, while the corresponding
HessianF(x, ξ) for multivariate systems is singular in the direction ofx. This
is Euler’s second theorem on homogeneous functions. �

§24 Substitute forU = U(S,V,N) in Paragraph 23 on page 20 and show
that S dτ + V dπ + N dµ = 0. Do you know the name of this equation in
thermodynamics? Does it make any difference if you plug inG = G(τ, π,N)
rather thanU(S,V,N)?

G–D. Substitution ofF = U(x, ξ) in Eq. 3.19 wherexT = (S,V,
N) andξ = ∅, reduces the expression toxT d(∂U/∂x) = 0. From the definitions
of τ, π, µ in Paragraph 20 on page 19 we can write,

(3.23) S dτ + V dπ + N dµ = 0

better known as the Gibbs–Duhem equation. Alternatively, if F = G(x, ξ)�
wherex = N andξT = (τ, π), then Eq. 3.19 takes the form:

N d
(
∂G
∂N

)
τ,π
−

(
∂G
∂τ

)
π,N

dτ −
(
∂G
∂π

)
τ,N

dπ = 0

The partial derivatives ofG with respect toN, τ andπ are recognised asµ,
−S and−V in Paragraph 22 on page 20. The expression can therefore be
reformulated asN dµ+S dτ+V dπ = 0 which is identical to the Gibbs–Duhem
equation. In fact, all Legendre transforms ofU winds up into the same Gibbs–
Duhem equation. �

The paragraph does not ask for any extensions, but in analogywith Eqs. 3.8
and 3.15 the Gibbs–Duhem equation may be extended to a multicomponent
form:

(3.24) S dτ + V dπ +
n∑

i=1
Ni dµi =̂ S dτ + V dπ + nT dµ = 0

Note that the Gibbs–Duhem equation is an inevitable consequence of the ho-
mogeneous derivative properties of extensive functions and not only those of
thermodynamic origin. The homogeneity, which effectively removes one de-
gree of freedom in the function expression, shows up as a mutual dependency
in then derivatives (ofU). As a result onlyn−1 of the intensive state variables
are independent. In single component systems this means that any arbitrary in-
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tensive variable can be expressed as a function of (at most) two other intensive
variables, see also Paragraph 29 on page 25.

L . It is important to realise that the information
content ofU is conserved during the Legendre transformation toH,A, . . . ,O.
The knowledge of e.g. Gibbs energyG(τ, π,N) really implies a full knowledge
of U(S,V,N), and vice versa. The Gibbs–Duhem equation can therefore be
derived from any of the energy functions. In particular thisalso applies to the
differential of the null-potentialO(τ, π, µ) which is identical to Eq. 3.23, see
Paragraph 16 on page 11. �

§25 Use the result from Paragraph 23 on page 20 to determine thesecond
derivatives (∂2G/∂N∂N)τ,π and (∂2Y/∂S∂S)π,µ and (∂2Ω/∂V∂V)τ,µ whereG =
G(τ, π,N) andY = Y(S, π, µ) andΩ = Ω(τ,V, µ).

L . The three functionsG,Y andΩ are extensive inN,S
andV respectively, i.e. in one single variable. This makes Eq. 3.17 valid and
the substitution of the definitions forτ, π, µ yields:

(
∂2G
∂N∂N

)
τ,π
=

(
∂µ

∂N

)
τ,π
= 0(3.25)

(
∂2Y
∂S∂S

)
π,µ
=

(
∂τ
∂S

)
π,µ
= 0(3.26)

(
∂2Ω

∂V∂V

)
τ,µ
=

(
∂π
∂V

)
τ,µ
= 0(3.27) �

§26 Show that the Hessian ofA = A(τ,V,N) has one singleindepen-
dentelement when the temperatureτ is taken to be a constant parameter. Use
Eq. 3.21 as your point of departure.

Helmholtz energy is extensive inV,N at the given temperatureτ. With due
reference to Eq. 3.21 the Hessian ofA can be expressed as a function of only
one independent variable because the matrix, in addition tobeing symmetric,
must satisfy the homogeneity relation:

(
∂2A
∂x∂x

)
τ
x =̂



(
∂π
∂V

)
τ,N

(
∂π
∂N

)
τ,V(

∂µ

∂V

)
τ,N

(
∂µ

∂N

)
τ,V




V

N

 =


0

0



The notion about symmetry is valid to all Hessians of thermodynamic origin
and leads in this case to (∂π/∂N)τ,V = (∂µ/∂V)τ,N. Altogether there are 4
matrix elements and 3 connecting relations.

H. The solution of the homogeneous(!) system of equations canbe
formulated in an infinite number of ways where one possibility is:

(3.28) N
V

(
∂µ

∂N

)
τ,V

(
N
V −1
−1 V

N

) (
V
N

)
=

(
0
0

)
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Note that the second derivative of Helmholtz energy with respect to the mole
number is different from zero in Eq. 3.28, while the corresponding second
derivative of Gibbs energy is zero in Eq. 3.25:

(
∂µ

∂N

)
τ,π
= 0

(
∂µ

∂N

)
τ,V
, 0

This emphasises that a proper understanding of the many peculiarities of the
energy functions is important, and it also stresses that it is essential to know
which variables are held constant during the differentiation. �

§27 Find analytical expressions for (∂G/∂τ)π,N and (∂G/∂π)τ,N based on
an Euler integration of the partial molar entropy and partial molar volume.

P . ReplacesF by G(ξ, n) in Eq. 3.22 whereξT = (τ, π) and
nT = (N1, . . . ,Nn). This gives without difficulty:



(
∂G
∂τ

)
π,N(

∂G
∂π

)
τ,N

 =


(
∂2G
∂τ∂nT

)
π(

∂2G
∂π∂nT

)
τ

n = −



(
∂S
∂nT

)
τ,π(

∂V
∂nT

)
τ,π

n =̂ −


s̄Tn

v̄Tn



The partial derivatives ofS andV on the right hand side are called the partial
molar entropy and partial molara volume respectively. These quantities (and
similar partial molarities) occur so frequently in the thermodynamic theory
of mixtures that they are given a differential operator of their own, see Para-
graphPartial Differentials. A more compact writing is thereforeS = nTs̄ and
V = nTv̄. �

§28 Show thatG(S,V,N) really is an extensive function of the variables
S,V,N, verifying the conjecture which was made in the introduction to this
chapter (on page 16).

P. From the definitionG(τ, π,N) =̂ U − τS − πV whereU = U(S,V,
N) andτ =̂ (∂U/∂S)V,N andπ =̂ (∂U/∂V)S,N it follows that we can express
Gibbs energy as a function ofS,V,N because the right side of the equation
only includesU and functions derived fromU:

G(S,V,N) = U(S,V,N) − τ(S,V,N)S − π(S,V,N)V

We know from before thatτ, π andU,S,V are intensive and extensive variables
respectively. From this it follows,

G(S,V,N) = λu(s, v, n) − λτ(s, v, n)s− λπ(s, v, n)v

=̂ λg(s, v, n)

a A partial molar quantity is defined as̄f = (∂F/∂n)τ,π independent of whetherF hasτ, π,
N1, . . . ,Nn as canonical variables or not (it is only for Gibbs energy there is a correspondence
between the two variable sets).
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which clearly states thatG is homogeneous in accordance with the conjecture.
Note that the last equation tacitly exploits the homogeneity relationsS = λs,
V = λv andN = λn. �

§29 Can you from Paragraph 25 on page 23 tell how many thermodynamic
variables that are needed to determine the intensive state of a system?

T  . A thermodynamic system is in general described byn+
2 independent state variables. The intensive state is, however, determined once
n+ 1 (intensive) variables are fixed. This fact is illustrated by Eqs. 3.25–3.27�
where the derivative with respect to the remaining extensive variable is zero
when the other variables are intensive and constant during the differentiation.
In fact, the (single) extensive variable determines the system size but has no
influence onτ, π andµ. For a single component system we can describe the
intensive state in three different ways:

τ = τ(π, µ)

π = π(τ, µ)

µ = µ(τ, π) �
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??Aeschna grandis(Trondheim 2004).
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The unifying theory which embraces this book depends on fourpostulates
only, but as in every axiomatic system there is a considerable degree of free-
dom in how the postulates are stated (according to the incompleteness theo-
rems of Gödela ). First of all we must select a merit function among the four
basic quantitiesU, S, V andN. The volume is familiar to all of us while the
mole number is getting a little more vague (although molecular entities are no
doubt countable). On the other hand energy (work) and entropy (heat) are pure
abstractions. Among the latter two concepts most people findit easier to ac-
cept energy as a state variable rather than entropy because macroscopic work
is more directly quantified than heat. The pros and cons of themerit functions
are summarised below:

U(S,V,N). The variables are strictly positive (+), butS is a rather difficult
concept (-). Equilibrium is described as a minimum energy state (++). �

U(U,V,N). The variables have simple physical interpretations (+), but are
not strictly positive (-) becauseU has no absolute zero point. Equilibrium is
described as a state of maximum disorder (-). �

U(S,U,N). The variables are not strictly positive (-),S is an abstract con-
cept (-) and the equilibrium state has no clear physical interpretation (-). How-
ever, all the variables tell something about theinternalstate of the system (+),
while the function value is a measure for anexternalproperty (+). �

U(S,V,U). No contemplations—neither positive nor negative. �

The thermodynamic equilibrium corresponds with a state of minimum energy
which justifies the choice ofU(S,V,N) as the basis function. The four postu-
lates can then be stated as:

Internal energy: U = U(S,V, n)

Heterogeneous system:Utot =
∑
i

Ui(Si,Vi, ni)

Equilibrium state: Ueq = min
Si ,Vi ,ni

Utot

Zero entropy: lim
T→0

S = 0

a Kurt Gödel, 1906–1978. Austrian–American logician.

27
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We can build upon these postulates by defining four closely related energy
functions from the Legendre transform of internal energy;

Internal energy: U(S,V, n) =U =̂ TS− pV+
n∑

i=1
µiNi

Helmholtz energy: A(T,V, n) =U−TS =̂ −pV +
n∑

i=1
µiNi

Enthalpy: H(S,−p, n) =U + pV =̂ TS +
n∑

i=1
µiNi

Gibbs energy: G(T,−p, n) =U−TS+ pV =̂
n∑

i=1
µiNi

two Massieu functions dedicated isolated and open stationary systems respec-
tively (the functions have no special symbols);

S(U,V, n) = T-1U + T-1pV− T-1
n∑

i=1
µiNi

S(H,−p, n) = T-1H − T-1
n∑

i=1
µiNi

some extra definitions with roots in physical chemistry;

Temperature: T =
(
∂U
∂S

)
V,n

=̂
(
∂H
∂S

)
p,n

=̂ . . .

Pressure: −p =
(
∂U
∂V

)
S,n

=̂
(
∂A
∂V

)
T,n

=̂ . . .

Chemical potential: µi =
(
∂U
∂Ni

)
S,V,Nj,i

=̂
(
∂A
∂Ni

)
T,V,Nj,i

=̂ . . .

Heat capacity: CV =T
(
∂S
∂T

)
V,n
=̂

(
∂U
∂T

)
V,n

Heat capacity: CP =T
(
∂S
∂T

)
p,n
=̂

(
∂H
∂T

)
p,n

Isothermal expansivity: α=̂V-1
(
∂V
∂T

)
p,n
= v-1

(
∂v
∂T

)
p,n

Isobaric compressibility: −β=̂V-1
(
∂V
∂p

)
T,n
= v-1

(
∂v
∂p

)
T,n

Maxwell relations: ∂2F
∂Xi∂X j

= ∂2F
∂X j∂Xi

e.g.
⇒

(
∂2U
∂S∂V

)
n
=

(
∂2U
∂V∂S

)
n

def⇒−
(
∂p
∂S

)
V,n
=

(
∂T
∂V

)
S,n

Partial molarity: f̄i =
(
∂F
∂Ni

)
T,p,Nj,i

e.g.
⇒ḡi = µi

⇒µi = h̄i − Ts̄i
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a diagram illustrating the connections (Figure 4.1); and finally a table of all

Energy

Entropy
dU = dWtot

1.law 2.law 3.law
dU = dQ− dW dQrev = T dS

dU = T dS − pdV +
∑
i
µi dNi

Chain rule Euler

Mole

Closed system
An = b

Reaction
µ = ATλ

U = TS− pV+
∑
i
µiNi

lim
T→0

S = 0

A(T,V, n)S(U,V, n)

O(T, p,µ)O( 1
T ,

p
T ,
µ

T ) L
eg

en
dr

e

M
as

si
eu

Identities

Maxwell

...

...

...

...
...

Jacobi

(
∂U
∂S

)
V,n
= T

(
∂V
∂S

)
p,n
=

(
∂T
∂p

)
S,n

(
∂T
∂p

)
H,n

O
pt

im
iz

at
io

n

Global stability

Equilibrium

Local stability

µ ≥ ATλ

µα = µβ · · ·ATλ

(
∂2U

∂(S,V,n)∂(S,V,n)

)
≥ 0

Gibbs–Duhem
−S dT + V dp−∑

i
Ni dµi = 0

F
→

G

Extended Gibbs–Duhem
FT dT + Fp dp+

∑
i

Ni dm̄i = 0

F =
∑
i

m̄iNi

Partial molar quantity

E
ul

er

dF = FT dT + Fp dp+
∑
i

m̄i dNi

F 4.1Formal relationships in thermodynamics

Legendre transforms of internal energy for a single component system (sum-
marises much of what has already been stated):
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Symbol Variables Derivatives Euler form Legendre form
U S ,V ,N τ, π, µ τS+πV+µN U
A τ ,V ,N −S, π, µ πV+µN U−τS
H S ,π ,N τ,−V, µ τS+ µN U −πV
X S ,V ,µ τ, π,−N τS+πV U −µN
G τ ,π ,N −S,−V, µ µN U−τS−πV
Ω τ ,V ,µ −S, π,−N πV U−τS −µN
Y S ,π ,µ τ,−V,−N τS U −πV−µN
O τ ,π ,µ −S,−V,−N U−τS−πV−µN
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The theory of continuum mechanics is critical for the understanding of
transport phenomena and rheology of macroscopic material phases, which is
one reason the topic has established itself as an important research area. Lim-
iting the scope to “thermofluids” makes the scenery smaller,but it is still too
wide for a book dedicated applied thermodynamics. We shall therefore narrow
the focus even further and study primarily thelaminar flow of compressible
single phases with or without chemical reactionsa, and in particular we shall
do so using Euler control volumes andmacroscopictheory only. Even this
limited scope includes complex topics like momentum and energy balances,
mass and heat diffusion, reaction kinetics, viscous stresses, equation of states,
thermodynamic equilibrium and entropy production. The total picture is in-
deed very complicated, but the system behaviour should still agree with ther-
modynamic equilibrium theory if, or when, the fluid has come to a rest. It is
therefore assumed that the static state is fully described by the density fields

Internal energy u
Extents of reaction r i

Reaction invariantsci

and a thermodynamic equation of states(u, n1, n2, · · · ) capable of describing
the (frozen kinetics) equilibrium manifold

s(u, r1, r2, · · · , c1, c2, · · · ) = max
r ,c

[s(u, n1, n2, · · · )]

wherer andc are vectorised mass relations ofn1, n2, · · · b. From basic thermo-
dynamic theory the equilibrium value ofs must fulfil u = τs+ π +

∑
i µini, see

also Eq. 5.1 below. The potential strengthsτ, π andµi are defined elsewhere in
Chapter 2 on page 8,

Temperature τ =̂
(
∂U
∂S

)
V,N1,N2,···

Negative pressure π =̂
(
∂U
∂V

)
S,N1,N2,···

Chemical potentialsµi =̂
(
∂U
∂Ni

)
S,V,Nj,i

whereU = Vu, S = VsandNi = Vni and subscripti indicates a component
specific mixture property. Thus,µi andni denote the chemical potential and the

a No external force fields so far. b ni = ci if there are no chemical equilibrium reactions in
the system.
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composition of componenti ∈ [1,N] in the mixture. More fundamental to the
theoretical development are the homogeneous properties ofthermodynamic
energy functions. E.g. internal energyU is a homogeneous function in terms
of S,V,Ni and Euler’s theorem of integration applies to the free variables as
shown in Chapter 3. The volumetric energy (same as energy density) becomes

(5.1) u = τs+ π +
∑
i
µini

Taking the differential du = d(V-1U) = V-1(dU − udV) and inserting the total
differential dU = τ dS + π dV +

∑
i µi dNi , makes the pressure term vanish:

(5.2) du = τ ds+
∑
i
µi dni

This equation shall later be used to calculate an entropy balance for the system,
see Section 3.5 on page 44. Homogeneity also means that the Gibbs–Duhem
equationsdτ + dπ +

∑
i ni dµi = 0 must hold both in time and space coordi-

nates, see also Chapter 3, page 22. This is really a bold statement because
simplethermodynamic systems cannot depend explicitly on time or spatial po-
sition. Thus, if there is any reason to suspect the validity of the Gibbs-Duhem
equation the whole thermodynamic fundament of this chaptermust be recon-
sidered. For an infinitesimal Euler control volume it must inparticular hold
that

s∂τ
∂t+

∂π
∂t+

∑
i

ni
∂µi

∂t = 0

s∇τ+∇π+∑
i

ni∇µi = 0(5.3)

where∇ is the spatial gradient operator. Secondly, it is assumed that the dy-
namic state can be fully described by the stress–strain relation

P = Π[grad(v), grad(̃v)] − π(u, c1, c2, · · · )I

from which it follows thatP = −πI in the absence of velocity gradients. The
only explicit coupling with the thermodynamic equilibriumstate is therefore
due toπ. Note also that the mass average velocityv defined inρv =̂

∑
i ρivi

with ρi =̂ wini is considered to be a sufficient variable for the stress–strain
relation, and that the presence of molecular diffusion shall not complicate this
picture.

The fields are functions of both time and spatial position, i.e. ϕ(t, x), but
at a given instant of time their values are spatially fixed. Itis then permis-
sible to studyvirtual displacementsof heat and matter independent of what
physical processes take place in the time domain. This abstraction shall prove
invaluable in merging the thermodynamic state descriptionwith fluid mechan-
ics theory. But, first it must be appreciated that, although thermodynamics has
a plethora of amenable variables, it suffices to discuss the canonical variable
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sets only. In this context “canonical” means that the Legendre transform

Lx f (x, y, · · · )y g( fx, y, · · · ) =̂ f − fxx

quite naturally defines a new variablefx =̂ (∂ f /∂x)y,··· which replacesx in
the original variable list. In the case just mentionedf has canonical vari-
ablesx, y, · · · while the transformg has canonical variablesfx, y, · · · . The two
variablesx and fx are sometimes referred to as conjugated variables. What
is written here would not be of much interest was it not for thefact that the
Legendre transform is a reversible operation. Hence, any ofthe two aforemen-
tioned variable sets can be used to express the thermodynamic state, e.g. as
g(x, y, · · · ) or f ( fx, y, · · · ), without deteriorating the system description. E.g.
let Gibbs energy be defined by the Legendre transform

LS,VU(S,V,N1,N2, · · · )y G(τ, π,N1,N2, · · · )

The transformed variablesτ, π,N1,N2, · · · are just as informative asS,V,N1,

N2, · · · and it is permissible to write dU = Uτ dτ+Uπ dπ+
∑

i ūi dNi whereUτ

andUπ have obvious meanings and

ūi =̂
(
∂U
∂Ni

)
τ,π,Nj,i

U is in this case a homogeneous function inN1,N2, · · · at fixed temperature
and (negative) pressure. Thus, Euler’s theorem of integrationa applies to the
component mole numbers,

U =
∑
i

Ni

(
∂U
∂Ni

)
τ,π,Nj,i

=
∑
i

Ni ūi

or, on a volumetric basis

(5.4) u =̂
∑
i

ūici

This equation is quite noteworthy in that it integrates a partial differential equa-
tion in one single step, but to do so in a physical situation all the ūi must be
known at the outset. Virtual displacement of matter in fixed thermodynamic
fields satisfies these conditions and we shall later make extensive use of Eq. 5.4
and similar expressions forV, H, G andS.

1. Tensor versus matrix notation

The understanding of tensors and their transformation properties is central
to the fluid mechanics theory and is a required asset for any text on the subject.
Quite unfortunately, however, the convention adopted for tensor indices is in
conflict with the same indices used to denote component specific properties
in thermodynamics. It is of course conceivable to use one setof indices for
the spatial coordinates and another set for the thermodynamic variables, but
a The same procedure applies to any other extensive variable like volume, enthalpy, etc.
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after giving this idea a second thought it is maybe better to distinguish the two
worlds rather than forcing them to look similar. The theory covered in this

T 5.1Tensors used in fluid mechanics and some matrix
analogues with relevance to thermodynamics texts. Com-
mon indices in a tensor product implies summation over that

index (the Einstein summing convention).

This text Tensor Matrix Size

v · T Ti j vi vTT j

T · v Ti j vj Tv i

T · S TikSk j TS i × j

T : S Ti j Si j trace(TTS) 1

grad(a) ∇ia ∂a/∂x i

grad(v) ∇ jvi ∂v/∂x i × j

div(v) ∇ivi trace(∂v/∂x) 1

div(T) ∇ jTi j − i

div(grad(a)) ∇i∇ia trace(∂2a/∂x∂x) 1

v ⋆ v vivj vvT i × j

T + T̃ Ti j + T ji T + TT i × j

chapter therefore benefits from a “tensor light” notation which should be quite
obvious to anyone with background in fluid mechanics. However, rather than
using del-notation (∇) to differentiate spatial variables it is suggested to use
literal operators (grad, div, etc.) in order to make the distinction between fluid
mechanics and thermodynamics even more pronounced. Throughout the text
it is also necessary to deal with the abstract vector spaces of thermodynamics
but for this purpose matrix notation is better suited. Everything that has to
do with tensorial flow and transport of matter inR3 will be using ·, :, ⋆, div
and grad notation, while operations connected to the general vector spaceRn

will be using matrix notation. Pure tensor notation (with Einstein summing
convention) does not find much use in this text. A comparison of the different
options is included in Table 5.1.

2. Reaction invariants

The reaction variables mentioned at the beginning of this chapter pro-
vide the opportunity to distinguish between the (fast) equilibrium reactions
on one side, and the (slow) kinetic reactions and (true) reaction invariants
on the other side. This time scale separation is essential toavoid numeri-
cal stiffness when the rate of a chemical reaction approaches infinity(equilib-
rium reaction). Our mathematical remedy in this respect is to transform fast
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differential equations into algebraic couplings. Here it meansthat the equa-
tion of states(u, n1, n2, · · · ) must be transformed into an equilibrium manifold
s(u, r1, r2, · · · , c1, c2, · · · ). Rather than including source terms for each mole
variableN1,N2, · · · that takes part in a chemical reaction, it can be put up
closed algebraic formulae forN1,N2, · · · in terms ofR1,R2, · · · ,C1,C2, · · · .
Thus, it is sufficient to track the extents of kinetic reactions, and the reaction
invariants, rather than keeping an eye on every single species in the mixture.
Let us continue by writing the mass conservation of a closed system (fixed
C1,C2, · · · ) using reaction stoichiometry notation:

(dn)c =
(

Qe Qr

) ( de
dr

)
=̂ dne + dnr

Heren = (n1, n2, · · · ) =̂ V-1(N1,N2, · · · ) are the molar densities of the thermo-
dynamic model,e andr are the extents of equilibrium and kinetic reactions,
andc are the densities of reaction invariants. The vector dimensions are such
that dim(n) ≥ dim(r ) + dim(c). The stoichiometry matricesQe andQr are
orthogonal representations of the equilibrium reactions and the kinetic reac-
tions respectively. The reaction stoichiometry can be expanded into a full or-
thogonal basis [Qe Qr Qc] whereQc =̂ null[Qe Qr]T. From this it follows that
[Qr Qc]T de = 0 and furthermore thatc =̂ QT

c n and r =̂ QT
r n are conserved

quantities for the equilibrium reactions. Of interest to our thermodynamic ap-
proach is that energy, volume and mass can be handled in a uniform way:

QTy = x

where

QT =



1 0 0
0 1 0
0 0 QT

r
0 0 QT

c


; x = V



u
1
r
c


; y = V


u
1
n



In a simulation contextx holds the variables controlled by the flow solver,
while y holds the variables controlled by the thermodynamic equilibrium pack-
age. The key to success lies in merging these two variables seamlessly. From
a thermodynamic pointy is the canonical variable set of entropy. Euler inte-
gration over the control volume, at fixed field strengths, yields

S = τ-1(U − πV − µTn) = gT
yy

wheregy is the gradient function ofS:

gy =
∂S
∂y = τ

-1


1
−π
−µ
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Provided there is a significant time scale separation between the fast reactions
on one side and the kinetic reactions on the other side, it is meaningful to
calculate the equilibrium condition from Lagrange multiplier theorya:

gy = Qgx ⇔ µ = Qrλr +Qcλc

The equilibrium potentialµ is clearly in the column spaces ofQr andQc so
what happened to the column space ofQe? Pre-multiplications of the rightmost
equation byQT

e, QT
r andQT

c reveal the following conditions:

QT
eµ = 0

λr =̂QT
r µ→ 0 (t →∞)(5.5)

λc =̂QT
cµ , 0

From basic optimisation theory it can be decided that the chemical potential
vector is orthogonal to the stoichiometry matrix at equilibrium. This is always
true for the fast reactions above. It is conditionally true for the slow reactions
at infinite reaction time. For the reaction invariants it will never come true
except by coincidence. The numerical solution to the equilibrium problem can
be found by iterating a Newton–Lagrangeb Syy = ∂gy/∂yT is the Hessian matrix
of the entropy functionS(y):

(5.6)

(
Syy Q
QT 0

) (
y
−gx

)
=

(
−gy

x

)

At this point it is tempting to go for a detailed analysis of the equilibrium
problem rather than a plain simultaneous solution. Symbolic inversion yields

(5.7)

(
−gx

y

)
=

(
−Sxx C12

CT
12 C22

) (
x
−gy

)

whereSxx andCi j are unknownc sub-matrices. To find these,Q can be extended
into a full orthogonal basis [Q N] whereN = null(QT) i.e. QTN = 0. Back-
substitution into the Newton–Lagrange equations gives thesolutiond

C22 =N
(
NTSyyN

)-1NT

a The nature of Lagrange multipliers is peculiar to thermodynamic theory. E.g.λc is inter-
preted as the chemical potentials of the reaction invariants: QT

cµ = QT
c Qrλr + QT

c Qcλc = λc
b The knowledgeable reader may insist on usingδy andδgx rather thany andgx on the left
side. But,Sxx is singular in the direction ofy which meansSxxδy = Sxxy, and because the
constraints are lineargx does not show up in the coefficient matrix. The equation system is
therefore valid both as an update scheme and a condition for the final solution. c Note that
the Hessian has one singular directionSyyy = 0 caused by the homogeneous nature ofS(y).
InvertingSyy directly is therefore not an option. d Actually, a few algebraic steps are re-
quired here. Back-substitution immediately givesI = SyyC22 + QC12, 0 = SyyCT

12 − QSxx,
0 = QTC22 and I = QTCT

12. From the last two equations it is evident thatC22 = NU and
CT

12 = Q + NV. Solving forU andV using the first two equations is relatively easy leading to
the solution listed in the main text.
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CT
12 =Q − C22SyyQ

Sxx =QTSyyCT
12

The true benefits of using a second order Newton–Lagrange scheme are more
visible then it comes to perturbation analysis. Letα ≥ 0 be a distance parame-
ter along the curvex(α) ∈ RN+2:

x(α) =x + α ∂x
∂α
+ 1

2α
2 ∂2x
∂α∂α
+ · · ·

=̂
∑
k=0

αk

k! ∂
k
αx

The compact notation∂k
α is not essential but it makes the forthcoming text less

verbose. More important is that each point on the curve represents a unique
equilibrium state, and that the solution vectorsy(α) andgx(α) are functions of
α. However, because Eq. 5.6 on the facing page is generally valid the parame-
ter form of the equilibrium equations can be written withoutmuch pondering:

(
Syy(α) Q

QT 0

) (
y (α)
−gx(α)

)
=

(
−gy(α)

x (α)

)

Quite unexpectedly this problem has an analytic solution. The secret is that
Syy(α)y(α) = Syyy due to the homogeneous properties ofSa. The only compli-
cation that remains isgy(α). By introducing the expansion

gy(α) =gy + α∂
1
αgy +

1
2α

2∂2
αgy + · · ·

=gy + αSyy∂
1
αy +

1
2α

2[Syyy(∂
1
αy)2 + Syy(∂

2
αy)] + · · ·

it turns out that the path derivatives can be calculated, oneat a time, using the
same coefficient matrix as in Eq. 5.7!

(
−∂k

αgx

∂k
αy

)
=

(
−Sxx C12

CT
12 C22

) (
∂k
αx
−fk

)

It is assumed that all∂k
αx are known at the outset. The generating functionfk

is recursively calculated from the previousk− 1 solutions, and thek− 2’th de-
rivative ofSyy, as shown in Table 5.2. Two special cases are worth mentioning:
k = 0 corresponds with the equilibrium calculation in Eq. 5.6, and k = 1 with
the first order perturbation of this equilibrium state. Physically, it means that

gx =
(
∂S
∂x

)
eq

Sxx =
(
∂gx

∂xT

)
eq
=

(
∂2S
∂x∂xT

)
eq

a The expansion reads:Syy(α)y(α) = Syyy+α[Syy∂
1
αy+Syyyy∂1

αy]+ 1
2α

2[2Syyy(∂1
αy)2+Syy(∂2

αy)+
Syyyyy(∂1

αy)2 + Syyyy(∂2
αy)] + · · · By substitutingSyyyy = −Syy, Syyyyy = −2Syyy, etc. the higher

order terms vanish. Hence, the only term that survives the expansion isSyyy (which is also0
but that is a different story).
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T 5.2 Taylor expansion of equilibrium gradient. The “matrix” products
follow no particular convention, but they should nevertheless be quite legiti-

mate.

k fk

0 gy

1 0
2 Syyy(∂1

αy)2

3 Syyyy(∂1
αy)3 + 3Syyy(∂1

αy)(∂2
αy)

4 Syyyyy(∂1
αy)4 + 6Syyyy(∂1

αy)2(∂2
αy) + 4Syyy(∂1

αy)(∂3
αy) + 3Syyy(∂2

αy)2

Although theoretically correct the matrices above are not suited for direct cal-
culations. Virtually all equations of (fluid) state useT,V,Ni as free variables,
and there are simply no viable alternatives for theU,V,Ni case! Not unex-
pected the Legendre transform is the cure of this illness, asmany others, and
listed below are examples on (congruent) transformations of the Hessian ofA
into the Hessians ofU andG:

US VN,S VN=C


−A-1

τ,τ 0 0
0 AV,V AV,N

0 AN,V AN,N

 CT, C =̂


1 0 0

AV,τ 1 0
AN,τ 0 I



GτπN,τπN =C


Aτ,τ 0 Aτ,N

0 −A-1
V,V 0

AN,τ 0 AN,N

CT, C =̂


1 −Aτ,V 0
0 1 0
0 −AN,V I



The Hessian ofG is needed because−s̄ =̂ GN,τ and−v̄ =̂ GN,π find some use
throughout this text. The Hessian ofU is an intermediate result needed to
calculate the Hessian ofS (implicit differentiation):

τ3SUVN,UVN = CUS VN,S VNCT, C =̂


1 0 0
−π τ 0
−µ 0 τI



3. Conservation laws

The conservations of mass, energy and momentum are central to fluid
mechanics and shall therefore be outlined in some detail. However, our ap-
proach shall be quite naive and based on macroscopic thermodynamic prin-
ciples rather than a concise microscopic kinetic theory. Let Φ be an integral
property of the control volumeV, andϕ the corresponding density which is
supposed to vary throughoutV. Now, if V is an Euler control volume, the
total differential ofΦ is

dΦ = d
∫

V
ϕ dV = dt

∫

V

∂ϕ

∂t dV
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because the integration limits are fixed in time. The convective flux of Φ
through the control surfaceA at a given instance of time is

∫

A
ϕ(v · u) dA =

∫

V
div(ϕv) dV

whereu is an outward unit vector normal to the surface element dA, andv is
the local velocity at whichϕ is being transported (an application of Gauss’s
divergence theorem has taken place from left to right). IfΦ is a conserved
property then dΦ / dt must balance the flux through the control surface,

∫

V

∂ϕ

∂t dV +
∫

V
div(ϕv) dV = 0

or, because the integration domain is arbitrary

(5.8) ∂ϕ

∂t = − div(ϕv)

All this may seem trivial but getting the flux expressions right can be quite
tricky. Let us start the discussion by studying the transport of thermodynamic
quantities. E.g. the flux of internal energy is ¯uinivi for each component being
present in the system. The physical argument was carried outin connection
with Eq. 5.4 on page 33 and it will here be taken for granted that Euler integra-
tion of the energy density is possible. The introduction of molecular diffusion
nivi =̂ j i + niv gives rise to

∑
i

ūinivi =
∑
i

ūi j i + v
∑
i

ūini

=̂ju + uv(5.9)

The flux is seen to consist of one convective termuv and an (optional) molecu-
lar diffusion termju

a. Expressions similar to the one above hold for all densities
of thermodynamic origin:

∑
i

v̄inivi =
∑
i

v̄i j i+1v =̂j v+1v(5.10)
∑
i

s̄inivi =
∑
i

s̄i j i+sv =̂j s+sv(5.11)

∑
i

h̄inivi =
∑
i

h̄i j i+hv =̂jh+hv(5.12)
∑
i

ḡinivi =
∑
i

ḡi j i+gv =̂jg+gv(5.13)

Note that 1v is deliberately used in the first equation to emphasise that this line
is not misprinted—the volume density is really unity everywhere in the control
volume! In the last equationµi can be substituted for ¯gi. This redundancy is
caused by a clash of two independent definitions and is quite inevitable from a
thermodynamic standpoint.

a We shall later learn that similar diffusion terms are ignored for both the momentum and the
kinetic energy fluxes.
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3.1. Mass.Let Ri∈[1,R] andCi∈[1,C] define the extents of kinetic reactions
and the moles of reaction invariants as explained in Section2. It is important
to realise that allCi are conserved independently of any reactions in the con-
trol volume, whileRi are conserved only for infinitesimally small time lapses
i.e. for frozen kinetics only. This knowledge is sufficient for putting up a mass
balance, but there is one complicating factor:Ci andRi refer tovirtual com-
ponents which are not useful for defining e.g. molecular diffusion fluxes. It
is therefore necessary to formulate the mass balance in terms of the model
variablesNi which are physically present in the mixture. From identifying the
molar densityni =̂ V-1Ni as the state propertyϕ in Eq. 5.8 it follows that

∂ni

∂t = − div(nivi) +
[
Qe

∂e
∂t

]
i +

[
Qrṙ

]
i i ∈ [1,N]

Note that∂e
∂t and ṙ represent two different modesa of time changes—the first

is a differential change in the extents of equilibrium reactions, while the other
is the rate at which the extents of kinetic reactions will change. Next, let the
mass average velocity be defined byρv =̂

∑
i ρivi and the molar diffusion fluxb

relative to the mass centre bynivi =̂ j i + niv. The divergence term can then be
written

div(nivi) = div(j i) + grad(ni) · vi + ni div(vi)

At this point it is favourable to collect all thei ∈ [1,N] mass balances into one
matrix equation:

(5.14) ∂n
∂t = − div(J) − grad(n) · v − n div(v) +Qe

∂e
∂t +Qrṙ

Pre-multiplication of Eq. 5.14 with [Qr Qc]T revealsc the mass balance in its
final form:

∂
(
r
c

)

∂t
= − div

(
Jr

Jc

)
− grad

(
r
c

)
· v −

(
r
c

)
div(v) +

(
ṙ
0

)

The mole numbersCi of the reaction invariants are conserved in the reactions
(slow and fast), and so must the accompanying masses be. Mathematically this
implies that the vector of molecular weightsw (of each speciesNi) has to be
in the column space ofQc. Pre-multiplication of Eq. 5.14 withwT therefore
yieldsd the total mass balance of the system:

∂ρ

∂t = − grad(ρ) · v − ρ div(v)

= − div(ρv)

a That is to saye is a state variable whiler is not. b When combined withρi =̂ wini these
definitions imply that

∑
i wi j i = 0. c Jr =̂ QT

r J, Jc =̂ QT
c J, QT

r Qe = 0, QT
c Qr = 0, QT

r Qr = I ,
QT

r n =̂ r andQT
c n =̂ c. d wTn = ρ, wTQe ∝ QT

c Qe = 0 andwTQr ∝ QT
c Qr = 0.
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Yet another inner product, prepared exclusively for the entropy balance in Sec-
tion 3.5, is:

µT ∂n
∂t =̂

∑
i
µi

∂ni
∂t = −

∑
i
µi div(j i) −

∑
i
µi div(niv) + µTQe

∂e
∂t + µ

TQrṙ

= −∑
i
µi div(j i + niv) + λT

r ṙ(5.15)

The chemical equilibrium conditions from Eq. 5.5 have been substituted in line
two of this equation, and there is a slightly unusual mix of summations and
matrix multiplications to have the equation fit better into its future context.

3.2. Momentum. The momentum density
∑

i niwivi is a tensorial prop-
erty conserved (element-wise) in each spatial direction. Substitution of the
diffusion fluxnivi =̂ j i + niv where

∑
i wi j i = 0 andρ =̂

∑
i niwi yields:

∑
i

niwivi =̂
∑
i
(wi j i + winiv) =̂ ρv

Clearly, molecular diffusion has no influence on the momentum densitya, but
as shown below this will not be the case for the momentum flux. The mo-
mentum flux associated with the transport of componenti in the x-direction
is winiυx,ivi, and considering all directions simultaneously the flux expression
becomeswini(vi ⋆vi). From the definitions above the total momentum flux can
be written

∑
i

wini(vi ⋆ vi) =̂
∑
i

win-1
i (j i + niv) ⋆ (j i + niv)

=
∑
i

wi(n-1
i j i ⋆ j i + j i ⋆ v + v ⋆ j i + niv ⋆ v)

=̂ρ
[
1+ O( ε

υ
)
]
(v ⋆ v)

Neglecting the momentum of diffusion introduces an error∼ ε
υ
ρ(v ⋆ v), i.e.

something very small unlessε ∼ υ. Thus, for large flow velocities the situation
is similar to that discussed more thoroughly in Section 3.3.Next, according to
the principle of momentum conservation it can be argued that

∫

V

∂ρv
∂t dV =

∫

A

∑
i

wini(vi ⋆ vi · u) dA+
∫

A
(P · u) dA

whereP is the local stress tensorb at a point on the control surface. Substitution
of the momentum flux gives

∂ρv
∂t ≃ − div[ρ(v ⋆ v)] − div(P)

= − div[ρ(v ⋆ v)] − div(Π) + grad(π)

These are the equations of motion for the centre of mass. Theyalso form a
sound basis for the conservation of kinetic energy, see Section 3.3.
a This is the reason why we are troubled with themass average velocitymost of the time.
b Force per unit area in six tangential and three normal directions (3× 3 tensor).
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3.3. Kinetic energy. The kinetic energy density is12
∑

i niwiυ
2
i . The defi-

nitionsυ2
i =̂ vi · vi andnivi =̂ j i + niv lead to

niυ
2
i = ni(vi · vi) = n-1

i (j i + niv) · (j i + niv)

Further algebraic manipulation yields

niυ
2
i = n-1

i (j i + 2niv) · j i + ni(v · v)

= (vi + v) · j i + ni(v · v)

= j i · vi + j i · v + ni(v · v)

The total kinetic energy summed over all components (considering that
∑

i wi j i

= 0 and
∑

i niwi = ρ andv · v = υ2) is
∑
i

niwiυ
2
i =

∑
i

wi(j i · vi) + v ·∑
i

wi j i + v · v ∑
i

niwi

=
∑
i

wi(j i · vi) + ρυ2

= ρ
[
1+ O( ε

υ
)
]
υ2

Neglecting the kinetic energy of diffusion introduces an error∼ ε
υ
ρυ2 which

is small unlessε ∼ υ. At large flow velocities the kinetic energy density can
therefore be writtene ≃ 1

2ρυ
2. So far so good, but to find a balance equationa

for e it is necessary to go back to the momentum balance in Section 3.2

∂ρv
∂t ≃ − div[ρ(v ⋆ v) + P]

Plain differentiation followed by the elimination of the total mass balance∂ρ/
∂t = − div(ρv) yields

ρ ∂v
∂t = −ρ grad(v) · v − div(P)

The vector equation above is contracted into a scalar equation by taking the
inner product overv

ρ(v · ∂v
∂t ) = −ρ[v · grad(v)] · v − v · div(P)

a Although not needed till Chapter 3.4, the kinetic energy fluxis υ2
i winivi per component

in the system. From the definitionsυ2
i nivi =̂ k i + υ

2niv andυ2
i =̂ vi · vi andυ2 =̂ v · v

the kinetic energy can be summed over all components (note that ρ =
∑

i wini) to obtain
∑
i
υ2

i winivi =
∑
i

wik i + v
∑
i
υ2wini =

∑
i

wik i + ρυ
2v = ρυ2[1+ O( ε

υ
)
]
v

Here, ε is defined as a representative diffusion velocity. For large flow velocities we get

lim
v∀i→v

∑
i

wik i = lim
v∀i→v

∑
i

winiυ
2[( υi

υ
)2vi − v] = υ2 ∑

i
wi j i = 0

So what is large? It is reasonable to assume that the diffusional velocitiesvi − v are of
“chemical” nature and quite independent of the flow conditions. Hence,υi − υ = ±ε
and vi − v = ±ε(υ-1v). By neglecting the kinetic energy of diffusion we make an error∑

i wik i =
∑

i niwiυ
2[( υi

υ
)2vi − v] ∼ ∑

i niwiυ
2[(1 ± ε

υ
)3 − 1]v ∼ 3ε

υ

∑
i niwiυ

2v ∼ 3ε
υ
ρυ2v i.e.

something very small compared toρυ2v unlessε ∼ υ.
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The left term, and the first term on the right side, can be reinterpreted using the
product rule of differentiation backward:

ρ

2
∂υ2

∂t = −
ρ

2 grad(υ2) · v − v · div(P)

Further simplification is possible by doing the same backward operations on
the div and grad operators

1
2
∂ρυ2

∂t −
υ2

2
∂ρ

∂t = −
1
2 div(ρυ2v) + υ2

2 div(ρv) − div(P · v) + P : grad(v)

Finally, the mass balance∂ρ/∂t = − div(ρv) can be used to simplify the equa-
tion to:

∂e
∂t ≃ − div(ev) − div(P · v) + P : grad(v)

= − div(ev) − div(Π · v) +Π : grad(v) + v · grad(π)(5.16)

3.4. Total energy. The total energy of a system is composed of kinetic
and internal energy contributions. An approximate expression for the kinetic
energy density is known from Section 3.3, while Eq. 5.4 on page 33 is an exact
representation of the internal energy density:

∫

V

∂
∂t

∑
i

ni(ūi +
1
2wiυ

2
i ) dV ≃

∫

V

∂(u+e)
∂t dV

There is also an (approximate) expression for the convective flux of kinetic
energy, see footnote on Page 42, the flux of internal energy (Eq. 5.9) and the
volume flux due to the transport of matter (Eq. 5.10). In addition the First Law
of thermodynamics states that

(dU)V,C1,C2,··· = dQ+ dW

wheredQ is the heat anddW is mechanical workadded tothe system. In
our casedW can be interpreted as the viscous strain (rate) work done at the
control surface. Next, it must be assumed that both heat and viscous work can
be added to the control volume independent of virtual displacements of matter.
If this argument holdsa it is correct to add a heat fluxq and a flux of viscous

a This is not trivial. In many textbooks there is a so-called total heat flux which incorporates
pure conduction (ourq) plus all kinds of coupled heat transport (Soret, Dufour, etc.). Secondly,
the definition of strain rate work is based on an analogy with elastic deformation work in
solid state mechanics. While the latter is something that isquite easily defined for a closed
volume, the strain rate work is not because viscous forces depend on velocity gradients inside
the body rather than pure elastic strains (and hence the control volume cannot be closed in
a thermodynamic sense). It is also worth a moment of reflection why the thermodynamic
pressure is let out of the pressure tensor and rather included as a convection term.
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workΠ · v to the balance equation:
∫

V

∂(u+e)
∂t dV =

∫

A

∑
i

ni(ūi − πv̄i +
1
2wiυ

2
i )(vi · u) dA

+
∫

A
(Π · v)(v · u) dA

+
∫

A
(q · u) dA

This equation is on the same form as explained on Page 39, and Gauss’s diver-
gence theorem applies to the integrals on the right hand side:

∂
∂t (u+ e) ≃ − div(uv − πv + ev) − div(ju + pj v) − div(Π · v) − div(q)

A balance equation for the total energy is not very useful because no grand
models are available foru + e. Subtracting the kinetic energy balance in
Eq. 5.16, and defining the enthalpy density ash = u − π, leaves something
much more tractable:

∂u
∂t ≃ − div(hv) − div(q + jh) −Π : grad(v) − v · grad(π)

3.5. Entropy. The entropy density and the corresponding time derivative
can easily be calculated onceu and ni are known, see Eqs. 5.1 and 5.2 on
page 32:

τ∂s
∂t =

∂u
∂t −

∑
i
µi

∂ni

∂t

The balance equations for internal energy, matter and entropy are

∂u
∂t ≃ − div(hv) − div(jh + q) −Π : grad(v) − v · grad(π)
∂ni
∂t = − div(niv)− div(j i) +

[
Qe

∂e
∂t

]
i +

[
Qrṙ

]
i

∂s
∂t =̂ − div(sv) − div(j s) − div(τ-1q) + ṡırr

The first equations are explained in Section 3.4 and 3.1, while the last one is
new. Its first two terms on the right hand side follow directlyfrom Gauss’s
divergence theorem applied to the convective entropy flux defined in Eq. 5.11
on page 39. The last two terms, however, are motivated from the Second Law
of thermodynamics which states that

(dS)V,C1,C2,··· =
dQ
T + ṡırr

Hence, by defining the heat flow as independent of virtual massdisplacements
(the controlvolumeis fixed), it is correct to add the convective termτ-1q on the
right hand side of the balance equation. The next step is to isolate the entropy
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production from the equations abovea. With the aid of Eq. 5.15 we get:

τṡırr = −div(hv) − div(q + jh) −Π : grad(v) − v · grad(π)

+
∑
i
µi div(niv + j i) − λT

r ṙ

+τ div(sv + j s + τ
-1q)(5.17)

Further simplification is possible provided the last two lines are reinterpreted
adequatelyb. Backward use of the rule of product differentiation makes the
chemical potential sum be written

∑
i
µi div(niv + j i) =

∑
i

div(niµiv + µi j i) −
∑
i
(niv + j i) · grad(µi)

=̂ div(gv + jg) −
∑
i
(niv + j i) · grad(µi)

and similarly for the entropy flux

τ div(sv + j s + τ
-1q) = div(τsv + τj s + q) − (sv + j s + τ

-1q) · grad(τ)

The last two equations are finally substituted into the expression forτṡırr. The
result is quite appealing

(5.18) τṡırr = −(j s + τ
-1q) · grad(τ) −∑

i
j i · grad(µi) −Π : grad(v) − λT

r ṙ

because three terms drop out as a consequence of the definitions of Gibbs
energy and partial molar quantities, and the Gibbs–Duhem equation:

div
[
(g− h+ τs)v

]
= 0

div(jg − jh + τj s) =̂ div
[∑

i
(µi − h̄i − τs̄i)j i

]
= 0

v · [grad(π) +
∑
i

ni grad(µi) + sgrad(τ)
]
= 0

Everything looks fine at this point but there is one serious caveat in Eq. 5.18:
The right hand side of the equation is sensitive to changes inthe reference ve-
locity of diffusion whileτṡırr in Eq. 5.17 is not! It is only whenv is interpreted
as the average mass velocity (which has been the case so far) that grad(π) drops
out in Eq. 5.18. To understand this matter clearly we first rewritec the diffusion

a The diffusion fluxes are arbitrarily related to the mass average velocity, so what hap-
pens toτṡırr if another reference velocity is chosen? The answer is “no change” because
the diffusion fluxes are paired with convective terms makingτṡırr insensitive to the refer-
ence velocity. E.g. for the entropy flux we can writesv + j s =̂

∑
i s̄i(niv + j i) =̂

∑
i sinivi

which depends on absolute velocities only.b As is often the case in the real world:
The proof of the pudding lies in its eating! c There are many ways to Rome and this
is but one of them:j i =̂ nivi − niv =̂ nivi − ρ-1ni

∑
j w jn jv j . Substitute the definition

n jv j =̂ jm, j + n jvm for diffusion relative to the average molar velocity. Further manipulation
yields j i = jm,i + nivm − ρ-1ni

∑
j w j(jm, j + n jvm) = jm,i − ρ-1ni

∑
j w j jm, j
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equationj i =̂ nivi − niv into

(5.19) j i = jm,i − ni

ρ

∑
j

wj jm, j

where jm,i =̂ ni(vi − vm) and subscriptm stands for average molar velocity.
Plugging the equation above into Eq. 5.18 while keeping in mind thatτṡırr

does not change, and using Gibbs–Duhem Eq. 5.3 to get rid of grad(τ) and
grad(µi), it turns out that

τṡırr = τṡırr(jm,i) − 1
ρ

(∑
j

wj jm, j
) · grad(π)

The termτṡırr(jm,i) indicates that Eq. 5.18 still applies but this time as the func-
tional of j i y jm,i andj sy jm,s. This is an important result because diffusion
models are normally written in terms ofjm,i and notj i.

4. Phenomenological models

So far we have been fiddling around with definitions, exact thermodynamic
relations and absolute conservation laws. Now it is time forputting some flesh
on the bones, and in particular it is necessary to fill in the missing links in
Section 3.1–3.4. These are the quantitiesq, ṙ , j i, Π andu, which must be
calculated from phenomenological models. Three of them shall be discussed
in this section while the last one, the equation of state, belongs to a section of
its own, see ChapterEquation of State.

4.1. Heat conduction. Fourier’s law is frequently used to describe the
heat flow in isotropic fluids:

q = −κ(τ, π, n) grad(τ)

The thermal conductivityκ approaches in many cases a constant value. If this
assumption is not good enough there are tons of empirical andsemi-empirical
correlations available in the literature, both for pure component fluids and mix-
tures.

4.2. Reaction kinetics.A general understanding of reaction kinetics is
lacking and there is little theoretical guidance on how to put up a kinetic rate
term. From a thermodynamic point of view, however, the rate must go to zero
when the reaction approaches an equilibrium state. It is therefore reasonable
to demand an expression similar to

Rτṙ = −R(τ, π, n)λr

whereR is a positive definite matrix (state function). This choice guarantees
positive entropy production at all possible reaction conditions.
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4.3. Molecular diffusion. The understanding of molecular diffusion is
also intricate, and e.g. the Maxwell–Stefan formulation reads

f i =
∑
j

xi jm, j−xj jm,i

nDi j
, Di j = D ji

where Di j are empirical state dependent diffusion coefficients andf i is the
generalised force acting on componenti in the mixture: Rτf i = gradτ(µi) −
wi

ρ
grad(π). It is missing a lengthy discussion of irreversible thermodynamics at

this point—gradτ(µi) is a terrible concept which definitely should be avoided!
Anyway, on matrix form the generalised forces can be written:

RτF = gradτ(µ) − ρ-1w grad(π)

The diffusion fluxes are stated in an implicit manner which means the Maxwell–
Stefan equations must be inverted each timejm,i are needed. To come closer
an explicit formula the equations are first re-casted into the matrix form:

nF =BJm

nB =̂nDD − (Dn)D

The bad news are thatB is singular. The good news are that the singular
directions are knowna:

nBTe= 0

nBn = 0

Hence,nB + neT shifts the zero eigenvalue ton and the flux equation can be
inverted without problemsb:

Jm = n[n(nB + neT)-1 − n-1neT]F =̂ nB+F

The diffusion fluxes relative to the mass average velocity are calculated by
means of Eq. 5.19. The matrix equivalent to this equation is:

J = Jm − ρ-1nwTJm = (I − ρ-1nwT)Jm

4.4. Viscous stress.Finally, a model for the stress tensor must be sup-
plied. The simpler the better really, because even the simplest conceivable
model

Πi j =K i j : T

2T =̂ grad(̃v) + grad(v)

a In a little more detail: nBTe = DnDe − (Dn)De = Dn − Dn = 0 and
nBn = nDDn − (Dn)Dn = nDDn − nDDn = 0 b B+ is similar to the Moore–Penrose
inverse, but rather than aiming at the minimum norm of the solution vector it preserves the
eigenvectors ofB.
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requires the evaluation of a fourth order tensorK with 81 coefficients! Here,
Stoke’s postulates come in very handy: AssumeΠ is a symmetric tensor with-
out directional preferences. Based on symmetry arguments it can then be
proved that the 81 coefficients collapse into just two independent quantities
µ andλ:

Π = λ div(v)I + µT
Like everything else the bulk viscosityλ and the shear viscosityµ are functions
of the thermodynamic state. However,λ is hard to measure experimentally and
the Stokes law 3λ + 2µ = 0 is often used.

5. Governing equations

The conservations of reaction invariants, momentum and energy are the
work horses of fluid dynamics, and in the Sections 3.1–3.4 we arrived at the
following formulae (the equations have been rewritten slightly to fit into the
current context):

∂r
∂t = −r div(v)− grad(r ) · v− div(Jr) + ṙ
∂c
∂t = −cdiv(v)− grad(c) · v− div(Jc)

ρ ∂v
∂t ≃ − div(Π) −ρgrad(v) · v+ grad(π)
∂u
∂t ≃ −hdiv(v)− grad(u) · v− div(q) − div(jh) −Π : grad(v)

The following non-trivial definitions apply to these equations: jh =̂ hTJ, Jr =̂

QT
r J and Jc =̂ QT

cJ. This is as far the general theory goes. To obtain an
equation closure it must be supplied phenomenological models for heat,

q = −κ grad(τ)

reaction kinetics,

Rτṙ = −Rλr

molecular diffusion,

J =
(
I − ρ-1nwT)Jm

Jm = n
[
n(nB + neT)-1 − n-1neT]F

RτF = gradτ(µ) − ρ-1w grad(π)

nB = nDD − (Dn)D

viscous stress (Stoke’s law is conveniently used)

Π = µT − 2
3µ div(v)I

2T = grad(̃v) + grad(v)
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and a thermodynamic equilibrium manifold

grad(gy) =Syy grad(y)

grad(y ) =CT
12 grad(x)

The second last equation is responsible for the coupling to the scalar fields
(using the chain rule):

grad


τ

π

µ

 = −τ
2


1 0 0
π −τ 0
µ 0 −τ



-1

grad(gy)

These are the governing differential equations for the system, but in addition
the thermodynamic equilibrium state must be determined foreach time step
and at each point in space. The equilibrium calculation is needed for the alge-
braic coupling of the system as told above. Basically, it requires an underly-
ing phase model, see ChaptersEquation of StateandActivity Models, but the
mathematics of the equilibrium problem can be stated without emphasis on the
model details: Each Legendre transform has a unique equilibrium formulation,
and usingu, r1, r2, · · · , c1, c2, · · · as state variables the equilibrium state can be
expressed as

maxS (U,V,C1,C2, · · · )
constrained by

U k+1 = Vk
(
u+ ∂u

∂t δt
)
k

V k+1 = Vk

Ci,k+1 = Vk
(
ci +

∂ci
∂t δt

)
k

This description fits right into the heart of Section 2 which means the outcome
of the calculation will be the Lagrange multiplier vectorgx. The multipliers
keep all the information needed to updateτ, π andµi in the next time step,
but what about the step size? Is there any guiding principleswe have forgot
to mention? Yes there is, and what is really nice is that the entropy balance in
Section 3.5 can be used as a “norm” for the time step:

max(S)k+1−max(S)k(
V ∂s
∂t δt

)
k

≃ 1

I.e. the exact entropy difference between two successive time stepsk+ 1 andk
should not be allowed to deviate too much from the linearisation made in step
k. This criterion can be used to control the consistency of thethermodynamic
state, but it says of course nothing about the accuracy of thevelocity field.
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??Erióphorum vaginátum(Ål in Hallingdal 2002).



CHAPTER 6

Residual Functions

46 Workouts in Thermodynamics, c©Tore Haug-Warberg 17 January 2007

For a thermodynamic system it makes little difference whether it is com-
posed of one or many components, provided the compositiona is constant over
time and in space. The thermodynamic state has then 3 degreesof freedom
as discussed in ChapterConstant Composition. The situation worsens, how-
ever, if the molar composition is allowed to vary. As the number of inde-
pendent variables increases the notion of components becomes less important,
and because it is not our intention to restrict the theory to alimited number
of chemical systems we shall hereafter use generic indicesi ∈ [1, n] instead
of component names. At the same time the thermodynamic potentials are at
best described as abstract hyperplanes in> 3 vectorial dimensions. The ther-
modynamics of mixtures is thereby cast into a formal subject, at least when
compared to its constant composition counterpart.

The virial equation shall later be used as a recurring example, but to serve
as a suitable starting point we shall first extend the resultsfrom ChapterCon-
stant Compositionto multicomponent theory. Ideal gas has a comparatively
simple composition dependency and with reference to the Eqs. Ideal GasU–
Ideal GasS we can write:

∆fH
ıg(T◦, n) =

n∑
i=1

Ni∆fh
◦
i (T◦)(6.1)

Cıg
V (T, n) =

n∑
i=1

Nic
◦
v,i(T)(6.2)

Cıg
P (T, n) =

n∑
i=1

Nic
◦
p,i(T)(6.3)

Sıg(T◦, p◦, n) =
n∑

i=1
Ni s

◦
i (T◦, p◦) − R

n∑
i=1

Ni ln
(

Ni

N

)
(6.4)

Note that∆fh◦i , c
◦
v,i, c

◦
p,i ands◦i are standard state contributions of the same kind

asµ◦i in Eq. Ideal Gasµ. For systems of constant compositionU, H andS are
the most prominent functions, but in mixtures the chemical potential becomes
increasingly more important. However, this quantity does not lean itself to
the canonical differentiation ofU or H becauseµi =̂ (∂U/∂Ni)S,V,Nj,i = (∂H/
∂Ni)S,p,Nj,i requires thatS is a free variable. To avoid this problem we can use

a It is important to distinguish between mass and molar composition. The onset of chemical
reactions may change the mole numbers in a system without affecting the mass variables i.e.
the atoms or invariant groups of atoms.

51
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either Gibbsaor Helmholtzb energy as our point of departure becauseµi = (∂G/
∂Ni)T,p,Nj,i = (∂A/∂Ni)T,V,Nj,i is calculated by explicit differentiationc. Whether
G or A finds use as the basic function depends on the actual equationof state
(more about this subject later).

§30 Express the ideal gas Gibbs energy using Eqs. 6.1–6.4. Make s◦i and
∆fh◦i the standard state ofGıg. Remember to include the temperature integrals
of c◦p,i! Show by differentiation that the chemical potential isµıg

i (T, p, n) =
µ◦i (T, p◦) + RT ln[Ni p/(Np◦)]. Identify the functionµ◦i .

A. The Gibbs energyG = H − TS of an ideal gas mixture follows
from Eqs.Ideal GasH andIdeal GasS:

Gıg(T, p, n) = ∆fH
ıg(T◦, n) +

T∫

T◦

Cıg
P (T, n) dT − T

{
Sıg(T◦, p◦, n)

+

T∫

T◦

Cıg
P (T,n)

T dT − NRln
(

p
p◦

)}
(6.5)

Substitute Eqs. 6.1, 6.3 and 6.4 into Eq. 6.5 and differentiate with respect toNi:

µ
ıg
i (T, p, n) =

(
∂Gıg

∂Ni

)
T,p,Nj,i

= ∆fh
◦
i (T◦) +

T∫

T◦

c◦p,i(T) dT − T
{
s◦i (T◦, p◦)

− Rln
(

Ni
N

)
−

n∑
k=1

NkR N
Nk

δikN−Nk

N2

+

T∫

T◦

c◦p,i (T)

T dT − Rln
(

p
p◦

)}
(6.6)

Note the Kronecker-symbolδik which finds use in the equation above. It has
the value 1 ifi = k and 0 if i , k. Simplification of Eq. 6.6 yields,

(6.7) µ
ıg
i (T, p, n) = µ◦i (T, p◦) + RT ln

(
Ni p
Np◦

)

where the standard chemical potentialµ◦i is defined as:

(6.8) µ◦i (T) = ∆fh
◦
i (T◦) +

T∫

T◦

c◦p,i(T) dT − T s◦i (T◦, p◦) − T
T∫

T◦

c◦p,i (T)

T dT
�

§31 Show thatU ıg − TSıg + pVıg =
∑n

i=1 µ
ıg
i Ni.

A. First, Eq. 6.7 is substituted on the right hand side. The left hand
side follows then fromHıg = U ıg + NRT. �

a Josiah Willard Gibbs, 1839–1903. American physicist.b Hermann Ludwig Ferdinand von
Helmholtz, 1821–1894. German physician and physicist.c Most thermodynamic models,
including both equations of state and activity coefficient models are explicit inT but not inS.
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1. Gibbs energy

The canonical variables of Gibbs energy include temperature and pressure.
This makes it possible to compare the chemical potential of areal fluid com-
ponent with reference to the same component in the ideal gas state, maintained
at the same temperature and pressure. The outcome of this comparison is the
so-called residual Gibbs energy:

(6.9) Gr,p(T, p, n) =̂ G(T, p, n) −Gıg(T, p, n)

In the limit of p→ 0 all fluids behave ideally (in the context of energy contri-
bution):

(6.10) lim
p→0

{
Gr,p = 0,

(
∂Gr,p

∂p

)
T,n
= B′2, . . . ,

(
∂nGr,p

∂p···∂p

)
T,n
= (n− 1)!B′n+1

}

These limits conform with the virial expansion in ChapterEquation of State,
and with the Legendre transform in Chapter 2 which interprets (∂G/∂p)T,n as
the system volume quite independent of whether the fluid is ideal or real. By
exploiting Eq. 6.10 it is permissible to rewrite Eq. 6.9 intoa:

(6.11) Gr,p(T, p, n) =
p∫

0

(V − Vıg) dπ =
p∫

0

(
V(π) − NRT

π

)
dπ

A corresponding expression for the chemical potentialµi = (∂G/∂Ni)T,p,Nj,i is
defined for all conceivable Gibbs energy functions, includingGr,p. This means
we can define the residual chemical potential asµ

r,p
i =̂ µi − µıg

i , that is

µ
r,p
i (T, p, n) =̂

(
∂Gr,p

∂Ni

)
T,p,Nj,i

=

p∫

0

[(
∂V
∂Ni

)
T,π,Nj,i

− RT
π

]
dπ =̂

p∫

0

(
v̄i − RT

π

)
dπ(6.12)

wherev̄i =̂ (∂V/∂Ni)T,π,Nj,i is thepartial molar volumeof componenti. The �
translation of Eq. 6.11 into Eq. 6.12 requires thatGr,p is differentiated at con-
stant pressureb. The system pressure enters only the limit of the integral and
we need only to worry about the kernel, but here the pressure does vary during
the integration! This is an unusual situation and it is important to realise that
the total differential ofV(π) is defined locally as

(dV)T,π,Nj,i =
(
∂V
∂Ni

)
T,π,Nj,i

dNi

for all pressuresπ ∈ [0, p]. The local pressureπ is constant at each point in
the integration and the only degree of freedom comes from thecomposition
variation. Hence, the chemical potential must be integrated over the volume
a Note thatπ is used as the integration variable to avoid conflict withp which appears in the
upper limit of the integral. b Note, however, that the derivative ofGr,p at constant pressure
p requires knowledge of the derivative ofV − Vıg at all pressuresπ ∈ [0, p] in the integration
domain.
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derivative as indicated in Eq. 6.12. One final remark: It is customary to rewrite
the residual potential as

(6.13) RT lnϕi =̂ µ
r,p
i (T, p, n)

whereϕi(T, p, n) is the fugacity coefficient of componenti. It measures the�
departure between a real fluid and an ideal gas at the same system conditions
T, p, n. The fugacity coefficient is traditionally given due attention in Amer-
ican literature, and for gases at low pressures and phase equilibria calculated
by the K-value method it has certain benefits, but in the general context it
causes more trouble than cure — the fugacity coefficient does neither increase
the basic understanding nor does it improve the numeric behaviour of thermo-
dynamic algorithms.

§32 Show thatµi = µ
ıg
i + µ

r,p
i = µ

◦
i + RT ln[Niϕi p/(Np◦)]. Calculate the

limit lim p→0 ϕi = 1. What isϕi for a component in the ideal gas state?

A. The chemical potential is derived from Eqs. 6.7 and 6.12. The
latter equation gives limp→0 µ

r,p
i = 0 and hence limp→0 ϕi = 1. For ideal gas

v̄ıg
i = RT/π andµr,p,ıg

i = 0 independent of pressure andϕıg
i = 1 (always). �

§33 DeriveGr,p for the 2nd virial equationpV2.vir = NRT+Bp. Differen-
tiate to findRT lnϕ2.vir

k . Make use ofB = N
∑
i

∑
j

xi xjBi, j whereBi, j = B j,i.

A. The residual Gibbs energy is determined by direct substitution of
the 2nd virial equation into Eq. 6.11:

(6.14) Gr,p,2.vir =

p∫

0

(NRT
π
+ B− NRT

π

)
dπ = Bp

In order to findRT ln ϕk we must differentiateGr,p and henceB with respect
to Nk, but the differentiation of (mole)fractions causes something known as
“code bloat” in computer science. The work load is reduced considerably by
rearranging the virial function intoNB =

∑
i
∑

j NiNjBi, j which gives the im-
plicit formulation:

(
∂NB
∂Nk

)
T,Nl,k

=
∑
i

∑
j

(
∂Ni Nj

∂Nk

)
Nl,k

Bi, j

Differentiate both sides using the Kronecker-delta:

B+ N
(
∂B
∂Nk

)
T,Nl,k

=
∑
i

∑
j

(
δikNj + Niδ jk

)
Bi j =

∑
j

Nj Bk j +
∑
i

Ni Bik

Recognises the symmetryBk j = B jk and changes the summation indexj to i
(or vice versa). This operation reveals two identical contributions on the right
hand side. The partial derivative ofB is therefore

b̄i =̂
(
∂B
∂Nk

)
T,Nl,k

= 2
∑
i

Ni

N Bik − B
N
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The residual potential is calculated from Eq. 6.14 on the facing page as shown
below:

RT lnϕ2.vir
k =

(
∂Gr,p,2.vir

∂Nk

)
T,p,Nl,k

= p
(
∂B
∂Nk

)
T,Nl,k

=̂ pb̄i

We can alternatively put the partial derivative ofB into Eq. 6.12 on page 53
and integrate with the same resulta. �

2. Helmholtz energy at fixed pressure

To make calculations with residual Gibbs energy we must employ an equa-
tion of state on the formV = V(T, p, n). This limits practical applications to
the second virial equationV = NRT/p+Bp. However, there is a rapid develop-
ment of equation of states on the formp = p(T,V, n) which calls for the canon-
ical variablevolumerather thanpressure. This invites us to use Helmholtz
energy rather than Gibbs energy as the basic function.

Traditionally, the definition of the fugacity coefficient in Eq. 6.13 is not
changed in the transposition fromG to A. This causes a problem with the
chemical potential becauseϕi describes the departure between the real fluid
and ideal gas at given pressure — not at given volume. The result is a non-
canonical description which is discussed here mainly because it has accumu-
lated in the engineering literature.

2.1. Physical derivation. Our goal is to describe the difference in Helm-
holtz energy between a real fluid and ideal gas at a giventemperature and
pressure. To achieve this we have to find the difference between two state
functions applied to two different states. The task is simplified by splitting the
expression in two terms: The first term compares the two functions in the same
state while the second term compares the ideal gas in two different states:

Ar,p(T,V(p), n) =̂ A (T,V(p), n) − Aıg(T,Vıg(p), n)

≡ A (T,V(p), n) − Aıg(T,V (p), n)(6.15)

+ Aıg(T,V(p), n) − Aıg(T,Vıg(p), n)

It must be emphasised that volume is a function of pressurep. The pressure is
by definition the same in the ideal gas and the real fluid, i.e.pıg = p. It implies,
however, that the two fluids have different volumes becauseV , Vıg at given
p. From Chapter 2 we know that (∂A/∂V)T,n = −p. This relation holds for any
Helmholtz energy function whether it is an ideal gas or a realfluid. In analogy

a It is worth while to mention that̄bi is the (pressure independent) residual of the 2nd virial
partial molar volume: ¯v2.vir

i − RT/π = b̄i(T).
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to Eq. 6.11 on page 53 we can write,

Ar,p(T,V(p), n) =
V(p)∫

∞
(πıg − π) dν −

V(p)∫

Vıg(p)

πıg dν

=

V(p)∫

∞

(NRT
ν
− π) dν − NRTln z(p)(6.16)

where the ideal gas volume is given byVıg = NRT/p, and thecompressibility
factor z is defined asz =̂ pV/(NRT) = V/Vıg. Eq. 6.16 may look trivial but�
please note that the volume is an implicit variable in the integral. The implicit
form of Ar,p(T,V(p), p, n) prevents the calculation of chemical potentials by
canonical differentiation with respect toT,V, na, and we must rather look at:

µi =
(
∂A
∂Ni

)
T,V,Nj,i

∧ µ
ıg
i =

(
∂Aıg

∂Ni

)
T,Vıg,Nj,i

Then replaced in the definition of the residual chemical potential µr,p
i =̂ µi −µıg

i�
this yields:

µ
r,p
i =

(
∂A
∂Ni

)
T,V(p),Nj,i

−
(
∂Aıg

∂Ni

)
T,Vıg(p),Nj,i

=
(
∂Ar,p

∂Ni

)
T,V(p),Vıg(p),Nj,i

Note thatV(p) is constant in one of the derivatives whileVıg(p) is constant in
the other two. This means that bothV(p) andVıg(p) must be constant while
differentiatingAr,p, which really implies thatz(p) = Vıg/V is a constant factor.
The residual chemical potential is therefore

(6.17) µ
r,p
i (T,V(p), n) =

V(p)∫

∞

[
RT
ν
−

(
∂π
∂Ni

)
T,ν,Nj,i

]
dν − RT ln z(T,V(p), n)

Even though this description is mathematically correct it cannot be explained
on a rational basis because it relies on two different volumes which are both
constant in the same differentiation.

§34 FindAr,p for the 2nd virial equation whenpV2.vir = NRT+ Bp.

A. The residual Helmholtz energy is calculated by inserting the 2nd
virial equation in Eq. 6.16. The answer is simple:

(6.18) Ar,p,2.vir =

V∫

∞

(
NRT
ν
− NRT

ν−B

)
dν − NRTln

(
V

V−B

)
= 0

Quite curiously, there is no difference between Helmholtz energy for the 2nd
virial gas and ideal gas at agiven pressure. In other words: The volume con-
a If the fugacity coefficient is (re)defined as the departure between ideal gas and real fluid at a
given volumerather thangiven pressurethe derivation of chemical potential is simplified, see
Section 3 on page 58.
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tribution toA2.vir happens to be justRT ln z2.vir. This does not say that all ther-
modynamic departures cancel. E.g.Gr,p,2.vir was calculated asBp i Eq. 6.14
on page 54, and you should verify that the 2nd virial equationsubstituted in
Eq. 6.17 gives the same answer as in Eq. 6.12 on page 53. Moreover, even
thoughAr,p,2.vir is zero it does not imply thatµr,p,2.vir

i is zero (remember thatAr,p

is a non-canonical function). �

2.2. Rational derivation. The derivation ofAr,p in the last section was not
straightforward and it is desirable to find a more rational explanation. Here,
Eq. 6.15 is first differentiated with respect to the mole numberNi:

(6.19)
(
∂Ar,p

∂Ni

)
T,V,Nj,i

= µi −
(
∂Aıg

∂Ni

)
T,V,Nj,i

This time we have to face that constantV is not synonymous with constantVıg.
In fact, differentiation ofAıg with respect toNi requires the change ofVıg with
Ni while V is constant. The total differential ofAıg is,

(6.20) (dAıg)T,Nj,i =
(
∂Aıg

∂Ni

)
T,Vıg,Nj,i

dNi +
(
∂Aıg

∂Vıg

)
T,n

dVıg = µ
ıg
i dNi − pıg dVıg

where ıg is stated explicitly to make things a little clearer in the next turn.
Keeping the conditionpıg = p in mind we can, on the basis of Eq. 6.20, write:

(6.21)
(
∂Aıg

∂Ni

)
T,V,Nj,i

= µ
ıg
i − p

(
∂Vıg

∂Ni

)
T,V,Nj,i

Combined with Eq. 6.19 this gives:

(6.22) µi − µıg
i =

(
∂Ar,p

∂Ni

)
T,V,Nj,i

− p
(
∂Vıg

∂Ni

)
T,V,Nj,i

Eq. 6.16 is finally differentiated:

(6.23)
(
∂Ar,p

∂Ni

)
T,V,Nj,i

=

V∫

∞

[
RT
ν
−

(
∂p
∂Ni

)
T,ν,Nj,i

]
dν + NRT

Vıg

(
∂Vıg

∂Ni

)
T,V,Nj,i

− RT ln z

NRT/Vıg is recognised aspıg = p in Eq. 6.23. This makes the term (∂Vıg/

∂Ni)T,V,Nj,i disappear when the Eqs. 6.22 and 6.23 are combined. The residual
chemical potentialµr,p

i =̂ µi − µıg
i is thereby the same as in Eq. 6.17 on the

facing page.

2.3. Connection with Gibbs energy.A third alternative is to use Gibbs
energy as the basic function, which by the way is the most natural choice
because the residual chemical potential is defined at constant system pressure.
SubstitutingG = A+ pV into Gr,p =̂ G−Gıg gives:

(6.24) Gr,p = A(T,V(p), n) + pV(p) − [
Aıg(T,Vıg(p), n) + pVıg(p)

]



58 6. RESIDUAL FUNCTIONS

Furthermore,pV = zNRTandpVıg = NRT. When substituted into the equa-
tion above, together with Eqs. 6.15 and 6.16 on page 55, we get:

Gr,p = Ar,p + NRT(z− 1)

=

V(p)∫

∞

(NRT
ν
− π) dν − NRT ln z(p) − NRT[z(p) − 1](6.25)

It remains to differentiate the last expression with respect to the mole number
of componenti. This proves to be a quite tedious task, and we shall first find
the partial derivative ofz =̂ pV/NRT:

zi =̂
(
∂z
∂Ni

)
T,p,Nj,i

=
pv̄i

NRT −
pV

N(NRT) =
pv̄i

NRT −
z
N

Next, the integral in Eq. 6.25 must be differentiated. The upper limit depends
clearly on the composition at fixed pressure, while the totaldifferential ofπ at
the local volumeν is:

(dπ)T,ν,Nj,i =
(
∂π
∂Ni

)
T,ν,Nj,i

dNi

Analogous to the derivation of residual Gibbs energy on page53, the variable
ν is an integration variable and does not represent a new degree of freedom in
the integral. The result from the partial differentiation is therefore:

µ
r,p
i =

V(p)∫

∞

[
RT
ν
−

(
∂π
∂Ni

)
T,ν,Nj,i

]
dν +

(
NRT
V(p) − p

)
v̄i

− RT ln z− ziNRT
z + RT(z− 1)+ ziNRT

Substitution ofzi makes most of the terms cancel and the final result is identical
with Eq. 6.17 on page 56.

§35 Show thatGr,p,2.vir = NRT(z− 1) = Bp whenpV2.vir = NRT+ Bp.

A. From Eq. 6.25 we know the general expressionGr,p = Ar,p +

NRT(z− 1). Combined withAr,p,2.vir = 0 from Eq. 6.18 on page 56 this yields
Gr,p,2.vir = NRT(z−1). Substitution ofz2.vir = 1+Bp/NRTmakesGr,p,2.vir = Bp
in accordance with Eq. 6.14 on page 54. The results from the earlier sections
are indeed consistent. �

3. Helmholtz energy at fixed volume

The problems experienced in the last section were initiatedby the disas-
trous choice of using pressure as a free variable in the Helmholtz function. If
the residual Helmholtz energy is redefined to

Ar,v(T,V, n) =̂ A(T,V, n) − Aıg(T,V, n)
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we are back into the canonical world, and the derivation follows closely that
of the residual Gibbs energy on page 53. The alternative residual function can
be written

Ar,v =

V∫

∞

(
NRT
ν
− p(ν)

)
dν

and the corresponding chemical potential:

µ
r,v
i =̂

(
∂Ar,v

∂Ni

)
T,V,Nj,i

=

V∫

∞

[
RT
ν
−

(
∂p
∂Ni

)
T,ν,Nj,i

]
dν

§36 Derive an expression forAr,v and the corresponding first derivatives
∂Ar,v/∂(T,V, n) for a fluid which conforms with the Redlich–Kwong equation
of stateprk = RT/(v− b) − a/

√
Tv(v+ b). Use the mixing rulesb(x) =

∑
i bi xi

anda(x) =
∑

i
∑

j
√

aia j xi xj wherebi andai are component specific parameters.
Estimatebi andai from the critical conditions (∂p/∂v)T = 0 and (∂2p/∂v∂v)T =

0, see also ParagraphVan der Waal.

R–K. Let us estimatea andb for a pure fluid first. The equation
of state is purposely reshaped into acubicpolynomial:

v3 − RT
p v2 +

(
a

pT1/2 − b2 − RTb
p

)
v− ab

pT1/2 = 0

At the critical point this equation must fulfil (v − vc)3 = 0, that isv3 − 3vvc +

3v2v2
c − v3

c = 0. When compared term-by-term the two polynomials define a
set of equations that can be solved fora andb (andvc):

3vc =
RTc

pc
, 3v2

c =
a

pcT1/2
c
− b2 − RTcb

pc
, v3

c =
ab

pcT1/2
c

The second equation is combined with the other two to yield 2v3
c−(vc+b)3 = 0,

which is solved for the positive rootb = (21/3 − 1)vc. In terms of the critical
temperature and pressure (for any componenti) this is equivalent to:

bi = Ωb
RTc,i

pc,i
ai = Ωa

R2T5/2
c,i

pc,i

Ωb =̂
21/3−1

3 Ωa =̂
1

9(21/3−1)

In the remaining text we can choose to express our-self in (extensive) mole
numbers and volume, or (intensive) mole fractions and molarvolume. Here,
the extensive form is chosen to emphasise the homogeneous properties of the
thermodynamic functions. The total Helmholtz energy for the fluid is,

Ar,v,rk =

V∫

∞

(
NRT
ν
− prk

)
dν = NRTln

(
V

V−B

)
+ A

B ln
(

V
V+B

)
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and the corresponding first derivatives are:
(
∂Ar,v,rk

∂T

)
V,n

=NRln
(

V
V−B

)
+

AT
B ln

(
V

V+B

)

(
∂Ar,v,rk

∂V

)
T,n

=NRT B
V(V−B) −

A
V(V+B)(

∂Ar,v,rk

∂Ni

)
T,V,Nj,k

=RT ln
(

V
V−B

)
+ NRT bi

V−B +
1
B

(
Ai − Abi

B

)
ln

(
V

V+B

)
− Abi

B(V+B)

The coefficients are defined below (note thatαi has units similar toavdw
i ):

B =̂
∑
i

biNi

A =̂
∑
i

∑
j

(
aiaj

T

)1/2
NiNj =

(∑
i
α

1/2
i Ni

)2

AT =̂ − A
2T

Ai =̂ 2α1/2
i

∑
j
α

1/2
j Nj = 2(αiA)1/2

αi =̂
ai

T1/2 �



CHAPTER 7

Multicomponent Phase Equilibrium

46 Workouts in Thermodynamics, c©Tore Haug-Warberg 17 January 2007

At thermodynamic equilibrium the system has reached a stateof minimum
energy. This far-reaching postulate is of tremendous importance for our un-
derstanding of matter and energy, but it remains to discusswhichof the energy
functions that are being minimised. In ChapterSingle Reactionit has been
proved that Gibbs energy of a closed system decreases (due tochemical re-
actions) till the minimum valueGeq = minn G(T, p, n) is reached. This is
generally true when the temperature and pressure are constant. If the volume
is kept constant and the pressure is varied the Helmholtz energy will be min-
imised. ChapterVapor–Liquid Equilibriumillustrates this for the case of a
simple vapour–liquid equilibrium. The other energy functionsU, H, etc. are
minimised at constant values of their respectivecanonicalvariables.

In general we shall investigate a closed system consisting of π = α, β, . . . ,
ψ, ω phasesa and a set ofi = 1, 2, . . . , n components which are common to all
the phases. Reacting systems with (maybe) disjoint sets of the components
in each of the phases is taken up in ChapterPhase Reactions. For the special
case of constant temperature and pressure (dG)T,p,n =

∑ω
π=α

∑n
i=1 µ

π
i dNπ

i = 0 is
anecessarycondition for thermodynamic equilibrium. From the mass balance
it follows that

∑ω
π=α Nπ

i = Ni and even
∑ω
π=α dNπ

i = 0 because the total moles
Ni are constant. The main concern of this chapter is a two-phasesystem where
α andβ may include vapour–liquid, liquid–liquid, solid–liquid and solid–solid
equilibrium. The thermodynamic equilibrium criterion is then simplified to:

(dG)T,p,n =
n∑

i=1
µαi dNα

i +
n∑

i=1
µβi dNβ

i = 0

dNα
i + dNβ

i = 0

Elimination of dNβ
i makes (dG)T,p,n =

∑n
i=1(µ

α
i − µβi ) dNα

i = 0. In the vicinity
of an equilibrium point all the dNα

i are independent quantitiesb and the equi-
librium relationship is equivalent to:

(7.1) µαi = µ
β
i , ∀i ∈ [1, n]

a Phaseα is usually the low temperature phase andβ, . . . , ψ, ω are phases that become stable
at successively increasing temperatures.b At equilibriumdNα

i arefluctuationsbeyond our
control. These fluctuations are quite inevitable from the laws of quantum mechanics and will
be observed in every physically acceptable system. Thermodynamic equilibria are in other
words dynamic, not static.
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§37 Show that the necessary criteria for multiphase equilibrium at given
total entropyS, total volumeV and total compositionNi for each component
i, areTα = Tβ = . . . = Tω, pα = pβ = . . . = pω andµα = µβ = . . . = µω.
It is assumed that all the componentsi ∈ [1, n] are present in all the phases
α, β, . . .ω. Hint: start from

Ueq = min
s,v,ni

U(s, v, n1, · · · , nn)

es = S

ev = V

eni = Ni , ∀i ∈ [1, n]

wheree =̂ [1 1 . . .1], sT =̂ [Sα Sβ . . .Sω], vT =̂ [Vα Vβ . . .Vω] andnT
i =̂ [Nα

i

Nβ

i . . .N
ω
i ] are phase vectors with as many elements as there are phases in the

system.

P . The internal energy of the system is minimised in the
equilibrium state. In this (stationary) state the differential ofU must be zero
for all feasiblevariations inSπ, Vπ andNπ

i :

(dU)S,V,n =
ω∑
π=α

dUπ =
ω∑
π=α

(
Tπ dSπ − pπ dVπ +

n∑
i=1
µπi dNπ

i

)
= 0

Note thatU has no absolute minimum. Due to its extensive properties it will
→ ±∞ when the system size→ ∞. The variations inSπ, Vπ and Nπ

i must
therefore be constrained such that the total entropy, volume and mole numbers
(of each component) are conserved:

ω∑
π=α

dSπ = 0

ω∑
π=α

dVπ = 0

ω∑
π=α

dNπ
i = 0; ∀i ∈ [1, n]

From thesen + 2 balance equations we can eliminate dSω, dVω and dNω
i for

all the componentsi ∈ [1, n]. Substituted into the differential ofU:

(dU)S,V,n =
ψ∑
π=α

(
(Tπ − Tω) dSπ − (pπ − pω) dVπ +

n∑
i=1

(µπi − µωi ) dNπ
i

)
= 0

In the neighbourhood of an equilibrium point the quantitiesdSα, . . . , dSψ and
dVα, . . . , dVψ and dN1

α, . . . , dSψ
n are truly independent variables. If (dU)S,V,n =

0 then it must be true that:

Tα = Tβ = · · · = Tψ = Tω

pα = pβ = · · · = pψ = pω
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µα1 = µ
β

1 = · · · = µ
ψ

1 = µ
ω
1

...

µαn = µ
β
n = · · · = µψn = µωn �

Despite the fact that temperature, pressure and chemical potentials are uniform
at thermodynamic equilibrium we cannot specify these variables directly. The
Gibbs–Duhem’s equation

sdT − v dp+ [n1 n2 · · · nn] dµ = 0

removes one degree of freedom per phase. The number of independent inten-
sive variables in a system is thereforeF = dim(n) + 2 − dim(e), or in other �
words F = N + 2 − P, also known as the Gibbs phase rule for un-reacting
systems.

1. Direct substitution

Vapour–liquid equilibria are frequently calculated by an iterative method
which is due to Rachford and Ricea. This is also known as theK-value method
because the equilibrium relations are solved as a set ofK-value problems on
the form

(7.2) xβi =̂ Ki x
α
i , , ∀i ∈ [1, n]

where xαi and xβi are the mole fractions of componenti in α (liquid) and β
(vapour) respectively. We shall later learn that there is a one-to-one relation-
ship betweenKi and the chemical potentials of componenti in the two phases.
This tells us that theK-value method can be applied even whenα andβ are two
arbitrary phases, but prior to the discussion of exotic phase equilibria we shall
derive a calculation scheme (algorithm) for Eq. 7.2. The total mass balance is
Nα + Nβ = N and the component balances can be writtenxαi Nα + xβi Nβ = Ni.
Elimination ofNβ producesxαi Nα + xβi (N − Nα) = Ni and a subsequent substi-
tution of xβi from Eq. 7.2 yields:

(7.3) xαi =
Ni

Nα+Ki (N−Nα) =
zi

zα+Kizβ

The corresponding expression forxβi is

(7.4) xβi =
Ki Ni

Nα+Ki (N−Nα) =
Kizi

zα+Kizβ

wherezα =̂ Nα/(Nα + Nβ) andzβ =̂ Nβ/(Nα + Nβ) are the phase fractions
and zi =̂ Ni/N is the total (feed) mole fraction of componenti. Note that
the right hand sides of Eqs. 7.3 and 7.4 contain a single unknown variable
zα, or equivalentlyzβ = 1 − zα. Definition-wise

∑n
i xi = 1 in both phases

and it is possible to solve forzα from Eq. 7.3 or 7.4, but practical experience
a H. H. Rachford and J. D. Rice.Trans. Am. Inst. Min., Metall. Pet. Eng., 195:327–328, 1952.
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proves that the algorithm is more stable when the symmetric condition f (zα) =∑n
i=1(x

α
i − xβi ) = 0 is being used. Summing upxαi andxβi from Eqs. 7.3 and 7.4

yields

f (zα) =
n∑

i=1

(1−Ki )zi

zα+Kizβ
=

n∑
i=1

fizi = 0

fi =̂
1−Ki

zα+Kizβ

which is easily solved with respect tozα using a Newton–Raphson iteration:

(7.5) zα,k+1 = zα,k −
(
∂ f
∂zα

)-1
f = zα,k +

( n∑
i=1

f 2
i zi

)-1
f

The recursion formula makes a newzα,k+1 available, which on substitution into
Eqs. 7.3 and 7.4 produces new values ofxαi andxβi . These updates (hopefully)
improve theKi-values, and subsequent iterates in Eq. 7.5 converge finallyto
the equilibrium state.

§38 Computerise the function [xα, xβ, zα] = TpKvalue(n, k) using Eq. 7.5
as your reference algorithm.

R–R. See Matlab function 2.2 in Appendix F. Note that the
function interface is more elaborate than has been asked forin the text. The
syntax has notably been extended to TpKvalue(n, k, u,U, v,V) whereU and
V are data structures transmitting model specific parametersused byu andv.
This makes it possible to iterate on non-ideal equilibrium states by supplying
two fugacity (activity) coefficient modelsu andv. The update ofKi assumes
for each iteration that lnkk+1 = ln k + u(xα,U) − v(xβ,V). ConstantKi values
will be assumed if the functionsu andv are expelled from the argument list.�

Note that∂ f /∂zα < 0 in Eq. 7.5 except for the degenerated caseKi = 1∀i ∈
[1, n] then∂ f /∂zα = 0. A fixed derivative sign means that there is at most one
solution in the domainzα ∈ [0, 1]. Similar to the Newton method, which is
derived in Section 2, the number of floating point operationsin the update of
xα is proportional ton, i.e. the computation time increases linearly with the�
number of components in the system. These are the strengths of the K-value
method, but it has also an inherit weakness in thatnon-idealequilibria must be
solved by nested iteration. First, Eq. 7.5 is solved with respect tozα at given
or estimatedKi (inner loop). The phase compositions are then updated by the
Eqs. 7.3 and 7.4 before newKi-values can be calculated (outer loop). The
double iteration procedure is repeated until the phase compositionsxαi andxβi
have converged. The Newton method in Section 2 is without this flaw because
∆µi (equivalent toKi) is updated in every iteration avoiding the outer loopa.

a Also applies to theK-value problem if disregarding the monotonic form off (zα).
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2. Newton’s method

Contrary to theK-value method of Rachford–Rice, the Newton method
works at constant mass balance in every iteration. This requires a feasible
starting point wherenα + nβ = n is fulfilled. The Newton iteration of Eq. 7.1
is then,

µαi +
n∑

j=1

(
∂µαi
∂Nα

j

)
T,p,Nl, j

∆Nα
j = µ

β
i +

n∑
j=1

(
∂µβi
∂Nβ

j

)
T,p,Nl, j

∆Nβ
j

−∆Nβ
j = ∆Nα

j

or on matrix form:

µα +Gα∆nα = µβ +Gβ∆nβ

−∆nβ = ∆nα

Matrix G =̂ {(∂2G/∂Ni∂Nj)T,p} is the Hessiana of Gibbs energy and∆n =
nk+1 − nk is the composition difference between two (subsequent) iterations
k+ 1 andk. The Newton equations can be combined into

(Gα +Gβ)∆nα = −(µα − µβ)

or even better:∆nα = −H-1∆µ whereH =̂ Gα + Gβ and∆µ =̂ µα − µβ. It
must be realised, however, that the algorithm has to be guided. In particular
the mole number updates must be checked fornα,k+1 = nα,k + ∆nα > 0 and
nβ,k+1 = nβ,k − ∆nα > 0. If the relations are violated it is mandatory to shorten
the step size according to

(7.6) ∆nα = −τH-1∆µ

whereτ ∈ 〈0, 1] is calculated such that all the updated mole numbers are
positive. In this way we can ensure that the mass balance is fulfilled in every
iteration. The Newton method converges to a state where∆µ = 0, but note
that the phase models have not been taken into account yet. Itmust therefore
be anticipated that∆µ is calculated from an equation of state, or an activity
model, that describes the system with sufficient accuracy.

The calculation ofH may be approximated by the Hessian of an ideal mix-
ture. The convergence properties will deteriorate close tothe solution com-
pared to the rigorous implementation ofH = Gα + Gβ, but the simplicity of
the model makes it interesting in its own right. In summary itmeans that ideal
mixing is assumed in the calculation ofH while ∆µ is calculated rigorously.

a Ludwig Otto Hesse, 1811–1874. German mathematician.
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From the definition of an ideal mixture we can write,

Gıd
i j =

(
∂µıd

i

∂Nj

)
T,p,Nk, j

= ∂
∂Nj

(
µ⋆i + RT ln Ni

N

)
T,p,Nk, j

= NRT
Ni

(
∂(Ni/N)
∂Nj

)
Nk, j

= RT
( δi j

Ni
− 1

N

)

where the Kroneckera δi j = 1 if i = j andδi j = 0 else. On matrix form this
formula is written — see also ParagraphHessianin ChapterPrelude:

Gıd =RT
(
n-D − N-1eeT)

e =(1, 1, . . . , 1)T

Here,n-D is an (inverted) diagonal matrix having 1/Ni along the main diagonal.
The simple structure of this matrix makes it possible to calculateH-1 with an
analytical formula as shown below. From the definitionH =̂ Gα+Gβ it follows:

H ıd = RT
[
(nα)-D + (nβ)-D − (

(Nα)-1 + (Nβ)-1)eeT]

The matrix (nα)-D + (nβ)-D has diagonal elements (Nα
i )-1 + (Nβ

i )-1 = Ni/(Nα
i

Nβ
i ) and the factor (Nα)-1 + (Nβ)-1 can be rewritten to (Nα + Nβ)/(NαNβ). This

makes the following factorisation ofH ıd possible:

H ıd = RTNα+Nβ

NαNβ

[
diag

(
NαNβ

Nα
i Nβ

i

Ni

(Nα+Nβ)

)
− eeT

]

or,

Nα+Nβ

RT H ıd = 1
zαzβ (D

-1 − eeT)(7.7)

D-1 =̂ diag
(

zi

xαi xβi

)

wherezα andzβ are phase fractions,xαi and As usualxβi are component mole
fractions, andzi is the feed mole fraction of componenti. Eq. 7.7 indicates
thatH is a rank one update ofD. The inverse ofH can then be calculated from
the Sherman–Morrison formula

(
D-1 − eeT)-1

= D + (1 − eTDe)-1DeeTD, or,
equivalently, if we defined =̂ De:

(7.8) RT
Nα+Nβ

(
H ıd)-1

= zαzβ
(
D + (1− eTd)-1ddT)

From Eqs. 7.6 and 7.8 it is possible to express the simplified two-phase Newton
method as

(7.9) ∆nα

Nα+Nβ = −zαzβ
(
D + 1

1−dTeddT) ∆µ
RT

Note thatzα, zβ, d, D and∆µ/RT are dimensionless variables. This makes the
iteration sequence independent of the system size for a given total composition
a Leopold Kronecker, 1823–1891. German mathematician.
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z. We may therefore scale the systema such thatNα +Nβ = 1 without affecting
the mole fractions in the phasesα andβ.

§39 The Sherman–Morrison formula is widely applicable and not at all
limited to thermodynamic problems. Verify the formula by proving thatH-1H =
I . Attempt to find a more general formula valid for (A − uvT)-1.

S–M. Pure substitution. The general formula for rank one
updates is: (A − uvT)-1 = A-1 + A-1u(1− vTA-1u)-1vTA-1. �

§40 Computerise the function [xα, xβ, zα] = TpNewton(n, k) using Eq.
7.9 as your reference algorithm.

N . See Matlab function 2.3 in Appendix F. Note that the
function interface is more elaborate than has been asked forin the text. The
syntax has notably been extended to TpNewton(n, k, u,U, v,V) whereU and
V are data structures transmitting model specific parametersused byu andv.
This makes it possible to iterate on non-ideal equilibrium states by supplying
two fugacity (activity) coefficient modelsu andv. The update of∆µ assumes
that for each iteration∆µ = ∆µıd + ∆µr,p where∆µıd = ln k + ln xα − ln xβ and
∆µr,p = u(xα,U)−v(xβ,V). Constant∆µr,p = 0 will be assumed if the functions
u andv are expelled from the argument list. �

It should be mentioned that the number of floating point operations in the
update is proportional ton. Hence, the computation time increases linearly�
with the number of components in the mixture. However, if we had not spent
time on the Sherman–Morrison formula, but rather used numerical inversion
of H in each iteration, the computation time would be proportional to n3.

3. Chemical potential versusK-value

The Rachford–Rice procedure spends time on calculatingK-values while
the Newton method deals directly with chemical potentials.However, because
the two methods aim at solving the same problem there must be arational
connection between them. The purpose of this section is to show that (and
how) Eq. 7.1 on page 61 can be used to derive some useful relations between
Ki and∆µi.

3.1. Equal fugacity models in both phases.For fluid p(V,T) equations
of stateµ◦i (T, p◦) is defined as the chemical potential of a pure ideal gas at the
temperatureT and pressurep◦. The same standard state applies to both of the
phases and fromµαi = µ

β
i it is conventionally written

µ◦i + RT ln
(
ϕαi xαi p

p◦

)
= µ◦i + RT ln

(
ϕβi xβi p

p◦

)

a This is just another example on the special properties of extensive functions.
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where the left side stands forµαi and the right side stands forµβi . The quantity
∆µi/RT which appears in Eq. 7.9 is then

(7.10) ∆µi

RT =̂
µαi −µ

β
i

RT = ln
(Keos

i xαi
xβi

)

whereKeos
i is defined as the ratio between the fugacity coefficientsϕαi andϕβi :

(7.11) Keos
i =

ϕαi
ϕβi

TheK-value concepta is therefore quite misleading —Ki(T, p, xα, xβ) is in fact
a non-linear function in temperature, pressure and the compositions of both
phases.

§41 Find experimental data for a typical hydrocarbon vapour–liquid sys-
tem and see how close the RK equation of state matches the measurements.
Calculate the phase diagram using TpKvalue or TpNewton.

N . The phase diagram of a typical, albeit synthetic, natural gasb

is illustrated in Figure 7.1 on the next page. The plot is given a high colour
density where the liquid and vapour phases coexist in approximately equal
amounts, and a light colour near the single-phase region (vapour or liquid).
The dense ridge running along the left edge of the diagram combined with
the shallow basin to the right is typical for methane-rich natural gases. The
bubble point is dominated by the large methane content whilethe dew point is
determined by the trace components comprising the “heavy tail” of the gas.

The Newton method does an excellent job in this casec, but note that the
dew-point calculations are sensitive to the start estimate. Increasing the liq-
uid composition of the medium components by less than one tenth of a mole
fraction causes the rightmost part of the phase boundary to be left out. TheK-
value method has even larger problems in this part of the diagram, and needs
some type of guidance which is not implemented here. �

In the days before the modern computer technology it was mandatory to
make physical simplifications before any numerical calculation was attempted.
One of these simplifications is known as the Lewis mixing rule. Under certain
circumstances the fugacity coefficient ϕi will be almost independent of the
mixture composition. This is always true for an ideal gas mixture and it is
valid to a high degree of approximation for real gases at low pressures or high
temperatures. The approximation also holds at high pressures if∆Vex ≈ 0 in

a As an equilibrium constant of some kind.b Mario H. Gonzalez and Anthony L. Lee.J.
Chem. Eng. Data, 13(2):172–176, April 1968. c Far better than anticipated. In fact, it does
a better job than for a rigorous implementation of the Hessian. The reason for this somewhat
strange behaviour is that the eigenvalues of the simplified Hessian are strictly positive while the
eigenvalues of the rigorous Hessian change sign wherever thermodynamic instability occurs,
see Chapter 8. This is known to cause numerical problems in Newton methods. c Mario H.
Gonzalez and Anthony L. Lee.J. Chem. Eng. Data, 13(2):172–176, April 1968.
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the entire pressure and composition region. In the case ofϕi(T, p, x) ≈ ϕ⋆i (T, p)
thenKi will be constant in Eq. 7.11 (at a given temperature and pressure). The
K-value method is then superior to the Newton iteration because it solves the
entire equilibrium problem inR1 and not inRn.

§42 Show that the Lewis mixing rule is exact ifVex = 0 over the entire
composition and pressure [0, p] range.

L  . Vex = 0 means thatV =
∑n

i=1 vi(T, p)Ni . The fugacity
coefficient is defined by the Eqs. 6.12 and 6.13, see page 53. Substituted for
the Lewis rule we get

RT lnϕlewis
i =

p∫

0

(
vi(T, p) − RT

p

)
dp = f (T, p)

which shows thatϕi depends on temperature and pressure only (because the
partial molar volume is independent of composition). �

3.2. Equal activity models in both phases.In Eq. 7.11 it is common that
α is the liquid phase andβ the vapour phase, but it is important to understand
that this is just one out of many possibilities. We could alternatively letα and
β be two near-critical fluids (fluid means something in betweenvapour and
liquid) or two sub-cooled liquid phases. There are also examples on gas–gas
equilibria in the literature. In a thermodynamic sense there is no fundamental
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difference between a vapour phase and a liquid phasea, but it is easy to decide
whether the phases are of the sametype by looking at the pure component
states in the system. If the chemical potentials of thepurecomponents are the
same in both phases, at the temperature and pressure of the system, it can be
concluded that the phases are of the same nature. If this is the case it is no
longer necessary to integrate all the way from the ideal gas in Eq. 7.11 but
rather use the pure component properties as a reference. In practise this means
that thefugacity coefficientscan be replaced byactivity coefficients:

Keos
i =

ϕαi
ϕβi
=̂

γαi
γβi

ϕ
⋆,α
i

ϕ⋆,βi

Provided the same activity model is used to describe both phases theKi-values
are

ϕ
⋆,α

i = ϕ⋆,βi ⇒ Keos
i = Kex

i =
γαi
γβi

because the pure component referenceϕ⋆i is the same in both phases.

§43 Find experimental data for a ternary liquid–liquid system with known
NRTL, van Laar or Margules model parameters. Select a systemwhich has a
fairly large solubility region and a critical end-point inside the ternary region.
Use TpNewton to calculate the phase diagram.

C––. The phase diagram of cyclohex-
ane–cyclopentane–methanolb is illustrated in Figure 7.2 on the facing page.
It is a classic liquid–liquid diagram — quite symmetric and with a critical
end-point inside the triangle. The diagram was successfully calculated using
TpNewton, see Matlab program 1.4 in Appendix F. In this case the measure-
ments were used as start values and the calculations converge without difficul-
ties. The agreement between the measured and the calculatedvalues is other-
wise extremely good. Still,theK-value method experiences serious problems
close to the critical point. �

3.3. Mixed use of fugacity and activity models.In some cases it may
be appropriate to employ an equation of state for the vapour phase and an
activity model for the condensed phase. The standard state of the two phases
will be different and the phase diagram will in general not be “closed” atthe
critical point. On the other hand, hybrid models have greater flexibility and
are favourable in the modelling of complex liquids and crystal phases. The
starting point is Eq. 7.1 on page 61 which in this case gives:

(7.12) µ⋆i (T, p) + RT ln(γi x
α
i ) = µ◦i (T, p◦) + RT ln

(
ϕi xβi p

p◦

)

a It is intuitive that the density of the vapour phase has to be lower than the density of the
liquid phase, but this is wrong. At high pressures the systemH2–He will in fact invert
because the vapour phase is dominated by He which has a highermolecular weight than
H2. b Ternary systems. InLiquid–Liquid Equilibrium Data Collection, volume V, part 2,.
DECHEMA, Frankfurt/Main, 1980. p. 115.
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pentane–Methanol at 298.15 K and 760 mmHg.

The left hand side denotesµαi and the right hand sideµβi . The standard state of
β is assumed to be pure ideal gas at the temperatureT and standard pressure
p◦. The reference state of phaseα is in principle a function of temperature,
pressure and composition, but in most cases a pure componentreference is
used where limγi = 1.0 asp→ psat

i , i.e. the reference pressure is set equal to
the saturation pressure of componenti:

(7.13) µ⋆i (T, psat
i ) = µ◦i + RT ln

(
ϕsat

i psat
i

p◦

)

In order to calculateµ⋆i at p , psat
i it is necessary to integrate (∂µ⋆i /∂p)T,n = v⋆i

from the saturation pressurepsat
i to the system pressurep. The pure component

volumev⋆i is usually a weak function of pressure, which makes it sensible to
usev⋆i ≃ vsat

i (T) or maybev⋆i ≈ vi(T◦, p◦) because most condensed phases
(liquid as well as solids) are comparatively incompressiblea. A useful estimate
of µ⋆i (T, p) is

(7.14) µ⋆i (T, p) = µ⋆i (T, psat
i ) +

p∫

psat
i

v⋆i dp ≃ µ⋆i (T, psat
i ) + vsat

i (p− psat
i )

which is substituted into Eq. 7.13 and finally combined with the equilibrium
relation in Eq. 7.12. The result is:

µ◦i + RT ln
(
ϕsat

i psat
i γi xαi
p◦

)
+ vsat

i (p− psat
i ) ≈ µ◦i + RT ln

(
ϕi xβi p

p◦

)

∆µi/RT from the Newton algorithm in Eq. 7.9 may now be written on the same
form as in Eq. 7.10 providedKi is calculated as

(7.15) Kvle
i =

ϕsat
i psat

i γi

ϕi p
exp

(vsat
i (p−psat

i )

RT

)

a Provided we stay clear off the critical point.



72 7. MULTICOMPONENT PHASE EQUILIBRIUM

The exponential term is known as the Poyntinga-factorof Ki . This factor is
often neglected at low pressures, but only ifKi � 1. If this is not true the
Poynting-factor may dominateKi down to 5− 10 bar.

R’ . For an approximately pure liquid componenti it is reason-
able to setϕi = ϕ

sat
i , γi = 1 andp = psat

i . The mixture is by definition ideal
andKi appears to be a simple function of temperature and pressure:

Kraoult
i = lim

xi→1
Kvle

i =
psat

i

p �

H’ . In the same mixture it may also be appropriate to use a
hypotheticalvapour pressureH ji for all diluted componentsj, the value of
which is chosen such that the phase equilibrium is reproduced faithfully:

Khenry
j = lim

xj→0
Kvle

j =
H ji

p �

§44 Find experimental data for a close to ideal binary vapour–liquid sys-
tem with known NRTL, Wilson, van Laar or Margules model parameters. Use
TpKvalue or TpNewton to calculate the phase diagram. Comment on the prac-
tical applicability of Raoult’s law versus the accuracy of pure component data.

H–. The phase diagram of hexane–tolueneb is illustrated in
Figure 7.3 on the facing page. The calculations make use of the Matlab pro-
gram 1.5 in Appendix F. The system is almost ideal, but there are nevertheless
some notable deviations between the experimental and the calculated values.
Correcting for non-ideality makes some improvement (compareσ1 andσ2 in
the left subfigure), but the largest error is actually hiddenin the vapour pressure
of toluene. By increasing the vapour pressure 2% the agreement is improved
even further (compareσ3 andσ4 in the right subfigure), while the Raoult’s law
still shows a significant deviation. This shows that Raoult’s law is of limited
value even for nearly ideal systems. In fact, the pure component parameters
are maybe more important for the mixture properties than thephase model it-
self. �

3.4. Mixed use of activity models in the phases.Whenα andβ are con-
densed phases it is often appropriate to neglect the influence of pressure on the
system properties. This is quite typical for metallurgicalmelts and refractory
systems where the process conditions are close to atmospheric. In general,
pressure explicit equations of state are not conceivable for these systems and
activity models are often used for both phases:

(7.16) µ⋆,αi (T) + RT ln(γαi xαi ) = µ⋆,βi (T) + RT ln(γβi xβi )

a John Henry Poynting, 1852–1914. English physicist.b Aliphatic hydrocarbons: C4–C6. In
Vapor–Liquid Equilibrium Data Collection, volume I, part 6a,. DECHEMA, Frankfurt/Main,
1980. p. 593.
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The reference state is usually chosen such that limγi = 1 for xi → 1. At the
meltinga pointTi the following is true:

(7.17) µ
⋆,α

i (Ti) = µ
⋆,β

i (Ti)

In order to findµ⋆,βi at T , Ti it is necessary to integrate (∂µ⋆,βi /∂T)p,n = −s⋆,βi
from the melting temperatureTi to the system temperatureT. The molar en-
tropy of phase change depends on the temperature, but as a first approximation
it can be assumed that∆s⋆i = (h⋆,βi − h⋆,αi )/Ti is approximately constant for the
phase transitionα→ β:

µ
⋆,β

i (T) =µ⋆,βi (Ti) −
T∫

Ti

s⋆,βi dT

=µ⋆,αi (Ti) −
T∫

Ti

s⋆,βi dT +
T∫

Ti

s⋆,αi dT −
T∫

Ti

s⋆,αi dT

=µ
⋆,α

i (T) −
T∫

Ti

∆s⋆i dT

≃µ⋆,αi (T) − ∆h⋆i
Ti

(T − Ti)(7.18)

Note that Eq. 7.17 is used in the transposition from the first to the second
line. The integral which is added and subtracted in the second line puts the
expression on the wanted form after it has been combined withEq. 7.16:

µ
⋆,α

i (T) + RT ln(γαi xαi ) ≈ µ⋆,αi (T) + RT ln(γβi xβi ) −
∆h⋆i
Ti

(T − Ti)

a Or phase transition point if the two phases are solid.
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∆µi/RT required by the Newton algorithm in Eq. 7.9 can finally be written as
in Eq. 7.10 providedKi is calculated as:

(7.19) Ksle
i =

γαi
γβi

exp
[
∆h⋆i

R

( 1
Ti
− 1

T

)]

§45 Find experimental data for a binary alloy (or a binary salt) with full
solubility in the solid phase. Choose a system with fitted Margules or Redlich–
Kister model parameters. Calculate the phase diagram usingTpNewton or
TpKvalue. How important is the temperature dependency of∆s⋆i in this con-
text?

G–C. Figure 7.4 on the next page illustrates the high-temperature
portion of the Gold–Coppera phase diagram, see Matlab program F1.6. The
agreement between the measured and calculated values is generally good even
though it is not possible to calculate the entire diagram — neither with TpNewton
nor with TpKvalue. The problem is quite persistent, and although the starting
values are chosen judiciously there is a substantial regionaround the congru-
ence point where things go wrong. The flaw is due to the (large)negative
deviations from ideality which is observed in the two phases. This does in turn
cause an oscillatory iteration sequence. Quite surprisingly, maybe, because the
phase calculations in Figure 7.2 on page 71 converges nicelyover the entire
composition range. However, the latter system benefits fromhaving a positive
deviation from ideality. The ideal Hessian matrix will thenover-estimate the
curvature of the energy surface and yield a conservative step size in TpNewton
(and a safe, albeit very slow, convergence). With negative deviations from ide-
ality the curvature is under-estimated and the step size mayeventually grow so
large that the iterations start oscillating around the solution pointb. �

Concerning the accuracy of the calculations it is not easy toargue that∆s⋆i
varies over the temperature domain. The simplification which is part of the
pure component reference is dominated by the activity model, and the calcu-
lated phase diagram looks very promising. But, a single phase diagram is not
sufficient to claim any kind of thermodynamic consistency. To do this we have
to verify all types of calorimetric quantities, vapour pressures, cryoscopic mea-
surements, etc. A systematic study at this level would indeed reveal the noted
inconsistency, as well as several minor ones.

While azeotropes are common for vapour–liquid phase diagrams, the anal-
ogous phenomena of congruent melting is quite rare among thealloys — at
least when disconnected from stoichiometry compound formation and phase
separations in the solid phasec. It has nevertheless been chosen to present such
an exotic system here to stress the fact that phase diagrams are classified ac-
cording to their morphology, and that the calculation method is quite indepen-
a H. Okamoto, D. J. Chakrabarti, D. E. Laughlin, and T. B. Massalski. Bull. Alloy Phase
Diagrams, 8(5):454–473, 1987. b An exact Hessian would stabilise the Newton method.
c The Gold–Copper system exhibits solid phase separation atT < 400◦C.
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dent of the phase models. The thermodynamics of equilibriumsystems makes
no difference between vapour, liquid and solid phases in this regarda, but note
that the number of model parameters can be quite substantialfor a solid phase
compared to what is expected for vapour and liquid phases. Inthe above case
there are six binary parameters for the solid, but only threefor the liquid.

4. Convergence properties

A sequence of iterative calculations has (convergence) order m and (con-
vergence) factorh if the sequence approximates limk→∞ log‖xk+1 − x∞‖ =
log(h) + mlog‖xk − x∞‖. The K-value method is typically of first order, but

−6 −4 −2 0
−6

−5

−4

−3

−2

−1

0

log10 ‖∆µ‖k

lo
g 1

0
‖∆
µ
‖ k
+

1

h1 = 0.675
every 4. iteration
hn = 0.965
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F 7.5 Convergence
properties of the New-
ton method when using
an ideal Hessian in the
calculation of the bottom
(h1) and top (hn) tie-lines
in Figure 7.2. The latter
is close to the critical
point. Solid lines illustrate
1st order convergence.
Note thath → 1 for the
near-critical point.

close to the critical point the convergence factorh → 1 andxk+1 ≃ xk. Thus,

a Even though the equilibrium conditions 7.11, 7.15 and 7.19 look quite differently.
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convergence is severely hampered and it may be difficult to decide whether
the sequence converges or not. The iteration should therefore be accelerated
along the most prominent eigendirection of the Jacobian. This is known as the
Dominant Eigenvalue Method, see Appendix D.

The Newton method is of second order — details concerning theconver-�
gence factor is discussed in Appendix C. This means that the number of sig-
nificant digits will double in each iteration provided that iterationk is suffi-
ciently close to the solution point. The local convergence properties are irre-
proachable, but the method needs quite good start estimates. Note also that the
simplifications in Section 2 makesm = 1 unless for ideal mixtures where the
Hessian is exact. Figure 7.5 illustrates what influence the simplification has
on the calculation of the bottom and top tie-lines of Figure 7.2. The iteration
sequence approaches the 45◦ line which is typical for first order methods, and
close to the critical point the convergence factor creeps toward 1, in the sense
thathn = 0.965 is pretty close to unity in this context.



CHAPTER 8

Material Stability

46 Workouts in Thermodynamics, c©Tore Haug-Warberg 17 January 2007

The question of material stability is crucial to the understanding of com-
plex phase behaviour, and, as an indispensable analysis tool, to the calculation
of thermodynamic equilibrium states. It turns out, however, that the subject
is quite complex and that a full theoretical contemplation requires a rather
abstract notation. In order to achieve a good understandingof the basic con-
cepts without sacrificing too much physical insight we shalltherefore restrict
the analysis toU, and possibly its Legendre transformsA, H andG, but it is
stressed that similar analyses could be carried out based onS, V, etc.

1. Global stability

The starting point is a closed system withheld at constant entropy, volume
and composition, the internal energy of which isU(x) wherexT = (S,V,N1,

. . . ,Nn). The system can be a single phase, it is maybe easier to graspthe
theory then, but this is not required. No changes are needed for multi-phase
systems. A new phase with state vectory ∈ Ω | 0 < y < x is tentatively
formed within the system boundary. Of particular interest to us is the change
in internal energy∆U(x, y) =̂ U(y) + U(x − y) − U(x) caused by the phase
formation. A perturbation inU(x) combined with an Euler integration ofU(y)
yieldsa:

∆U(x, y) = Uy · y − Ux · y + 1
2!Uxx · y · y − 1

3!Uxxx · y · y · y + . . .

=̂ Ũ +
∑
k=2

(−1)k

k! δ
kU(8.1)

The following shorthand notation has been adopted to ease the writingb:

δkU = Uk
x · yk = Ux...x · y · · · y =

n∑
j=1
· · ·

n∑
i=1

∂kU
∂xi ···∂xj

yi · · · yj

The tangent plane functioñU =̂ (Uy − Ux) · y defined in 8.1 is instrumental to
theglobal stability analysis elucidated below, whileδ2U, δ3U, etc. are factors
closely related to thelocal instabilities known as spinodal, critical, and tricriti-
cal points. The exact conditions for these states are quite elaborate and will be
pursued in the next section.

a Direct Euler integration is also possible:∆U = (Uy − Ux−y) · y − (Ux − Ux−y) · x b The
inner product· binds to the left operand thereby avoiding nested parentheses.

77
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To prove that the system is in global equilibrium it must be verified that
∆U(x, y) ≥ 0, ∀y ∈ Ω, but it is not needed to scan the entire function domain;
the system is globally stable if all thestationaryvalues of∆U fulfil the positive
sign restriction. A necessary condition for the stationarystate is (∂∆U/∂y) = 0
which in the current context translates toUy = Ux−y

a. Substituted into the
Euler integrated form of∆U, see footnote on the previous page, this gives the
ultimate stability criterion (Uy−Ux)·x ≥ 0 and the equilibrium state is correctly
located as the lowest of all feasible tangent planes. However, it does not hint at
howor wherethe calculations should be started. Note that there may be several
phasesyi and each phase has in general a finiteregion of attractionb.

To investigate this problem further let{y0, y1, . . . , ym} be the set of all sta-
tionary statesc. But, how can we determine this set? There is no definite
answer and we shall therefore look explicitly for regions where the stability
criterion is violated. Letsi ∈ [0, 1] be a distance parameter and∆U(si) =
U(siyi)+U(x − siyi)−U(x) the parametrised internal energy change. The val-
uessi = 0 andsi = 1 correspond to the systemx and to the stationary stateyi

respectively. A Taylor series of∆U in the parametersi can be written

∆U(si) = si(Uyi − Ux) · yi +
1
2s2

i U
2
x−αiyi

· y2
i

=̂ siŨi +
1
2s2

i Q(x, αiyi)

where the quadraticQ is a representative for Lagrange’s Taylor Series Re-
mainder. If the Hessiand U2

x−αiyi
is positive (semi)definite for allαi ∈ [0, 1]

it follows that Q is non-negative. Hence, if∆U(yi) < 0 it must be true that
Ũi < 0. The reverse is also true because limsi→0∆U/si = Ũi. The question of
global stability can therefore be resolved by calculating min Ũ in each region
of attractione:

stable Ũ ≥ 0 ∀yi ∈ Ω
metastable Ũ < 0 ∃yi ∈ Ω

In case the tangent plane distance is everywhere non-negative the system is
stable, and in the opposite case the energy can be lowered by usingyi as a start
estimate for the new phase, see Section 3 on page 82.

2. Local stability

Assume thatx is now a one-phase system in Eq. 8.1 and thatŨ = 0 for
some incipient phasey→ 0. If at the same timeδ2U → 0+ the system is stable
to local perturbations, but ifδ2U → 0− the system is intrinsically unstable and
an increase iny will eventually lead toŨ < 0. If δ2U = 0 the system will be
stabilised by the incipient phasey whenδ3U → 0+, and de-stabilised when
δ3U → 0−. These thoughts can obviously be generalised but they are not very

a This is also recognised as the general phase equilibrium criterion. b The extent of the
region depends also on the numerical algorithm in use.c Any valuey ∝ x represent a

so-called trivial solution and is excluded from the set.d Ludwig Otto Hesse, 1811–1874.
German mathematician. e Normally unknown at the outset — global stability constitutes a
tough problem.
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conclusive becausey→ 0 does not tell how fary is fromx in a thermodynamic
sensea. We shall therefore redo Eq. 8.1 into a Taylor series with onesingle
reference compositionx rather than using two distinct compositionsx andy.
The motivation for doing so is to understand what happens if (or when) some
of the lower order terms in the series vanish, and to gain fullcontrol over the
zero (phase) size limit. The total energy of the composite system is:

(8.2) U(x, y) = U(y) + U(x − y)

To proceed we need Taylor expansions forU(y) andU(x − y) both started at
the same compositionx, or, more precisely, somewhere along vectorx. The
trial state vector is first decomposed into one component along x and another
component̄x defined such that−αxi < x̄i < −αxi + xi:

y =̂ αx + x̄, α ∈ 〈0, 1〉

Next, remember thatU,Ux,Uxx, . . . are homogeneous functions of order 1,

0,−1, . . . This means the expansion can be startedanywherealong vectorx
provided the derivativesb are properly scaled:

U(y) = αU(x) + α0Ux · x̄ + 1
2α

-1Uxx · x̄ · x̄ + 1
3!α

-2Uxxx · x̄ · x̄ · x̄ + . . .
= αU(x) +

∑
k=1

1
k!α

1−kUk
x · x̄k(8.3)

The expansion ofU(y) is also valid forU(x−y) if the new variableβ is defined
such that

x − y = x − (αx + x̄) = (1− α)x − x̄ =̂ βx − x̄
Hence, by replacingα→ β andx̄→ −x̄ we get the expression

(8.4) U(x − y) = βU(x) +
∑
k=1

1
k!β

1−kUk
x · (−x̄)k

for free. From Eqs. 8.2, 8.3 and 8.4 the expansion of the totalenergy readsc:

(8.5) U(x, y) = U(x) +
∑
k=2

1
k!

[
α1−k − (−β)1−k]Uk

x · x̄k

The first indexk = 1 is skipped becauseα0− β0 = 0 for allα, β ∈ 〈0, 1〉, that is
to say the Taylor series gives no clue about the tilt of the energy surfaced. Of
special concern here is the termα1−k− (−β)1−k which is strictly positive for the
even indicesk = 2, 4, . . . and of variable sign for the odd indicesk = 3, 5, . . ..
The sign of an odd-powered term can therefore be switched by exchanging
the values ofα andβ. Whenever the leading terms of the series vanishes this
implies that the even and odd terms must vanish in pairs. A concise reasoning
is given below.

a We do not know whethery approaches the trivial solutiony ∝ x or not. b Note that the
derivatives are by default evaluated in statex. c Whereα+β = 1 according to the definitions
d The energy gained by one phase is to a first approximation lostby the other phase.
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x1x1

x2x2 xx

yy

x̄

x̄

x̄

x̄

x
−

y

x
−

y

εx
α

α β

β
α→ β

β← α

F 8.1 The effect of exchanging the (Taylor expansion) phase
sizesα and β in a tentative two-phase system. The overall state
vector x is fixed (closed system). The difference between the two

sub-figures lies in theεx contribution.

Consider a Taylor series wheren is an odd, non-zero, term and all the
terms 2, 3, . . . , n− 1 are zero. If the sign of then’th term is switched the value
of the leading approximation changes from positive to negative, or the other
way around. This behaviour has no physical counterpart and it can be con-
cluded thatUn

x · x̄n must vanish as well. However, as illustrated in Figure 8.1,
exchanging the values ofα andβ will in general changēx to x̄+ εx and it must
be proved that this change does not distort the lower order terms:

P. Assume thatn is an odd number 3, 5, . . . and thatUk
x · x̄k = 0 for

all k ∈ [2, n〉. We shall prove that adding an arbitrary vectorεx to x̄ does not
change any of the termsUk

x · x̄k for k ∈ [2, n]. Using binomial coefficients we
can write

Un
x · (εx + x̄)n =

n∑
k=0

(
n
k

)
εn−kUn

x · xn−k · x̄k

The derivatives are known to be homogeneous functions of order 1, 0,−1, . . .
which implies the reduction scheme:

Un
x · xn−k = (2− n)(2− n− 1) · · · (2− k− 1)Uk

x

= Uk
x

k+1∏
i=n

(2− i)

Combining the two equations yields the intermediate result

Un
x · (x̄ + εx)n =

n∑
k=0

ckUk
x · x̄k

whereck have values:

ck = ε
n−k

(
n
k

) k+1∏
i=n

(2− i), k ∈ [0, n〉
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cn ≡ 1

Remember thatUk
x · x̄k = 0 for all k ∈ [2, n〉. Furthermore,c0 = c1 = 0 for k < 2

because (2− i) = 0 somewhere in the product sum. Hence, we can conclude
that only then’th term survives the summation:

Un
x · (εx + x̄)n = Un

x · x̄n, ∀ε > 0 �

In retrospect it is easy to see thatεx vanishes due to the first order ho-
mogeneity ofU implemented in a Taylor series without any first order term.
Anyway, the conclusion is thatUn−1

x · x̄n−1 andUn
x · x̄n must vanish in pairs of

even and odd indices if the leading termsk ∈ [2, n− 2〉 are zeroa,b. Rather than
Un−1

x · x̄n−1 andUn
x · x̄n we could as well talk aboutδn−1U andδnU because they

must also vanish in the same circumstances. Therefore, whenδ2U ≥ 0 for all
feasibley the phase is intrinsically stable (but it can still be metastable in the
global scope). Whenδ2U < 0 for some vectory the phase is intrinsically un-
stable and ifδ2U = 0 the phase is said to be at a spinodal point. Ifδ3U = 0 for
the same vectory the state is called critical. In the same manner higher order
critical points can be defined whereUn−1

x · yn−1 = Un
x · yn = 0 for n = 5, 7, . . .

To conclude this section we state our findings in a condensed way:

unstable δ2U < 0 for somey

critical
δ2U = 0
δ3U = 0

for somey

tricritical
δ2U = 0
δ3U = 0

,
δ4U = 0
δ5U = 0

for somey

tetracritical
δ2U = 0
δ3U = 0 ,

δ4U = 0
δ5U = 0 ,

δ6U = 0
δ7U = 0 for somey

In theory it is easy to putδ2U, δ3U, etc. to zero, but what about reality? Matrix
algebra can be used to analyseδ2U, but is not helpful with the higher order
terms. To get an idea of the numerical complexity it is legitimate to calculate
the number of different terms involved. The partial derivativeUk

x containsnk

elements, but only a fractionc of these are independent. One obvious reason is

a Michael Modell and Robert C. Reid.Thermodynamics and Its Applications. Prentice
Hall, 2nd edition, 1983. b There is a textbook alternativea to the analysis outlined
above. Letα → 0 in Eq. 8.5. Becauseβ = 1 − α >> α the simplified equation is
limα→0

(
∆U
α

)
=

∑
k=2

1
k! U

k
x ·

( x̄
α

)k. Here,∆U(x, y) is a homogeneous function inα for a constant
perturbation vectorx̄

α
and the original systemx acts as a thermodynamic reservoir making it

possible to study the properties of the incipient phasey in isolation. Consider again a Taylor
series where all the terms 2, 3, . . . , n− 1 (even number) are approaching zero. If the direction
of x̄ is flipped so will the sign of then’th term and it can be argued thatUn

x · x̄n must van-
ish. However, changing the direction ofx̄ severely changes the composition of the incipient
phasey, and it is not clear (to me) that this has been properly accounted for in the analysis. I
therefore find this argumentation weaker than my own.c E.g. fork = n = 10 there are 1010

elements, but only 43758 independent ones!
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the commutative symmetry of the partial derivative:

∂kU
∂xk∂xj ···∂xi

= ∂kU
∂xi∂xj ···∂xk

Thus, the sampling ofk indiceswithout regard to orderfrom a population of
n = dim(x) components (with replacement of the indices) gives rise to

(
n+k−1

k

)
≡ (n+k−1)!

k!(n−1)!

potentially different terms inUk
x. However, the homogeneity ofU reduces the

number further because
Uk

x · x = (2− k)Uk−1
x

For each derivativeUk
x there exists as many relations as there are independent

terms inUk−1
x , hence the number of independent terms inUk

x is cut off to
(
n+k−1

k

)
−

(
n+k−2

k−1

)
≡ (n+k−2)!

k!(n−2)! , k, n ≥ 2

Some numbers have been calculated below and we immediately recognise the
2-variable case as particularly interesting — only one extra term is needed to
describe each derivative, no matter the value ofk. This finding becomes even
more interesting in Section 4 where we shall find that the 2-variable case is
sufficient in all but some highly degenerate cases (e.g. criticalazeotropes).

k = 2 k = 3 k = 4 · · · k
n = 2 1 1 1 · · · 1

1

n = 3 3 4 5 · · · k+1
1

n = 4 6 10 15 · · · (k+1)(k+2)
2

...
...

...
...

. . .
...

n (n−1)n
2

(n−1)n(n+1)
6

(n−1)n(n+1)(n+2)
24 · · · (n+k−2)!

k!(n−2)!

3. The tangent plane test

In theory it is possible to formulate a tangent plane test based on the inter-
nal energy, but most models have canonical variablesT,V,N or T, p,N and it
is more practical to formulate the test in terms of Helmholtzenergy or Gibbs
energy. Assume therefore that we have a phase (assembly) characterised by

A = gTx

whereA is the Helmholtz energy andxT = (V, nT). The system temperatureT
is constant. If the phase (assembly) is stable thenÃ ≥ 0 for all feasible values
of the trial state vectory:

(8.6) Ã(x, y) = [g(y) − g(x)]Ty > 0

Note the difference in notation from Eq. 8.1. In the current situation it is more
natural to useg for the gradient rather thanAx in conformity with the notation
used in linear algebra.
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3.1. Lagrange formulation. To verify thatÃ ≥ 0 for all feasibley ∈ Ω
we can do little more than investigate the outcome of the minimisation problem

min
y

(Ã)T ∨ aTy = c

for several trial values ofy. This minimisation problem is linearly constraineda

and the method of Lagrange multipliers is ideally suited:

L(x, y, λ) = Ã− λ(aTy − c)

The stationary point ofL is given by∂L/∂y = 0, or when written out in some
more detail:

0 = ∂Ã
∂y −

∂λ(aTy−c)
∂y

= H(y)y + g(y) − g(x) − λa

= g(y) − g(x) − λa(8.7)

The stationary value of̃A can be calculated from Eqs. 8.6 and 8.7:

(8.8) Ã◦ = g(y)Ty − g(x)Ty = λaTy = λc

Hence, the phase is stable ifλc ≥ 0 at every stationary point ofL(x, y, λ), and
metastable ifλc < 0. If metastability occurs the Helmholtz energy can be
lowered by including the incipient phasey on the expense ofx, but a natural
question is: How big should we make this new phase? The definite answer
lies of course in the subsequent equilibrium calculation, but we have to start
the iterations somewhere. With minimum effort we can study the second order
variation ofÃ along the (optimum) state vectory,

Ã(x, y) = αg(y)Ty − αg(x)Ty + α2

2! y
TH(x)y + . . .

whereα ∈ [0, αmax〉 is a step length parameter under our control. A minimum
in Helmholtz energy requires that∂Ã/∂α = 0 and plain differentiation gives
the following phase size estimate

(8.9) α◦ =
g(y)Ty−g(x)Ty

yTH(x)y =̂ −λc
Q(x,y)

In the limit of incipient phase stabilityα◦ will approach the true equilibrium
value, but deep inside the phase boundary we may expectα◦ > αmax. We
must therefor keep a close eye with the estimate in Eq. 8.9 andrestrictα if
appropriate. Note also that the estimate breaks down if the phase (assembly)
x is unstable in the direction ofy i.e. whenQ(x, y) < 0. A more elaborate line
search is then definitely needed.

a The constraint specificationaTy = c is arbitrary, but nevertheless crucial to the problem
formulation becausẽA is a homogeneous function, and as such experiences a singular Hessian
matrix in the direction ofy. Adding a rank-one constraint makes the Hessian invertible(loosely
speaking).
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This is as far as the general theory goes, the next question ishow to proceed
with actual calculations. A Newton iteration started at a feasible pointy0 , x
yields the recurrence formula,

(
y
−λ

)

k+1

=

(
H(y) a
aT 0

)-1

k

(
g(x) − g(y)

c

)

k

but to continue we need the constraint vectora. The most intuitive choice is
to fix the volume of the incipient phase such thaty1 = x1 = V and let the
mole numbers vary freely. This corresponds toaT = eT

1 = (1, 0, . . .) andλ
being a vector with one single element interpreted as the difference in negative
pressureπ between the two statesx andy. Insertinga = e1 into Eq. 8.7 gives
the solution

p(x) − p(y) = π

µ(x) − µ(y) = 0

There is no mechanical equilibrium in this case although theconditions for
chemical equilibrium are fulfilleda. The stationary value of̃A◦ in Eq. 8.8 sim-
plifies to

Ã◦ = πeT
1y = πy1 = πV

becausey1 = x1 = V. Knowing only one stationary point we can argue that
the phase (assembly)x is metastable if−π > 0 and possiblyb stable if−π ≤ 0.
Finally, for a = e1 the phase size estimate simplifies to (see Eq. 8.9 on the
preceding page)

α◦ =
−πV

Q(x,y)

3.2. Direct substitution. The Lagrange formulation is very neat in the
general case, but if the mixture is nearly ideal the direct substitution of vari-
ables becomes a viable alternative. The minimisation problem is for a change
written

min
y

(G̃)T,p ∨ eTy = 1

wherey represents the mole numbers in the mixture. Lety1,...,n−1 be then− 1
first components ofy and letS be a matrix that maps this vector ontoy:

y = en +

(
I
−eT

)
y1,...,n−1 =̂ en + Sy1,...,n−1

The variation iny is easily calculated asδy = Sδy1,...,n−1 and becauseeTS= 0T

it follows thateTδy = 0. Clearly, the mapping conserves the total number of
moles in the mixture and the minimisation problem cande factobe written

a The situation will change if anothera is chosen. E.g.aT = (0, 1, . . . , 1) releases the chemical
equilibrium and fixes the mechanical equilibrium.b If we are going to rely on one single
solution point, we should really check for intrinsic stability first. This topic will be covered in
the next section.
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on an unconstrained form as miny1,...,n−1(G̃)T,p. The chain rule of differentiation
yields (

∂G̃
∂y1,...,n−1

)
=

(
∂nT

∂y1,...,n−1

)(
∂G̃
∂y

)
= ST[µ(y) − µ(x)] = 0

If we can assume that the mixture behaves ideally thenµ(y)−µ(x) = ∆µ+ln(y),
where∆µ is a constant vector at the given temperature and pressure. The
condition for a stationary point isST[∆µ + ln(y)] = 0, or when written out in
full: ∆µ1,...,n−1 − ∆µne+ ln(y1,...,n−1) − ln(yn)e = 0. Direct substitution of the
n− 1 first variables gives the update formula:

y(k+1)
1,...,n−1 = y(k)

n exp(∆µn) exp(−∆µ1,...,n−1)

The calculation converges in one step for ideal mixtures whereas the Lagrange
formulation would require several iterations (typically 5–10). Another nice
feature is that the mole numbers are guaranteed to be positive due to the expo-
nential on the right hand side.

§46 Write a modified update scheme for the direct substitutionof mole
numbers in an ideal gas at fixed temperature. The volume is a free variable
and can be set to any value.

I . Assume that, in the previous derivation, Helmholtz energyis
used to replace Gibbs energy andST =̂ (I 0) where the last column (of zeros)
corresponds to the (constant) variableV. Because the iteration is now con-
ducted at constant volume rather than at constant pressure all the mole vari-
ables will be updated simultaneously:n(k+1) = n(k) exp(−∆µ). �

4. Intrinsic stability criteria

Intrinsic stability of a phase requires that the quadraticUxx ·y ·y ≥ 0 for all
y ∈ Ω. This is a classical problem formulation known from coursesin linear
algebra, the solution of which can be stated in several equivalent ways:

(1) The eigenvalues ofUxx are non-negative.
(2) The pivots in the Cholesky factorisation ofUxx are non-negative.
(3) The principal sub-determinants ofUxx are non-negative.
(4) Uxx is a semi-definite matrix of rankn− 1.

The second formulation is apt to simple matrix algebra and defines for this
reason the route followed here. For a single component system a step-by-step
eliminationa of the rows inUxx yields


US S US V US N

UVS UVV UVN

UNS UNV UNN

 =


1 0 0
α 1 0
β 0 1




US S US V US N

0 AVV AVN

0 ANV ANN

(8.10)

a BecauseUxx is a symmetric matrix of rankn−1 we can write the full Cholesky factorisation
of an intrinsically stable, single component system, asUxx = LL T whereLT =

(
u uα uβ
0 a aγ

)
and

u =
√

US S anda =
√

AVV
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=


1 0 0
α 1 0
β γ 1




US S US V US N

0 AVV AVN

0 0 GNN

(8.11)

where the following parameters have been used:

α =̂
UVS

US S
, β =̂

UNS

US S
, γ =̂

ANV

AVV

Note that the last pivot in the elimination (GNN in this case) will always be 0
due to the homogeneous nature ofU. To prove that Eqs. 8.10–8.11 are correct
we must prove that the Choleskya factorisation of a thermodynamic Hessian (in
the extensive variables) is equivalent to a series of Legendre transformations
applied to the original functionb. It is possible to prove this in general terms,
but to make the theory amenable to the casual reader we shall carry out a less
general factorisation. From Chapter 2 we know thatA(T,V,N) is related to
U(S,V,N) such thatAX = UX then assuming constant temperature and entropy
respectively. This relation holds for anyX ∈ {V,N}. The differentials ofAX at
constant temperature, and ofUX with no restrictions on the variables, are:

( dAX)T = AXV dV + AXN dN(8.12)

dUX = UXS dS+UXV dV + UXN dN(8.13)

In order to compare the two differentials it is necessary that the (differential)
entropy is eliminated in the second equation such that the temperature is held
constant. Using the definitionT =̂ US it follows that

(8.14) 0= (dUS)T = US SdS + US V dV + US NdN

From Eq. 8.14 it is straightforward to eliminate dS in Eqs. 8.13, and further-
more to collect similar terms into

(dUX)T =
(
UXV − UXS

US V

US S

)
dV +

(
UXN − UXS

US N

US S

)
dN

The last equation is compared term-by-term with Eq. 8.12 which yields

(8.15) AXY = UXY − UXS
US Y

US S

for anyY ∈ {V,N}. Substitution ofX,Y ∈ {V,N} into the formula above verifies
the first step in the Cholesky factorisation 8.10–8.11. Furthermore, because the
differentiation outlined in Eqs. 8.12–8.15 is valid for any Legendre sequence
U(S,V,N) → A(T,V,N) → G(T,−p,N) etc., an induction proof verifies that
the factorisation can be completed as indicatedc. The intrinsic stability of a

a André-Louis Cholesky, 1875–1918. French mathematician.b The marvels of thermody-
namics are quite fascinating! c The factorisation of positivesemi-definite matrices has not
yet been discussed. The question is where the zero pivots ofUxx show up when a stable phase
changes (continuously) into an unstable one. The outcome isthat the last pivot changes its
sign before the second last pivot, which changes its sign before the third last pivot, etc. This
holds for all non-degenerated states. In the current caseGNN = 0 is the last pivot and the sign
shift will therefore show up inAVV first, before it eventually also shows up inUS S.
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phase can then be stated in terms of just 1 second derivative,rather thann(n+
1)/2 as would be expected from matrix theory alonea. It is also true that the
transformation sequence is arbitrary, and that the factorisation could start out
with UVV or UNN rather thanUS S. Thus, for a one-component system the
stability conditions can be written in 6 different ways,

US S > 0, AVV > 0

US S > 0, ANN > 0

UVV > 0, HS S > 0

UVV > 0, HNN> 0

UNN> 0, XS S > 0

UNN> 0, XVV > 0

whereX denotes the unnamed energy functionX(S,V, µ). These relations are
equivalent to those derived from the principal sub-determinants of the original
Hessian. The left column is clearly related to the rank-one determinants (main
diagonal elements), and with the help of Eq. 8.15 the rank-two determinants
can be written:

US SUVV −US VUVS =US SAVV = HS SUVV > 0

US SUNN −US NUNS =US SANN = XS SUNN > 0

UVVUNN−UVNUNV =UVVHNN= XVVUNN > 0

There is also one final rank-three criterion, and several rank-two criteria com-
ing from the Legendre transforms, but they are all zero because the Hessian
is singular for whatever values ofS, V andN. The rank-two criteria listed in
the right column above are therefor conclusive and are violatedsimultaneously
at the limit of material stability. This stability limit is often referred to as the
spinodal. The rank-one criteria define a new spinodal insidethe outer one.

A final note on quadratic forms is appropriate. We know that for a stable
system the quadraticUxx · y · y ≥ 0 for all y ∈ Ω. This has been stressed many
times already, but so far it has been just a theoretical result. To give a practi-
cal demonstration we can calculate the inner product from the factorisation in
Eq. 8.11:

U2
S VN · y2 = US S

(
yS +

UVS

US S
yV +

UNS

US S
yN

)2
+ AVV

(
yV +

ANV

AVV
yN

)2
+GNN (yN)2

Clearly, the quadratic is non-negative only if the leading factorsUS S andAVV

are positive. The Euler properties ofU makesGNN = 0 so the quadratic is
always zero in the direction ofx, but otherwise it should be strictly positive.

a This does not imply that only 1 coefficient in the original matrix is needed for the stability
analysis. The Legendre transforms will effectively bring all the coefficients into action.



88 8. MATERIAL STABILITY

For a multicomponent system the quadratic is generalised to

U2
x · y2 =

∑
i=1

U(i−1)
xi xi

(
yi +

∑
j>i

(
U(i−1)

xi xi

)-1
U(i−1)

xi xj yj

)2

whereU(i−1) is used to denote the (i − 1)’th Legendre transform of internal
energy andU(0) =̂ U. With regard to the leading factorsU(i−1)

xi xi in this formula
the picture gets quite complex, and already for a binary system there will be
24 different possibilities. The most common formulation is:

US S =
(
∂T
∂S

)
V,N1,N2

=̂ T
CV
> 0

AVV =−
(
∂p
∂V

)
T,N1,N2

=̂ 1
Vβ > 0

GN1N1 =
(
∂µ1

∂N1

)
T,p,N2

> 0
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The aim of this chapter is to present a complete set ofT, sandp, v diagrams
for an idealised heat engine using ideal gas as a work medium.For simplicity,
we shall assume a constant heat capacitya cp = 3.5R in all the calculations. All
together, twelve coordinate systems are required in order to describe the six
thermodynamic cycles of Ottob (s, v), Stirlingc (T, v), Braytond (s, p), Ericssone

(T, p), Carnotf (T, s) and Rankineg (p, v). In order to draw all these diagrams
the exact knowledge of theT(s, v), T(s, p), p(s, v) and p(T, v) isopleths must
exist. The starting points are

sıg−s◦
R = ln p◦

p +
cp

R ln T
T◦
,

sıg−s◦
R = ln v

v◦
+

cv
R ln T

T◦
,

which can be inverted to

T = T(s, v) : T ıg

T◦
=

(
v◦
v

)γ−1
exp

(
s−s◦

cv

)
.

T = T(s, p) : T ıg

T◦
=

(
p
p◦

) γ−1
γ exp

(
s−s◦
cp

)
.

p = p(s, v) : pıg

p◦
=

(
v◦

v

)γ
exp

(
s−s◦

cv

)
.

Additionally, the ideal gas equation of state on the form

p = p(T, v) : pıg

p◦
=

(
v◦

v

)(
T
T◦

)

is also needed. The actual calculations are outlined in Matlab code 1.7 on
page 120, and the final diagrams are shown in Figures A.1 and A.2 on the next
page.

a Assuming diatomic molecules with fully developed translational and rotational degrees
of freedom givescp = 3.5R andγ = 7/5 = 1.4 b Nikolaus August Otto, 1832–1891.

German engineer. c Robert Stirling, 1790–1878. Scottish reverend.d George Brayton,

1830–1892. American engineer.e John Ericsson, 1803–1889. Swedish engineer.f Nico-
las Leonard Sadi Carnot, 1796–1832. French engineer.g William John Macquorn Rankine,
1820–1872. Scottish physicist.
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The SI convention (Système International d’ Unités) has its roots in the
French Revolution and the contemporary will of breaking with old traditions.
The central idea of using a metric (decimal) measuring system for length and
mass was adopted by the French Academy in 1790, and put to workin 1795.
On 20 May 1875 the Meter Convention was signed in Paris by 18 member
countriesa.

SI unit sym Description

Ampèreb A That constant current which, if maintained in two straight
parallel conductors of infinite length, of negligible circu-
lar cross-section, and placed 1 m apart in vacuum, would
produce between these conductors a force equal to 2·
10-7 N m-1.

Candela cd Luminous intensity, in a given direction, of a source that
emits monochromatic radiation of frequency 540· 1012 Hz
and that has a radiant intensity in that direction of 1/683 W
per steradian.

Gram g One thousand of the mass of the international kilogramme
prototype in Paris (probably about to change).

Kelvinc K The fraction 1/273.16 of the thermodynamic temperature
of the triple point of water.

Metre m Length of the path travelled by light in vacuum during a
time interval of 1/299, 792, 458 of a second.

Mole mol Amount of substance of a system which contains as many
elementary entities as there are atoms in 0.012 kg of 12C.
When the mole is used, the elementary entities must be
specified and may be atoms, molecules, ions, electrons,
other particles, or specified groups of such particles.

Second s Duration of 9, 192, 631, 770 periods of the radiation corre-
sponding to the transition between the two hyperfine levels
of the ground state of the133Cs atom.

a Quite remarkably Norway was among these early pioneers.
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The SI consists of seven base units and two supplementary units related to
the geometry of objects (radian and steradian). An infinite number of coherent
units for power, force, energy, and so on can be defined as multiple products
of these base units. The use of optional prefixes (kilo, Mega,milli, etc.) makes
it possible for the researcher to report measurements that are close to unity, or
whatever is considered to be “normal” or practical (µg, kPa, mm, ns, etc.). An
issue closely related to the base units is the formulation ofuniversal constants
in physical theories. The ones of special interest to thermodynamics are:

Constant name sym expr valuea mult units

Atomic mass unit amu 0.001
|Av| 1.6605402(1) 10-27 kg

Avogadrob number Av 6.0221367(4) 10+23 mol-1

Boltzmannc constant k 1.380658(1) 10-23 J K-1

Elementary charge e 1.60217733(5) 10-19 C

Faradayd constant F Ave 96485.309(3) C mol-1

Permeability of vacuum µ◦
4π
107 1.2566370· · · 10-6 N A-2

Permittivity of vacuum ǫ◦
1

µ◦c2 8.8541878· · · 10-12 F m-1

Plancke constant h 6.6260755(4) 10-34 J s

Speed of light in vacuum c 299792458 m s-1

Standard acceleration g 9.80665 m s-2

Stefanf–Boltzmannc b 2π5k4

15h3c2 5.67051(0) 10-8 W m-2 K-4

Universal gas constant R Avk 8.314510(7) J mol-1 K-1

The evolution of the measuring units, and not to forget the history of
metrology as a scientific subject, is a very fascinating story which deserves
a volume much larger than this text. Here, we can merely appreciate the out-
come of the huge scientific efforts leading to the current SI. The system is not
entirely fixed, however, and it should be noted that theworkingdefinitions of
length, time, amount, etc. have changed considerably throughout time and that
changes are still to comeg.

The SI-system is thede factostandard in scientific texts but there are still
other measuring systems around. The Anglo-American systems are among
these, and there are systems derived from the SI-system which are used on
special occasions (Å and bar for instance). Since it is not likely that man will

b André Marie Ampère, 1775–1836. French physicist. c William Thomson alias
Lord Kelvin, 1824–1907. Irish physicist. a E. Richard Cohen and Barry N. Taylor.

Physics Today, pages 5–9, aug 1999. b Count Lorenzo Romano Amedeo Carlo Avogadro
di Quaregna e Cerreto, 1776–1856. Italian chemist.c Ludwig Boltzmann, 1844–1906. Aus-

trian physicist. d Michael Faraday, 1791–1867. English physicist.e Max Karl Ernst Lud-

wig Planck, 1858–1947. German physicist.f Joz̆ef Stefan alias Joseph Stefan, 1835–1993.
Slovenian physicist and poet.g Mass is notably the last of the measuring units that is based
on an international prototype. All the other units have beenreplaced by exact definitions which
can be reproduced in any laboratory at any time without the inflict of maintaining a physical
prototype.
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ever agree on one common set of unitsa we must be able to convert between the
different sets on demand. To ease our troubles in this respect we shall describe
an algorithm doing exactly thisb. Assume for simplicity that there are only
three fundamental units available: Metre [m], second [s] and gram [g]. The
question to be answered is: How can these units be replaced bye.g. inch [in],
acceleration of free fall [ga] and pound gravity per square inch [psia] as the
input units required by a computer program? A mathematical statement of the
problem consists of the recursive definitions

1 kg =̂ 1000 g 1lb=̂ 0.45359237 kg

1 in =̂ 0.0254 m 1ga =̂ 9.80665 m s-2

1 psia=̂ 1 ga lb in-2

closed by the identities 1 m≡ 1 m, 1 s≡ 1 s and 1 g≡ 1 g. Treating the sym-
bols m, kg and s as algebraic entities makes it feasible to write ln(1)+ ln(m) ≡
ln(1) + ln(m) etc. for each of the identities. Converting all the definitions to
logarithmic form yields the following system of linear equations

(
ln u
ln x

)
=

(
0

ln c

)
+

(
I 0
B A

) (
ln u
ln x

)
,

where
uT =

(
m s g

)
,

xT =
(

kg lb in ga psia
)
,

cT =
(

1000 0.45359237 0.0254 9.80665 1
)
,

and the exponents are

B =



0 0 1
0 0 0
1 0 0
1 −2 0
0 0 0


and A =



0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 −2 1 0


.

A straightforward rearrangement of the equations leads to the simple solution

(
B (A − I )

) ( ln u
ln x

)
= − ln c .

In the equation aboveA is a square, maybe singular, matrix. The matrixA − I ,
however, is non-singular for any consistent choice of the units. It can thus be

a Fortunately I should say, because else it would be a terriblyboring world. Wherever you
go and whatever you do everything looks just the same — the very idea scares me. We could
as well decide that there should be only one kind of fish and onekind of meat in the world,
and maybe that is exactly where we are heading. . . b In a consistent manner without using
redundant conversion tables.
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concluded that the derived unitsx are unique functions of the base unitsu:

ln x = − (A − I )−1 (B ln u + ln c) .

The entire range of derived units can easily be generated by redefining the
current choice of the base units. Here, we shall assume that the variables are
suitably arranged such thatxT = ( yT vT ), wherey is a vector of intermediate
variables andvT =̂ ( in ga psia ) is our new vector of base units. Further-
more, letA − I be partitioned into (A1 A2 ) such that the row dimension of
A2 is equal to dim(v) = dim(u). The equation can then be rearranged into

(
B A1 A2︸     ︷︷     ︸

A−I

)


ln u
ln y
ln v

 = − ln c ,

and the alternative solution written
(

ln u
ln y

)
= −

(
B A1

)−1
(A2 ln v + ln c) .

When the numbers from the last page are plugged into the expression above
the answer comes out on logarithmic form, but exponentiation on both sides
reveals the following conversion factors:

u



1 m
1 s
1 g

=

=

=

39.370078. . . in1

19.649136. . . in0.5 g-0.5
a

0.0022046. . . in2 g-1
a psia1

y
{

1 kg
1 lb

=

=

2.2046226. . . in2 g-1
a psia1

1.0000000. . . in2 g-1
a psia1

These conversion factors are valid for a measuring system where in, ga and
psia make the selected basis.
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Let x be a state vector of the (gradient) functiong(x), andH(x) the corre-
sponding Jacobiana (Hessianb if g is a gradient). The Newtonc iteration from
k y k+1 is defined as

xk+1 = xk − (Hk)-1gk .

Suppose that a stable stationary pointg∞ = 0∧ detH∞ , 0 exists. The Taylord

expansion ofg in the vicinity ofx∞ is

gk = g∞ +
∑
i

(
∂g
∂xi

)∞
(xk

i − x∞i ) + O(x2) ≃ H∞(xk − x∞) .

In the same spirit the Taylor expansion ofH-1 can be written

(Hk)-1 = (H∞)-1
+

∑
i

(
∂H-1

∂xi

)∞
(xk

i − x∞i ) + O(x2) .

Implicit differentiation ofI ≡ HH -1 leads to∂H-1/∂xi = −H-1(∂H/∂xi)H-1 for
all xi ∈ x. Inserted into the Taylor expansion ofH-1 it follows that

(Hk)-1 ≃ (H∞)-1 − (H∞)-1 ∑
i

(
∂H
∂xi

)∞
(xk

i − x∞i ) (H∞)-1 .

At a point xk close tox∞ the Taylor expansions ofg andH are sufficiently
accurate to help us understand the local convergence conditions of the iteration
sequence, hence from the Newton updatexk+1 = xk − (Hk)-1gk we may write

xk+1 = xk −
[
I − (H∞)-1 ∑

i
(xk

i − x∞i )
(
∂H
∂xi

)∞]
(xk − x∞) .

Making the variable shifty =̂ x − x∞ in the last equation

yk+1 = (H∞)-1 ∑
i

yk
i

(
∂H
∂xi

)∞
yk ,

and multiplying on both sides withH∞, leaves an expression amenable to an-

a Carl Gustav Jacob Jacobi, 1804–1851. German mathematician. b Ludwig Otto Hesse,
1811–1874. German mathematician.c Sir Isaac Newton, 1642–1727 by the Julian calendar.

English physicist and mathematician.d Brook Taylor, 1685–1731. English mathematician.
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alytical operations. Thej’th element ofH∞yk+1 is

(H∞yk+1) j =
∑
i
yk

i

∑
k

(
∂3 f

∂xi∂xj∂xk

)∞
yk

k =
∑
i

∑
k

yk
i

[
∂
∂xj

(
∂2 f
∂xi∂xk

)]∞
yk

k

= (yk)T
(
∂H
∂xj

)∞
yk ,

which on back-substitution into the formula foryk yields:

(C.1) yk+1 = (H∞)-1



(yk)T
(
∂H
∂x1

)∞
yk

...

(yk)T
(
∂H
∂xn

)∞
yk


.

This equation is analogous to Banach’s Fix Point Theorema for linear opera-
tors. It is readily observed that

∥∥∥yk+1
∥∥∥ ∝

∥∥∥yk
∥∥∥2 because the matricesH∞ and

(∂H/∂xi)∞ are constant by definition. Quite interestingly, quadraticconver-
gence is the case even when an eigenvalue ofH∞ is several order of magnitudes
smaller than the rest. The Newton iteration converges then along the eigenvec-
tor corresponding toλmin (almost fixed direction), but the convergence rate will
still be of second order. The convergence region may be very small, however,
as is seen from the norm estimate given below:

∥∥∥yk+1
∥∥∥ ≤

∥∥∥(H∞)-1
∥∥∥

√
∑
j

[
(yk)T

(
∂H
∂xj

)∞
yk

]2
≤ λ-1

min

√
nmax(λ j)

∥∥∥yk
∥∥∥2
.

Here, max(λ j) denotes the largest (absolute) eigenvalue of all the (∂H/∂xj)∞

matrices. Unambiguous convergence requires that
∥∥∥yk

∥∥∥ >
∥∥∥yk+1

∥∥∥ in each step,
and from the conservative estimate of

∥∥∥yk+1
∥∥∥ it can be concluded thatb

(C.2)
∥∥∥y0

∥∥∥ < λmin√
nmax(λ j)

.

This inequality defines a (conservative) convergence region aroundx∞. Note
the appearance of

√
n in the denominator. This factor is a mathematical neces-

sity although in most cases it makes the condition too strict.
Opposite to common belief the Newton iteration does not converge “fast”

from the first iteration on. It is a second order method all right, but it usually
takes 3-5 iterations before convergence really sets in. This is illustrated in the
table below where the convergence factorα = λ-1

min

√
nmax(λ j) is taken to be

constant and the starting point is selected such that
∥∥∥y0

∥∥∥ = 0.9α. It is only from
iteration 5 and onwards we get the feeling of rapid convergence, although the
sequence is of second order during the entire iteration:

a Stefan Banach, 1892–1945. Polish mathematician.b An other approach to this problem is
to claim thatH ≈ H∞+

∑
j(∂H/∂x j)∞y j is non-singular in the iteration domain. A conservative

criterion isλmin−
∑

j

∣∣∣λ j

∣∣∣ y j > 0 and from
∑

j y j ≤
√

n‖y‖ it follows thatλmin >
√

nmax(λ j) ‖y‖.
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0 1 2 3 4 5 6 7 8
.90 .81 .66 .43 .18 .034 1.2e-3 1.39e-6 1.93e-12

O . Let g (x) = (a− x) (b− x). The stationary points of this
function arex1 = a and x2 = b. The Jacobian isH (x) = 2x − (a+ b). At
the two stationary pointsH∞ becomes± (a− b). The second derivative is the
constant∂H/∂x = 2 and from Eq. C.1 we can write for allx ∈ R:

yk+1 = ±yk2yk

a−b = ±
2

a−b(yk)2 .

From this update formula it follows that the convergence region is
∣∣∣yk

∣∣∣ <
∣∣∣a−b

2

∣∣∣
because any values larger than this will be magnified on the right hand—a
conclusion that is in full agreement with the estimate givenin Eq. C.2 (the
latter equation happens to be an exact condition in this case). �
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F C.1 Contour dia-
gram shown along with
the regions of conver-
gence for the function
4z(x, y) = p2 + q2 (here
p = x2−3−y andq = 3−
y2− x). The small patches
indicate conservative esti-
mates of the convergence
regions and the big patch
is where the Hessian is in-
definite (λmin < 0).

T . Let z(x, y) = 1
4(p2 + q2) wherep = x2 − 3 − y andq =

3 − y2 − xa. The gradient vector and the Hessian matrix for this function can
be expressed like

−g =

(
1
2q− xp
1
2 p+ yq

)
,

H =

(
1
2 + 2x2 + p y− x

y− x 1
2 + 2y2 − q

)
,

and the third derivatives are

Hx =

(
24x −4
−4 4

)
, Hy =

(
−1 1

1 6y

)
.

a The expressionsp andq describe parabolas symmetric about they andx axes respectively.
The indicated sum of squares have zeros where the two parabolas intersect.
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The stationary points are calculated in Matlab script 1.8 from Appendix F,
together with the eigenvalues of the Hessian as well as the third derivative
matrices:

x y λmin max(λ j)
λmin

max(λ j )

2 1 2.338 12.09 0.193
1.303 −1.303 1.289 7.960 0.162
−1 −2 2.338 12.09 0.193
−2.303 2.303 6.5 13.88 0.468

Put into Eq. C.2 this gives the convergence radii indicated to the right (the
√

n-
term has been left out). Figure C.1 gives a graphical pictureof the situation.
Note carefully that the estimated convergence regions are circular whilst the
true geometries are much more complicated (of fractal nature—only the indef-
inite region is depicted here). �
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Let vectorx∞ be a solution point forx∞ = f (x∞). The recurrence formula
according to Banach’s fix-point theorem is

xk+1 = f (xk) .

The conditions of convergence and the convergence rate shall next be outlined.
At a point sufficiently close to the solution it is permissible to write

f (xk) = f (x∞) +
(
∂f
∂x

)∞
(xk − x∞) + O(

∥∥∥∆xk
∥∥∥2)

≃ f (x∞) + J(xk − x∞) .

Combine the two equations while using the convergence criterion x∞ = f (x∞)

xk+1 = x∞ + J(xk − x∞) = y + Jxk .

The first elements in the iteration sequence read

x1 = y + Jx0

x2 = y + Jx1 = y + Jy + J2x0

x3 = y + Jx2 = y + Jy + J2y + J3x0

...

Expand thek’th term and substitute the convergence criterionx∞ = f (x∞)

xk+1 = (I + J + J2 + · · · + Jk)y + Jk+1x0

= (I + J + J2 + · · · + Jk)(I − J)x∞ + Jk+1x0

= (I − Jk+1)x∞ + Jk+1x0

= x∞ + Jk+1(x0 − x∞) .

Eigenvalue decomposition ofJ (assumed diagonalisable) yieldsJ = SΛS−1.
Let the eigenvalues be sorted in ascending order such that|λ1| < |λ2| < · · · <
|λn|. The last two eigenvalues are supposedly well separated such thatλk

n−1 ≪
λk

n for finite k’s. In the limit of k→ ∞ only one eigenvectorqn corresponding
to the largest eigenvalueλn will survive in Jk+1 meaning that

(D.1) lim
k→∞

xk+1 = x∞ + cλk+1
n qn
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wherec =
∑n

i=1 S−1
n,i (x

0
i − x∞i ). With this notation the difference between two

successive iterationsk andk+ 1 becomes

∆xk+1 = cλk
n(λn − 1)qn ,

∆xk+2 = cλk
n(λ

2
n − λn)qn .

Combining the two last equations leaves

∆xk+2 = ∆xk+1 λ2
n−λn

λn−1 = ∆xk+1λn .

Hence, the convergence rate is clearly of first order becausethe norm

(D.2)
∥∥∥∆xk+2

∥∥∥ = λn

∥∥∥∆xk+1
∥∥∥

of two successive update vectors will approach a constant valueλn (in the limit
k→ ∞). Clearly, if |λn| ≥ 1 the process will not converge at all. It also follows
thatλn can be estimated from two successive updates taking the inner product
with ∆xk+1 on both sides:

(D.3) λn = lim
k→∞

(∆xk+1)T
∆xk+2

(∆xk+1)T
∆xk+1

.

Close to the solution point the eigenvectorqn will experience small changes
from one iteration to the next and the iterations will creep alongq at a constant
rate 1− λn. Note that in the limitλn → 1 the iteration progress becomes
infinitely slow. The dominant eigenvalue acceleration method tries to remedy
this flaw by forming an accelerated step every 4th iteration (or so). From
Eq.D.1 we get

x∞ = xk+1 − cλn
k+1q ,

x∞ = xk − cλn
k q .

Eliminatingcλk
nq from the equations above yields the approximation

x∞ ≈ xk+1−λnxk

1−λn
,

whereλn is estimated from the last three iteratesxk−1, xk, xk+1 as explained
in Eq.D.3. Unless there is a weird coupling between the iterate xk, xk+1 and
the eigenvalueλn, the step taken will be proportional to the ratio 1/(1 − λn).
Apparently, the dominant eigenvalue method will converge at a higher rate than
the direct substitution method whenλn approaches unity (the convergence rate
will be something like

√
2).
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We shall in this appendix propose working definitions of mathematical
concepts commonly used in the engineering, and in the applied physics, lit-
erature. The first five of the definitions deal with vague concepts like: Ex-
pressions, functions, mappings, transformations and operators. They are by no
means strict, at least not so to the taste of a mathematician,but on the other
hand no universally accepted definitions seem to exist. The reader is therefore
left in an equivocal state until somebody more skilled than the present author
comes up with precise definitionsa, and the rest of the world starts to follow
them.

E. A combination of numbers, variables and operators that can
be evaluated according to grammatical rules. Two expressions with the same
semantic meaning (scientific units for example) can be combined into arela-
tion using logical<, >, =, etc. Anequationis a relation that is true (=) for
zero or more values of the variables (the solutions). An equation that is true
regardless of any particular value of the variables is called anidentityb. �

F. A point-to-point rule f which assigns, to each elementx ∈ D
in the definition domainD ⊆ X, exactly one elementy = f (x) ∈ R in the
function rangeR ⊆ Y. X and Y are two sets, typicallyZ, Q, R or C. A
common notation isf : X → Y where f can be the rule of correspondence
belonging to amapping, a transformationor anoperator. One also speaks of
f taking the argumentx, or that f (x) is the function value ofx, or thaty is
the dependent variable andx is the independent variable. The set of ordered
pairs{(x, y)} ∈ X × Y is called the graph off . In common speechf and f (x)
are used interchangeably but this should be avoided. Strictly speaking f (x)
denotes a point inY whereasf is the rule of correspondence, or vice versa,
but not with both meanings at the same time. The abstraction is a matter of
preference as long as it is applied consistently. An explicit function is written
y = f (x) whereas an implicit function is writtenF(x, y) = 0. The inverse of
f is defined asx = f −1(y). In the general case this is a multi-valued equation
which may, or may not, be a function. Iff : X → Y andg : Y → Z, then
f ◦ g : X→ Z is called the composite off andg. �

a In the meanwhile you should check outhttp://en.wikipedia.org b E.g. the relation
x ln(x) < 0 is true forx < 1, the equationx ln(x) = e has the solutionx = e, and the identity
ln(exp(x)) ≡ x.
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M. The abstract operation of bringing adomain D⊆ X onto itsim-
age R= f (D) ⊆ Y using a point-to-point rulef . In the special case thatX and
Y are number sets, mapping and function are often used interchangeably, but
the set operation is the one favoured here. From the definition of the function
there must to each elementx ∈ D correspond one single elementy ∈ R, and
for eachy ∈ R there shall correspond at least one elementx ∈ D. If Y = X one
says thatf maps the setX into itself. If Y = R, that is if Y coincides with the
range off , then f mapsX ontoY and is said to be asurjection. If x1 , x2 ⇒
y1 , y2 then f is an injection, or a one-to-one mapping. If the mapping is
both one-to-one and ontof is said to be abijection. One also speaks about a
correspondence or an invertible mapping. �

T. A mappingA from onevector space Xonto itself, or
into a different vector spaceY. The notationy = Ax is frequently used. A
transformation can be one-to-one and thereby invertible asin x = A−1y where
A is anyn×nnon-singular matrixa. A transformation which remains unchanged
if it is applied twice i.e.AAx = Ax is calledidempotentb. A projection is an
idempotent transformation for whichY is a subspace ofX and is thus non-
invertiblec. �

O. A mappingA from one function spaceX to a related function
spaceY. The domain ofA is denotedD(A) and the rangeR(A) is defined as
{A(x) | x ∈ D}. If Y = X then A is called an operator onX. If D(A) = X
thenA is called an everywhere defined operator. Ifx1 , x2 ⇒ Ax1 , Ax2 then
the inverse operatorA−1 can be defined such thatx = A−1Ax. A zero operator
assigns the element 0∈ Y to everyx ∈ X. An identity operator assigns the
elementx ∈ X ⊆ Y to every elementx ∈ X. If A is an everywhere defined
operator such thatAA= A, thenA is called a projection operator. The operator
A is linear if it fulfils A(α ⋆ x1 + β ⋆ x2) = α ⋆ A(x1) + β ⋆ A(x2)d. The binary
infix operator⋆ : S × S → S takes two elements fromS and returns a single
element ofS. The element inS assigned to (x, y) ∈ S × S is denotedx ⋆ y.
The operator⋆ is commutativeif x ⋆ y = y ⋆ x, associativeif x ⋆ (y ⋆ z) =
(x⋆ y)⋆ z anddistributiveover the operator◦ if x⋆ (y◦ z) = (x⋆ y)◦ (x⋆ z). �

G. An associative operator◦ defined on a non-empty setG such that
to eachx, y ∈ G there exist a third elementz = x ◦ y ∈ G. The notation〈G, ◦〉
is used to signify that thesemigroupis closed under◦:

x ◦ (y ◦ z) = (x ◦ y) ◦ z.

The semigroup can be extended to agroup if a neutral elemente ∈ G and an

a Other examples include congruenceCACT and Legendref − x∂ f
∂x transformations. b The

similarity transformationS AS−1 is one example. c The least square projectionAT(AAT)-1A

brings vectory onto the subspaceATx. d For instanceDxy =
∂y
∂x =̂ lim

∆x→0

∆y
∆x , Ixy =

∫
ydx,

andLxy = y− x∂y
∂x.
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inverse elementx−1 ∈ G exist such that

x ◦ e= e◦ x = x ,

x ◦ x−1 = x−1 ◦ x = e.

This group is ordinarily called amultiplicativegroup, in which case the oper-
ator◦ is often replaced by⋆ ande is given the meaning of 1 in some sense.
If also

x ◦ y = y ◦ x ,

the group is anabeliana or commutative group. This group is ordinarily called
anadditivegroup, in which case the operator◦ is replaced by+ andx−1 by−x,
ande is given the meaning of 0 in some sense. �

R. A ring 〈R,+, ⋆〉 is an additive abelian group〈R,+〉 combined with a
semigroup〈R, ⋆〉 which is closed under a second operation called multiplica-
tion. The product⋆ of three elementsx, y, z ∈ R must fulfil

x⋆ (y⋆ z) = (x⋆ y) ⋆ z,

x⋆ (y+ z) = x⋆ y+ x⋆ z,

(x+ y) ⋆ z= x⋆ z+ y⋆ z.

Note that, combined with the underlying properties of the abelian group, this
is sufficient to prove that

x⋆ 0 = 0⋆ x = 0 .

Multiplication is not necessarily commutative, but if thisis the case, i.e. if

x⋆ y = y⋆ x

the ring is said to be commutative. If in addition,

x⋆ 1 = 1⋆ x = x

where 1 is a unique identity element, then〈R,+, ⋆〉 is called a ring with iden-
tity. To each regular elementx corresponds an inverse elementx−1. Elements
that do not have inverses are called singular. If∀x , 0 are regular the ring is a
divisionring. �

F. A field F is a commutative division ring, e.g.Q,R andC. �

V . Let 〈V,+〉 be an additive abelian group defined over the
number fieldF. This means that for eachx, y, z, 0 ∈ V the following prop-

a Niels Henrik Abel, 1802–1829. Norwegian mathematician.
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erties are all true:

x+ y ∈ V ,

(x+ y) + z= x+ (y+ z) ,

x+ y = y+ x ,

x+ 0 = x ,

(−x) + x = 0 .

If the next properties are also true for givenα, β, 1 ∈ F, thenV is said to be a
vector spaceover F:

α ⋆ x ∈ V ,

α ⋆ (β ⋆ x) = (αβ) ⋆ x ,

α ⋆ (x+ y) = α ⋆ x+ α ⋆ y ,

(α + β) ⋆ x = α ⋆ x+ β ⋆ x ,

1⋆ x = x .

Note in particular that 0 means a vector whereasα, β, 1 are scalars. These are
different mathematical entities which even belong to different spaces unless
X = F. Note also that⋆ behaves differently from scalar multiplication. For
this reason the product ofα timesβ is simply writtenαβ and notα ⋆ β. A
vector space equipped with the concept of length is called anormedvector
space if the following properties can be verified:

‖x‖ ≥ 0 ,

‖αx‖ = α ‖x‖ ,
‖x+ y‖ ≤ ‖x‖ + ‖y‖ . �



APPENDIX F

Code Snippets

46 Workouts in Thermodynamics, c©Tore Haug-Warberg 17 January 2007

The graphs (figures with quantitative axes) from the main text are pro-
grammed in Matlab with due reference to Section 1 below. The reader is
thereby given an excellent opportunity to re-examine important details of the
calculations, and to make changes of her own. Note, however,that some of
the calculations require access to the user defined functions presented in Sec-
tion 2 on page 123. These functions must be available in the Matlab search
path before calculations are attempted.

A “script” is here given the semantic meaning of Matlab’s interpretive pro-
gramming environment, but this does not mean that everything is tied entirely
up to Matlab. The code snippets are rather simple and can easily be translated
into other programming languages (Ruby, Python, etc.), provided the (other)
language has a suitable graphics driver. However, it may prove difficult to find
a language that gives a more compact computer code than Matlab does due to
its matrix–vector oriented grammar.

1. Interactive code

1.1. Legendre transformation of internal energy.
%Plot internal energy of ideal gas %

g = 5/3; % Cp/Cv

v = logspace(-2,0.3,100); % dimensionless volume

u = v.ˆ(1-g); % internal energy

plot(v,u,’-k’), hold on; % plot U(V) at constant S

axis([0,0.5,1,11]) %

% %

%Plot points of transformation %

h = [9,7,5,3]; % equi-distant enthalpy

v = (h/g).ˆ(1/(1-g)); % back-calculated volume

u = v.ˆ(1-g); % back-calculated internal energy

V = [zeros(size(v));v]; % volume axis for H and U

U = [h;u]; % H and U values

plot(v,u,’ok’,V,U) %

% %

%Plot enthalpy values %

set(gca,’XTick’,v)

set(gca,’XTickLabel’,[’V1’;’V2’;’V3’;’V4’])

set(gca,’YTick’,h(end:-1:1))
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set(gca,’YTickLabel’,[’H4’;’H3’;’H2’;’H1’])

%

%Annotate transformation figure

vu = linspace(.18,v(end),length(v));

V = [v;vu;vu];

U = [u;u;h(2)*ones(size(u))];

plot(V,U,’k’,’LineWidth’,0.2); hold off;

text(vu(1)-0.02,h(2)+0.3, ’U1’); text(vu(2)-0.02,h(2)+0.3,’U2’)

text(vu(3)-0.02,h(2)+0.3, ’U3’); text(vu(4)-0.02,h(2)+0.3,’U4’)

text(0.130,h(1)+1.0,’umdudvv’); text(0.130,h(1)+0.0,’umpv’)

printps(’UigTransform’,5,6)

1.2. Contour diagram of Gibbs energy.
a = 2.4; % energy parameter / R*T

n = [0.01:0.01:1]’; % mole number vector

N1 = [n,2*n,3*n,4*n]; % mole numbers component 1

N2 = N1; % mole numbers component 2

G = ones(size(N1)); % Gibbs energy

dG = G; % Gibbs energy difference

%

%Calculate equidistant iso-G-curves. Iterate on N2 while keeping

%N1 fixed until the Gibbs energies are the same in each column

%of the G-matrix. The last value, which corresponds to an equi-

%molar mixture, is used as target

while max(max(abs(dG./G)))>1e-6

X1 = N1./(N1+N2); % mole fraction 1

X2 = N2./(N1+N2); % mole fraction 2

Gex = a*N1.*X2; % excess Gibbs

Gid = N1.*log(X1) + N2.*log(X2); % ideal Gibbs

G = Gex + Gid; % total Gibbs

Mu1 = a*X2.*X2 + log(X1); % chemical potential # 1

Mu2 = a*X1.*X1 + log(X2); % chemical potential # 2

% G = N1.*Mu1 + N2.*Mu2; % alternative expression

dG = G - ones(size(n))*G(end,:); % energy difference

N2 = N2 - dG./Mu2; % simultaneous iteration of all points

end

%

%Calculate two-phase equilibrium (very simple because of the

%symmetry).

n1 = 1; n2 = 6;

mu1 = 0; mu2 = 1;

%

%Iterate on n2 while keeping n1 fixed until the two chemical pot-

%entials are equal.

while abs(mu1-mu2)>1e-6

nt = n1 + n2; % total mole number

x1 = n1./nt; % mole fraction 1

x2 = n2./nt; % mole fraction 2
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mu1 = a*x2.*x2 + log(x1); % chemical potential # 1

mu2 = a*x1.*x1 + log(x2); % chemical potential # 2

dmudn = (2*a*x1*x2-1)/nt + ... % derivative of mu1 -

(2*a*x1*x1-x1/x2)/nt; % derivative of mu2

n2 = n2 - (mu1-mu2)/(dmudn); % Newton iteration

end

%

%Show iso-curves

plot(N1,N2,’b’,N2,N1,’b’), hold on; % symmetric diagram

axis([0,6,0,6]); box off; xlabel(’N1’); ylabel(’N2’)

%

%Show two-phase equilibrium region

y = G(1,:)/mu2; % y-axis intersections

x = G(1,:)/mu1; % x-axis intersections

plot([0,y(3)],[x(3),0],’--r’) % equilibrium tangent

plot([y(3)*x1,y(3)*x2],[x(3)*x2,x(3)*x1],’-r’) % equilibrium

%

%Show equidstant points (on the iso-curces) along three different

%rays running from origo

plot(y*x1,y*x2,’ok’,x*x2,x*x1,’ok’) % equil. points

plot(N1(end,:),N2(end,:),’ok’) % diagonal points

plot([0,y]*x1,[0,y]*x2,’--k’,’LineWidth’,0.2) % left ray

plot([0,x]*x2,[0,x]*x1,’--k’,’LineWidth’,0.2) % right ray

plot([0,N1(end,:)],[0,N2(end,:)],’--k’,’LineWidth’,0.2) % diag

%

%Annotations.

plot([0,3],[y(3),5.5],’k’,’LineWidth’,0.2);% y-axis intersection

text(3.1,5.5,’Gdivmu2’); % label

plot([x(3),5.5],[0,3],’k’,’LineWidth’,0.2), hold off; % x-axis

text(5.3,3.4,’Gdivmu1’); % label

printps(’IsoGibbsCurves’,6,6)

1.3. Phase diagram: Synthetic natural gas.
%Experimental data for synthetic natural gas taken from Gonzales,

%M.H. and Lee,A.L. J.Chem.Eng.Data, 13(2), 172-176, (1968), valid

%for mixture number 9 (nitrogen,methane,ethane,propane,n-butane).

%

global x y k rk liq vap % global flash data

%

z = [1.6 94.5 2.6 0.81 0.52]’; % feed fraction

x = z./[10 10 1.5 1.05 1.01]’; % initial liquid composition

y = z - x; % initial vapor composition

k = ones(size(x)); % same reference state in both phases

%

%Bubble point measurements

pbub = [753.8 713.0 533.7 375.9 261.1 169.6 106.4 37.2];

tbub =-[105 110 130 150 170 190 210 250 ];

%
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%Dew point measurements

pdew = [ 34.4 49.4 62.4 130.6 214.1 323.8 421.7 414.6 516.9 ...

688.4 685.8 713.4 720.6 780.9 830.9 839.9 841.4 815.0 ...

791.6 790.0];

tdew =-[160 140 120 100 85 75 70 70 65 ...

63 63 64 65 70 75 83 86.8 95 ...

100.5 100.5];

%

%Critical point

tc = -100.5;

pc = (790.9+791.6)/2;

%The Redlich-Kwong equation of state is used for both phases

vap.tc = [126.2 190.6 305.3 369.8 425.1]’; % Tc [K]

vap.pc = [ 34.0 46.0 48.7 42.5 38.0]’; % Pc [bar]

vap.phase = ’vapor’; % phase label

liq.tc = vap.tc; % critical temperatures [K]

liq.pc = vap.pc; % critical pressures [bar]

liq.phase = ’liquid’; % phase label

rk = @FugacityRedlichKwong; % function pointer

%

%Calculate the smallest phase fraction in each selected T,p-frame

t =-[220 100 160; 160 40 100; 150 30 90]; % temperature frames

p = [ 10 10 500; 500 500 10; 500 500 990]; % pressure frames

n = 1; % total number of recursive function calls

axis([-220,-60,0,900]); box on; grid on; hold on; % plot range

for j=1:size(t,1) % iterate over T,p-frames

l = [0 0 0]; % initialize liquid phase fraction

for i=1:size(t,2) % iterate over frame (triangle) vertexes

vap.t = 273.15 + (t(j,i)-32)/1.8; % temperature [K]

liq.t = vap.t; % temperature [K]

vap.p = p(j,i)/14.50377; % pressure [bar]

liq.p = vap.p; % pressure [bar]

[a,b,c] = tpnewton(x,y,k,rk,liq,rk,vap); % flash calculation

% [a,b,c] = tpkvalue(x,y,k,rk,liq,rk,vap); % flash calculation

l(i) = 2*min(c,1-c); % 2 x smallest phase fraction [0,1]

end %

n = dac(t(j,:),p(j,:),l,n); % number of function calls

disp([’Frame #’,num2str(j),’ => ’,num2str(n),’ evaluations’])%

end %

H = get(gcf,’Children’); % get handle to all subplots

set(H,’XTick’,-[200 160 120 80]); % change ticks on x-axis

plot(tdew,pdew,’or’,tbub,pbub,’ob’,’MarkerSize’,6); % exp. data

plot(tc,pc,’xb’,’MarkerSize’,6) % critical point

plot([tc-30,tc-5],[pc,pc],’-k’,’LineWidth’,0.2); grid % c.p.loc.

text(tc-40,pc,’cp’); text(-130,300,[’N=’,num2str(n)]); % N calls

xlabel(’Temperature(F)’); ylabel(’Pressure(psia)’); hold off %
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printps(’NaturalGas’,8,8)

1.4. Phase diagram: Cyclohexane–Cyclopentane–Methanol.
%Experimental data for Cyclohexane(1)-Cyclopentane(2)-Methanol(3)

%taken from the "DECHEMA Chemistry Data Series", Vol.V, Part 2,

%p.115. T = 25 C, p = 1 bar.

x1 = [87.09 72.59 54.02 34.76 24.28 16.50];

x2 = [00.01 12.71 28.61 42.30 47.93 48.05];

x3 = 100 - x1 - x2;

y1 = [17.52 16.59 14.99 12.85 11.54 10.47];

y2 = [00.01 03.30 08.86 16.97 24.50 33.13];

y3 = 100 - y1 - y2;

%

x = [x1;x2;x3]; % initial composition liquid phase 1

y = [y1;y2;y3]; % initial composition liquid phase 2

k = ones(size(x)); % same ref.state in both phases

%

%The NRTL activity model is used for both liquid phases

liq = @ActivityNRTL; % function name

s.alpha = [0 .2 .2; .2 0 .2; .2 .2 0]; % non-random parameter

s.tau = [ 0.0 -97.419 544.82; ... % matrix of interaction

-56.868 0.0 361.38; ... % coefficient

318.02 234.33 0.0]; % parameters [K]

s.t = 298.15; % temperature [K]

%

%Calculate tie lines for the 2-phase liquid-liquid equilibria. Do

%also collect the iteration history to say something about the

%convergence properties. NB! use only each 4*i’th iteration point

%in order to avoid a cramped plot.

for i=1:max(size(x))

[x(:,i),y(:,i),l,dm]=tpnewton(x(:,i),y(:,i),k(:,i),liq,s,liq,s);

% [x(:,i),y(:,i),l,dm]=tpkvalue(x(:,i),y(:,i),k(:,i),liq,s,liq,s);

dmx = log10(dm(6:4*i:end-1)); % norm of k iteration (x-axis)

dmy = log10(dm(7:4*i:end)); % norm of k+1 iteration (y-axis)

h = sum(dmy-dmx)/length(dmx); %converg. factor (first order)

if i==1 % iteration history of the first calculation point

plot([0 -6],[0 -6]+h,’b’,dmx,dmy,’ob’) % regression line

elseif i==max(size(x)) % iteration history of n’th calc. point

plot([0 -6],[0 -6]+h,’r’,dmx,dmy,’vr’) % regression line

end

hold on

disp([’Convergence factor pt ’,num2str(i),’: ’,num2str(10ˆh)])

end

axis([-6 0 -6 0]); box on; grid on

xlabel(’logk’); ylabel(’logk1’)

legend(’h1’,’p1’,’hn’,’pn’,2); legend boxoff, hold off

printps(’FirstOrderNewtonIteration’,8,6);

%
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%Show some experimental points belonging to the phase diagram %

plot(x3/100,x2/100,’ob’,y3/100,y2/100,’vr’), hold on; %

axis([0 1 0 0.43]); box off; grid off; %

xlabel(’methanol’); ylabel(’cyclopentane’); %

set(gca,’YTick’,[]); set(gca,’YColor’,’w’); % invisible y-axis

set(get(gca,’YLabel’),’Color’,’k’); % rewake visibility of label

plot([0 0 1 0.5],[0.5 0 0 0.5],’-k’,’LineWidth’,0.8);% new frame

plot(.46,.43,’ob’,.46,.43,’xr’); text(.46,.46,’cp’) % crit.point

plot([x(3,:);y(3,:)],[x(2,:);y(2,:)],’b’); % tie-lines

plot([x(3,:);y(3,:)],[x(2,:);y(2,:)],’--r’); % tie-lines

%

%Append the estimated critical end point to the composition array

x(:,end+1) = [.11 .43 .46]’;

y(:,end+1) = [.11 .43 .46]’;

%

%Expand the composition arrays to obtain more points on the curve

a = linspace(1,1/99,5); % interpolation vector

x = kron(x(:,1:end-1),a)+kron(x(:,2:end),1-a); %liquid 1

y = kron(y(:,1:end-1),a)+kron(y(:,2:end),1-a); %liquid 2

k = ones(size(x));

%

%Calculate additional 2-phase liquid - liquid equilibria in order

%to get a smooth phase diagram.

for i=1:max(size(x))

[x(:,i),y(:,i)] = tpnewton(x(:,i),y(:,i),k(:,i),liq,s,liq,s);

% [x(:,i),y(:,i)] = tpkvalue(x(:,i),y(:,i),k(:,i),liq,s,liq,s);

end

plot(x(3,:),x(2,:),’b’); plot(y(3,:),y(2,:),’r’); % envelope

%

%Draw isoplethes at constant composition in triangular Gibbs-plot

g = 0.2:0.2:0.8;

plot([g;g-g],[g-g;g],’:k’,’LineWidth’,0.2);

plot([g-g;1-g],[g;g],’:k’,’LineWidth’,0.2);

plot([g;g],[g-g;1-g],’:k’,’LineWidth’,0.2); hold off

for h=get(gca,’Children’)’

arr = fields(get(h));

if any(strmatch(’XData’,arr,’exact’)) % transform line-objects

x = get(h,’XData’); % old x-values

y = get(h,’YData’); % old y-values

set(h,’XData’,x+0.5*y); % transformed x-values

set(h,’YData’,y*sqrt(3)/2); % transformed y-values

elseif any(strmatch(’Position’,arr,’exact’)) % text-objects

x = get(h,’Position’);

set(h,’Position’,[x(1)+0.5*x(2),x(2)*sqrt(3)/2,x(3)]); % xyz

end

end

printps(’CyclohexaneCyclopentaneMethanol’,9,4.5);
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1.5. Phase diagram: Hexane–Toluene.
%Experimental data for Hexane(1) - Toluen(2) taken from the

%"Dechema Data Series". Temperatures are in Celcius, pressures in

%mmHg.

t = [105.4 104.4 103.1 101.7 100.3 98.0 97.8 95.8...

93.6 92.4 91.6 89.2 85.0 82.8 80.0 78.3...

77.0 76.3 74.9 72.7 71.4 70.2];

x1 = [.047 .057 .071 .087 .104 .125 .141 .172 ...

.201 .224 .240 .290 .379 .439 .516 .582 ...

.639 .659 .754 .822 .885 .938];

y1 = [.154 .176 .212 .251 .301 .331 .364 .424 ...

.471 .512 .531 .592 .667 .717 .766 .812 ...

.833 .851 .886 .921 .954 .975];

%

p = 760; % system pressure

t = [105.4 101.7 97.8 92.4 85.0 78.3 74.9 70.2]; % Celcius

x1 = [.047 .087 .141 .224 .379 .582 .754 .938]; % liquid

y1 = [.154 .251 .364 .512 .667 .812 .886 .975]; % vapor

%

c1 = [6.91058 1189.64 226.280]; % published Antoine Hexane

c2 = [6.95087 1342.31 219.187]; % published Antoine Toluene

t1 = c1(2)/(c1(1)-log10(p))-c1(3); % nbp Hexane

t2 = c2(2)/(c2(1)-log10(p))-c2(3); % nbp Toluene

k = [c1(1)-c1(2)./(t+c1(3));... % log10(p/mmHg) Hexane

c2(1)-c2(2)./(t+c2(3))]; % log10(p/mmHg) Toluene

k = 10.ˆk/p; % K-values Hexane & Toluene

x = [x1;1-x1]; % initialize liquid mole fractions

y = [y1;1-y1]; % initialize vapour mole fractions

%

%Assume ideal liquid mixture and ideal gas phase.This is equival-

%ent to assuming Raoult’s law (constant K-values)

for i=1:length(t)

[x(:,i),y(:,i)] = tpkvalue(x(:,i)+y(:,i),k(:,i));

end

ss = norm(x(1,:)-x1) + norm(y(1,:)-y1);

%

%Show experimental points

subplot(’position’,[.1 .12 .36 .80])

plot(x1,t,’ob’,y1,t,’vr’), hold on;

axis([0,1,60,120]); box on; grid on;

%

%Show calculated results

plot([0,x(1,:),1],[t2,t,t1],’--k’);

plot([0,y(1,:),1],[t2,t,t1],’--k’);

text(0.4,112,[’ss1=’,num2str(ss,3)])

%

%The van Laar activity model is used in the liquid phase
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liq = @ActivityBinVanLaar; % activity coefficients

vap = @ActivityRaoult; % ideal mixture

s.a12 = 0.2222; % published model parameter A12

s.a21 = 0.4306; % published model parameter A21

for i=1:length(t)

% [x(:,i),y(:,i)] = tpnewton(x(:,i),y(:,i),k(:,i),liq,s,vap,[]);

[x(:,i),y(:,i)] = tpkvalue(x(:,i),y(:,i),k(:,i),liq,s,vap,[]);

end

ss = norm(x(1,:)-x1) + norm(y(1,:)-y1);

%

%Show calculated results

plot([0,x(1,:),1],[t2,t,t1],’b’);

plot([0,y(1,:),1],[t2,t,t1],’r’), hold off;

text(0.4,107,[’ss2=’,num2str(ss,3)])

title(’published’); xlabel(’hexane’); ylabel(’celcius’)

%

%The Antoine pressure is quite off for toluene. Redo the calcula-

%tions after adjusting the pressure 2.0 percent

off = 0.020; % offset in Antoine vapor pressure

c2(1) = c2(1) + off; % adjusted Antoine Toluene

t2 = c2(2)/(c2(1)-log10(p))-c2(3); % nbp Toluene

k(2,:) = k(2,:)*10ˆoff; % adjusted K-value Toluene

%

%Raoults law.

for i=1:length(t)

% [x(:,i),y(:,i)] = tpnewton(x(:,i)+y(:,i),k(:,i));

[x(:,i),y(:,i)] = tpkvalue(x(:,i)+y(:,i),k(:,i));

end

ss = norm(x(1,:)-x1) + norm(y(1,:)-y1);

%

%Show experimental points

subplot(’position’,[.62 .12 .36 .80])

plot(x1,t,’ob’,y1,t,’vr’), hold on;

axis([0,1,60,120]); box on; grid on

%

%Show calculated results

plot([0,x(1,:),1],[t2,t,t1],’--k’);

plot([0,y(1,:),1],[t2,t,t1],’--k’);

text(0.4,112,[’ss3=’,num2str(ss,3)])

%

%van Laar activity.

for i=1:length(t)

% [x(:,i),y(:,i)] = tpnewton(x(:,i),y(:,i),k(:,i),liq,s,vap,[]);

[x(:,i),y(:,i)] = tpkvalue(x(:,i),y(:,i),k(:,i),liq,s,vap,[]);

end

ss = norm(x(1,:)-x1) + norm(y(1,:)-y1);

%
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%Show calculated results

plot([0,x(1,:),1],[t2,t,t1],’b’)

plot([0,y(1,:),1],[t2,t,t1],’r’), hold off;

text(0.4,107,[’ss4=’,num2str(ss,3)])

title(’corrected’); xlabel(’hexane’); xlabel(’hexane’)

printps(’HexaneToluene’,11,5.5);

1.6. Phase diagram: Gold–Copper.
%Experimental data for Gold(1)-Copper(2) taken from Okamoto et al

%Bulletin of Alloy Phase Diagrams, 8 (5) 454-473 (1987). Solidus

%and liquidus temperatures are in Celcius.

x2 = [140 257 405 437 467 508 651 756 838 908 945 974 991];

tliq = [983 939 912 910 911 914 940 970 998 1030 1052 1068 1079];

tsol = [970 927 910 910 910 911 931 957 979 1007 1032 1053 1071];

x2 = x2/1000; % mole fractions of copper

t1 = 1064.43; % melting point of gold [C]

h1 = 12677; % enthalpy of fusion for gold [J/mol]

t2 = 1084.87; % melting point of copper [C]

h2 = 13012; % enthalpy of fusion for copper [J/mol]

%

plot(x2,tliq,’or’,x2,tsol,’ob’); hold on; grid; % phase diagram

plot(0,t1,’or’,0,t1,’ob’,1,t2,’or’,1,t2,’ob’) % melting points

xlabel(’copper’); ylabel(’celcius’); box on; grid on

%

%Excess enthalpy and entropy (Redlich-Kister) parameters

hsc = [-11053 -22878 8000 4000]; % solid-solution enthalpy

ssc = [ 2.4 -2.4 0 0]; % solid-solution entropy

hlc = [-21748 -16614 9541 0]; % liquid phase enthalpy

slc = [ 0 0 0 0]; % liquid phase entropy

%

%The Redlich-Kister activity model is used for both phases

liq = @ActivityBinRedlichKister; % liquid activity coefficients

sol = @ActivityBinRedlichKister; % solid activity coefficients

R = 8.314511984; % universal gas constant [J/mol*K]

%

%Good initial temperatures and phase compositions are needed

txy = [1050,0.01,0.03;1030,0.04,0.06;1010,0.06,0.08;

990,0.09,0.11; 980,0.12,0.15; 970,0.14,0.17;

960,0.16,0.19; 950,0.18,0.22; 940,0.21,0.25;

930,0.24,0.28; NaN, NaN, NaN;

990,0.86,0.82;1008,0.88,0.86;1020,0.90,0.88;

1040,0.92,0.94;1050,0.94,0.96;1065,0.96,0.98]’;

%

for i=1:size(txy,2)

T = txy(1,i) + 273.15; % temperature [K]

x = txy(2,i); % solid phase Cu-composition

y = txy(3,i); % liquid phase Cu-composition

g = hsc/R/T - ssc/R; % excess Gibbs energy coefficients
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u = struct(’a12’,g(1),’b12’,g(2),’c12’,g(3),’d12’,g(4)); %

g = hlc/R/T - slc/R; % excess Gibbs energy coefficients

v = struct(’a12’,g(1),’b12’,g(2),’c12’,g(3),’d12’,g(4)); %

k = exp([h1/R*(1/(t1+273.15)-1/T);h2/R*(1/(t2+273.15)-1/T)]);

% [x,y,l] = tpkvalue([1-x;x],[1-y;y],k,sol,u,liq,v);

[x,y,l] = tpnewton([1-x;x],[1-y;y],k,sol,u,liq,v);

txy(2,i) = x(2); % store calculated solid Cu-composition

txy(3,i) = y(2); % store calculated liquid Cu-composition

end

txy = [[t1 0 0]’,txy,[t2 1 1]’]; % insert melting points

plot(txy(2,:),txy(1,:),’-b’,txy(3,:),txy(1,:),’-r’); hold off;

printps(’GoldCopper’,8,6);

1.7. Ideal gas cycles: Coordinate systems.
%Common parameter settings.

m = 3; %Number of subplots, vertically

n = 2; %Number of subplots, horisontally

cp = 7/2; %Isobaric heat capacity [Cp/R]

cv = cp - 1; %Isochoric heat capacity [Cv/R]

g = cp/cv; %Isentropic exponent [Cp/Cv]

%

%Axes limits

Slim = [0 4]; % (S-S0)/R

Tlim = [0 10]; % T/T0

Plim = [0 200]; % P/P0

Vlim = [0 10]; % V/V0

%

%Calculate and plot TS-diagrams.

np = 81; % total number of points along the isoplethes

i = 1:4:np; % points selected for plotting

e = ones(1,np); % unity vector

s = linspace(min(Slim),max(Slim),np); % entropy axis

t = linspace(min(Tlim),max(Tlim),np); % temperature axis

tv = exp(s/cv); % temperature profile along isochore

tp = exp(s/cp); % temperature profile along isobar

%

subplot(m,n,1), plot(s,tv’*t(i),’k-’,e’*s(i),t,’k-’)

title(’Otto(SV)’)

ylabel(’Temperature’)

axis([Slim Tlim])

%

subplot(m,n,2), plot(s,tv’*t(i),’k-’,s,e’*t(i),’k-’)

title(’Stirling(TV)’)

axis([Slim Tlim])

%

subplot(m,n,3), plot(s,tp’*t(i),’k-’,e’*s(i),t,’k-’)

title(’Brayton(SP)’)

ylabel(’Temperature’)
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axis([Slim Tlim])

%

subplot(m,n,4), plot(s,tp’*t(i),’k-’,s,e’*t(i),’k-’)

title(’Ericsson(TP)’)

axis([Slim Tlim])

%

subplot(m,n,5), plot(s,e’*t(i),’k-’,e’*s(i),t,’k-’)

title(’Carnot(TS)’)

ylabel(’Temperature’)

xlabel(’Entropy’)

axis([Slim Tlim])

%

subplot(m,n,6), plot(s,tp’*t(i),’k-’,s,tv’*t(i),’k-’)

title(’Rankine(PV)’)

xlabel(’Entropy’)

axis([Slim Tlim])

printps(’TSdiagrams’,13.1,17.8)

%

%Calculate and plot PV-diagrams.

v = linspace(min(Vlim),max(Vlim),np); % volume axis

v(1) = 1/np; % override first point - avoid divide by zero

p = linspace(min(Plim),max(Plim),np); % pressure axis

p(1) = 1; % override first point - avoid divide by zero

vr = e./(v+eps); % resiprocal volume axis

ps = (vr/min(vr)).ˆg; % pressure profile along isentrope

pt = vr/min(vr); % temperature profile along isotherm

%

subplot(m,n,1), plot(v,ps’*p(i),’k-’,e’*v(i),p,’k-’)

title(’Otto(SV)’)

ylabel(’Pressure’)

axis([Vlim Plim])

%

subplot(m,n,2), plot(v,pt’*p(i),’k-’,e’*v(i),p,’k-’)

title(’Stirling(TV)’)

axis([Vlim Plim])

%

subplot(m,n,3), plot(v,ps’*p(i),’k-’,v,e’*p(i),’k-’)

title(’Brayton(SP)’)

ylabel(’Pressure’)

axis([Vlim Plim])

%

subplot(m,n,4), plot(v,pt’*p(i),’k-’,v,e’*p(i),’k-’)

title(’Ericsson(TP)’)

axis([Vlim Plim])

%

subplot(m,n,5), plot(v,ps’*p(i),’k-’,v,pt’*p(i),’k-’)

title(’Carnot(TS)’)
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ylabel(’Pressure’)

xlabel(’Volume’)

axis([Vlim Plim])

%

subplot(m,n,6), plot(e’*v(i),p,’k-’,v,e’*p(i),’k-’)

title(’Rankine(PV)’)

xlabel(’Volume’)

axis([Vlim Plim])

printps(’PVdiagrams’,13.1,17.8)

1.8. Convergence region of Newton iteration.
n = 100; % number of points

x = linspace(-3,3,n); % spanned x-axis

y = linspace(-3,3,n)’; % spanned y-axis

e = ones(n,1); % unity vector

P = e*(x.*x) - 3 - y*e’; % parabola symmetric about y-axis

Q =-(y.*y)*e’ - e*x + 3; % parabola symmetric about x-axis

%Calculate and plot indefinite region

for i=1:n

for j=1:n

H = [2*x(i)*x(i)+P(i,j)+1/2,y(j)-x(i);... % Hessian row 1

y(j)-x(i),2*y(j)*y(j)-Q(i,j)+1/2]; % Hessian row 2

F(i,j) = min(eig(H)); % smallest eigenvalue

end

end

[c,h] = contour(x,y,F,[0 0],’k’); % contour line of lambda=0

xlabel(’x’); ylabel(’y’); hold on % hold current plot

h = patch(c(1,2:end),c(2,2:end),[.9 .9 .9]); % neg eigenvalue(s)

%set(h,’EdgeColor’,’none’); % erase patch border

%Show minima of f(x,y) and the corresponding convergence regions

for xy=[[2 1];[1.3 -1.3];[-1 -2];[-2.3 2.3]]’ % find four minima

d = xy; % update vector

while norm(d)>1e-8 % iterate till a small norm

z = xy(1); % x-coordinate

w = xy(2); % y-coordinate

p = z*z - w - 3; % parabola symmetric about the y-axis

q =-w*w - z + 3; % parabola symmetric about the x-axis

g = [z*p-q/2;-w*q-p/2]; % gradient vector

H = [2*z*z+p+1/2,w-z;w-z,2*w*w-q+1/2]; % Hessian matrix

d =-H\g; % update vector

xy = xy + d; % new x and y-values

end

Hx = [6*z,-1;-1,1]; % x-derivative of Hessian

Hy = [-1,1;1,6*w]; % y-derivative of Hessian

lmin = min(eig(H)); % smallest eigenvalue of H

lmax = max(max(abs(eig(Hx))),max(abs(eig(Hy)))); % Hx and Hy
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r = lmin/lmax; % radii of convergence

disp([’x=’,num2str(z),’ y=’,num2str(w), ... %

’ lmin=’,num2str(lmin),’ lmax=’,num2str(lmax), ... %

’ r=’,num2str(r)]) %

fi = linspace(0,2*pi,100); % span circle (polar coordinates)

z = z + r*cos(fi); % corresponding x-values

w = w + r*sin(fi); % corresponding y-values

h = patch(z,w,[.5 .5 .5]); % conv region in x,y-coordinates

% set(h,’EdgeColor’,’none’); % erase patch border

end

%Add a few contour lines to illustrate the objective function

F = P.*P + Q.*Q; % grid of objective function values

set(gcf,’DefaultLineLineWidth’,0.2)

contour(x,y,F,[1 4 8 16 32],’k’); hold off % plot contour lines

printps(’NewtonConvergence’,6,6)

2. Functions

A function is a program body with a separate name-space whichcan be
referred to from a script, see Section 1 on page 111 of this appendix, or from
another Matlab function. User defined functions behave similarly to the built-
in log, exp, sin, etc., but in order to be recognised by Matlabthey must reside
somewhere in the search path as *.m files. You must therefore be sure to copy
the functions to your home directory before use.

2.1. Linear programming.
%Simplex algorithm applied to solve a limited LP - problem. The

%syntax is [x,A,it] = lp(A,x0,c) where:

%

% min(c’*x)

% A*x(k+1)=A*x(k)

% x>0

%

% A = m x n coefficient matrix, rank(A)=m>1.

% x0 = initial basis solution vector (feasible)

% c = cost vector

% x = final solution vector

% it = number of iterations spent in this function

%

%Copyright Tore Haug-Warberg 2003 (course TMT4140, KP8108, NTNU)

%

function [x,A,it] = lp(A,x0,c)

%

[m,n] = size(A); % assumed full-rank

x = x0; % assumed feasible

%
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for it=1:m*n % restrict number of iterations for simplex

f = find(x==0)’; % free variables

b = find(x >0)’; % basis variables

if length(b)<m; error(’Degenerated’); end %

A(:,[b,f]) = [eye(length(b)),inv(A(:,b))*A(:,f)]; % new basis

i = find([c(f)’-c(b)’*A(:,f)]<0); % negative cost elements

if length(i)<1; return; end % converged

H = [A(:,f(i))./(x(b)*ones(1,length(i)))];

[h,j] = max(max(H));

if h<1; error(’Unbounded’); end

x(f(i(j))) = 1/h;

x(b) = x(b).*(ones(size(b’)) - H(:,j)/h);

end

error(’Not converged’)

2.2. Two-phase equilibrium: K-value method.
%Solve two-phase equilibria using Rachford-Rice iteration. Note

%that the non-idealities are solved for directly - no inner/outer

%loop strategy. Three cases are distinguished in the function in-

%terface: [x,y,l,varargout] = TpKvalue(varargin)

%

% 1) varargin = z,k constant K-values

% 2) varargin = z,k,f,p same model in both phases

% 3) varargin = x,y,k,f,p,g,q different models in each phase

%

% x,y,z = liquid, vapor, feed (total) mole fraction vectors %

% k = reference state K-value vector (ideal mixture) %

% f,g = liquid, vapor activity or equation-of-state model %

% p,q = liquid, vapor parameter struct %

% l = liquid phase fraction (mole liquid per mole feed) %

%

%Copyright Tore Haug-Warberg 2004 (course TMT4140, KP8108, NTNU)

%

function [x,y,l,varargout] = TpKvalue(varargin)

%

if nargin==7

[nl,nv,k,f,p,g,q] = deal(varargin{:});

z = nl + nv;

nl = nl/sum(z);

nv = nv/sum(z);

z = nl + nv;

else

[z,k] = deal(varargin{1:2});

z = z./sum(z);

nl = z./(1+k);

nv = z - nl;

if nargin==2; f=@ActivityRaoult; p=[]; end

if nargin==4; [f,p]=deal(varargin{3:4}); end
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g = f;

q = p;

end

if nargout > 3 % optional output then > 3 return variables

varargout = {[]}; % prepare output cell array

end

%

tol = 1.e-6; % convergence tolerance

maxit = 100; % maximum number of iterations

l = 0.5; % initial liquid fraction

dl = 1.0; % liquid fraction increment

it = 0; % iteration counter

%

%if min(z)<0; l=0; x=z*0; y=z*0; return; end

%if min(k)<0; l=0; x=z*0; y=z*0; return; end

%if min(k)>1; l=0; x=z*0; y=z ; return; end

%if max(k)<1; l=1; y=z*0; x=z ; return; end

%

while abs(dl)>tol && l>tol && l<1-tol && it<maxit

it = it + 1; % increment counter

x = nl/sum(nl); % mole fraction liquid

y = nv/sum(nv); % mole fraction vapor

kval = k.*exp(feval(f,x,p)-feval(g,y,q)); % K-values

dnum = l + (1-l)*kval; % denumerator

fi = (1-kval)./dnum; % function contribution

fun = z’*fi; % function value

dfdl =-z’*(fi.*fi); % function derivative

dl = -fun/(dfdl-abs(fun)*0.1-eps); % avoid divide by zero

l = l + max(-0.9*l,min((1-l)*0.9,dl)); % control step size

nl = z./dnum; % new liquid composition

nv = z.*kval./dnum; % new vapor composition

if nargout > 3 % output of iteration variable

varargout(1) = {[varargout{1},dl]}; % collect variable

end

end

%

if it == maxit; l=0; x=z*0; y=z*0; end

if l >= 1-tol; l=1; x=z ; y=z*0; end

if l <= tol; l=0; y=z ; x=z*0; end

2.3. Two-phase equilibrium: Newton’s method.
%Solve two-phase equilibria using Newton - Raphson iteration. The

%Hessian is approximated by ideal mixture theory. The gradient,

%however, can incorporate non-ideal behaviour. Three cases are

%distinguished in [x,y,l,varargout] = TpNewton(varargin):

%

% 1) varargin = z,k constant K-values

% 2) varargin = z,k,f,p same model in both phases
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% 3) varargin = x,y,k,f,p,g,q different models in each phase

%

% x,y,z = liquid, vapor, feed (total) mole fraction vectors %

% k = reference state K-value vector (ideal mixture) %

% f,g = liquid, vapor activity or equation-of-state model %

% p,q = liquid, vapor parameter struct %

% l = liquid phase fraction (mole liquid per mole feed) %

%

%Copyright Tore Haug-Warberg 2004 (course TMT4140, KP8108, NTNU)

%

function [x,y,l,varargout] = TpNewton(varargin)

%

if nargin==7

[nl,nv,k,f,p,g,q] = deal(varargin{:});

z = nl + nv;

nl = nl/sum(z);

nv = nv/sum(z);

z = nl + nv;

else

[z,k] = deal(varargin{1:2});

z = z./sum(z);

nl = z./(1+k);

nv = z - nl;

if nargin==2; f=@ActivityRaoult; p=[]; end

if nargin==4; [f,p]=deal(varargin{3:4}); end

g = f;

q = p;

end

if nargout > 3 % optional output then > 3 return variables

varargout = {[]}; % prepare output cell array

end

%

maxit = 10000; % maximum number of iterations

tol = 1.e-6; % convergence tolerance

dm = ones(length(k),1); % chemical potential difference

s = 1; % relative step length

it = 0; % iteration counter

%

while norm(dm)>tol & s>tol & it<maxit

it = it + 1;

x = nl/sum(nl);

y = nv/sum(nv);

dm = log(y./x./k) + feval(g,y,q) - feval(f,x,p);

d = (x.*y)./z;

dn =-sum(nv)*sum(nl)*(d.*dm+d*(d’*dm)/(1-sum(d)));

s = min(0.8/abs(min(min(dn./nv),min(-dn./nl))),1);

nv = nv + s*dn;
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nl = z - nv;

if nargout > 3 % optional output of iteration norm

varargout(1) = {[varargout{1},norm(dm)]}; % collect norm

end

end

if s==1 & it<maxit % last step was of full length

l = sum(nl); % converged liquid phase fraction

else % constrained step

l = min(1,max(0,round(sum(nl)))); % phase fraction is 0 or 1

x = z*l; % liquid fraction

y = z*(1-l); % vapor fraction

end

2.4. Phase diagram: Recursive calculation.
%Recursive Divide-And-Conquer calculation of a T,p-phase diagram.

%The triangular grid is refined until its elementary cells are

%within the specifications and the phase boundary is sufficiently

%accurate.

%

function n = dac(t,p,l,n)

%

global x y k rk liq vap

%

dt = max(diff(abs([t,t(1)]))); % max temperature difference

dp = max(diff(abs([p,p(1)]))); % max pressure difference

%dl = max(diff(abs([l,l(1)]))); % max phase fraction difference

%

if any(l) && not(all(l)) && dt>1 && dp>5 || dt>30 || dp>200

u = [(t(1)+t(2))/2 (t(2)+t(3))/2 (t(1)+t(3))/2]; % new T-range

v = [(p(1)+p(2))/2 (p(2)+p(3))/2 (p(1)+p(3))/2]; % new P-range

z = [0 0 0]; % initialize phase fractions

for i=1:length(z) % calculate phase fraction at each vertex

vap.t = 273.15 + (u(i)-32)/1.8; % temperature [K]

liq.t = vap.t; % temperature [K]

vap.p = v(i)/14.50377; % pressure [bar]

liq.p = vap.p; % pressure [bar]

[a,b,c] = tpnewton(x,y,k,rk,liq,rk,vap); % flash calculation

% [a,b,c] = tpkvalue(x,y,k,rk,liq,rk,vap); % flash calculation

z(i) = 2*min(c,1-c); % 2 x smallest phase fraction [0,1]

end

n=dac([t(1) u(1) u(3)],[p(1) v(1) v(3)],[l(1) z(1) z(3)],n+1);

n=dac([u(1) t(2) u(2)],[v(1) p(2) v(2)],[z(1) l(2) z(2)],n+1);

n=dac([u(3) u(2) t(3)],[v(3) v(2) p(3)],[z(3) z(2) l(3)],n+1);

n=dac([u(1) u(2) u(3)],[v(1) v(2) v(3)],[z(1) z(2) z(3)],n+1);

return

end

if any(l)

rgb = [1.0*(1-sum(l)/3) 0.9*(1-sum(l)/3) 0.9+0.1*sum(l)/3];
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patch(t,p,rgb,’EdgeColor’,rgb*0.9,’LineWidth’,0.2);

end

2.5. Fugacity coefficients: Redlich–Kwong.
%Multicomponent Redlich-Kwong fugacity coefficients.The syntax is

%lnf = FugacityRedlichKwong(n,s) where:

%

% n = mole number vector

% s = parameter struct: phase, t[K], p[bar], tc[K] and pc[bar]

% lnfi = logarithm of fugacity coefficients

%

%Copyright Tore Haug-Warberg 2004 (course KP8108, NTNU)

%

function [lnfi] = FugacityRedlichKwong(n,s)

%

bar = 1e5; t = s.t; p = s.p*bar;

tc = s.tc; pc = s.pc*bar; x = n/sum(n);

%

rgas = 8.314511984;

omegb = (2ˆ(1/3)-1)/3;

omega = 1/27/omegb;

brk = omegb*rgas*tc./pc;

ark = omega*rgasˆ2*tc.ˆ2./pc./sqrt(t./tc);

b = brk’*x;

a = (sqrt(ark)’*x)ˆ2;

ai = 2*sqrt(a*ark);

%

v = roots([1,-rgas*t/p,a/p-bˆ2-rgas*t*b/p,-a*b/p]);

v = v(find(imag(v)==0));

if isempty(findstr(s.phase,’l’)); v=max(v); else v=min(v); end

%

lnfi = log(v/(v-b)) + brk/(v-b) + ...

(ai-a*brk/b)*log(v/(v+b))/b/rgas/t - ...

a*brk/b/(v+b)/rgas/t - log(p*v/rgas/t);

2.6. Activity coefficients: van Laar.
%Binary van Laar activity coefficients. The syntax is

%lng = ActivityBinVanLaar([n1;n2],s), where:

%

% n1 = mole numbers

% n2 = mole numbers

% s = parameter struct i.e. a12 and a21

%lng = logarithm of activity coefficients

%

%Copyright Tore Haug-Warberg 2003 (course SIK3035, NTNU)

%

function [lng] = ActivityBinVanLaar(n,s)

%



2. FUNCTIONS 129

x = n/sum(n);

lng1 = s.a12/(1+s.a12*x(1)/s.a21/x(2))ˆ2;

lng2 = s.a21/(1+s.a21*x(2)/s.a12/x(1))ˆ2;

lng = reshape([lng1,lng2],size(x));

2.7. Activity coefficients: Redlich–Kister.
%Binary Redlich-Kister activity coefficients. The syntax is

%lng = ActivityBinRedlichKister([n1;n2],s), where:

%

% n1 = mole numbers

% n2 = mole numbers

% s = parameter struct i.e. a12, b12, c12, d12

%lng = logarithm of activity coefficients

%

%Copyright Tore Haug-Warberg 2005 (course TMT4140, NTNU)

%

function [lng] = ActivityBinRedlichKister(n,s)

%

x = n/sum(n);

f = s.a12 + s.b12*x(2) + s.c12*x(2)ˆ2 + s.d12*x(2)ˆ3;

dfdx = s.b12 + 2*s.c12*x(2) + 3*s.d12*x(2)ˆ3;

lng1 = (f - dfdx*x(1))*x(2)ˆ2;

lng2 = (f + dfdx*x(2))*x(1)ˆ2;

lng = reshape([lng1,lng2],size(x));

2.8. Activity coefficients: NRTL.
%Multicomponent NRTL activity coefficients.The syntax is

%lng = ActivityNRTL(n,s) where:

%

% n = mole number vector

% s = parameter struct i.e. alpha[-], tau[K] and t[K]

%lng = logarithm of activity coefficients

%

%Copyright Tore Haug-Warberg 2003 (course TMT4140, NTNU)

%

function [lng] = ActivityNRTL(n,s)

%

T = s.tau/s.t; A = s.alpha; G = exp(-T.*A);

x = n./sum(n); y = G’*x; z = (T.*G)’*x./y;

e = ones(size(x));

%

lng = z + G.*(T-e*z’)*(x./y);

2.9. Activity coefficients: Raoult.
%Ideal activity coefficients.

function [lng] = ActivityRaoult(x,p)

lng = zeros(size(x));

return
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2.10. PostScript: Print current graphics.
%Print current graphics using the PostScript-driver. The syntax

%is printps(file,dimx,dimy), where file is a valid file name (the

%file extension .eps is added automatically), and dimx and dimy

%are figure sizes in centimeter. The background is made transpar-

%ent (including all the childrens of the plot).

%

function printps(file,dimx,dimy)

%

dir = ’..\graphics\CMYK\’;

%

set(gcf,’PaperUnits’,’centimeter’);

set(gcf,’PaperPosition’,[0,0,dimx,dimy]);

set(gcf,’PaperSize’,[dimx,dimy])

set(gcf,’Color’, ’none’)

set(gcf,’InvertHardCopy’,’off’)

for h = get(gcf,’Children’)

set(h,’Color’, ’none’)

end

%

disp([’print -depsc2 -cmyk -noui ’,dir,file,’.eps’])

print(gcf,’-depsc2’, ’-cmyk’,’-noui’,[dir,file,’.eps’])
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