Real projective groups are formal

Motivic and Equivariant Topology Swansea University 15 May 2023

> Gereon Quick NTNU

This is joint work with Ambrus Pál

Milnor conjecture:

k field with $char(k) \neq 2$

Milnor K-theory $T(k^{\times})/(a \otimes (1-a), a \neq 0, 1)$

Voevodsky

continuous Galois cohomology

 $\overset{\simeq}{K^M_*(k)/2} \xrightarrow{\cong} H^*(k, \mathbb{F}_2)$

quadratic algebra

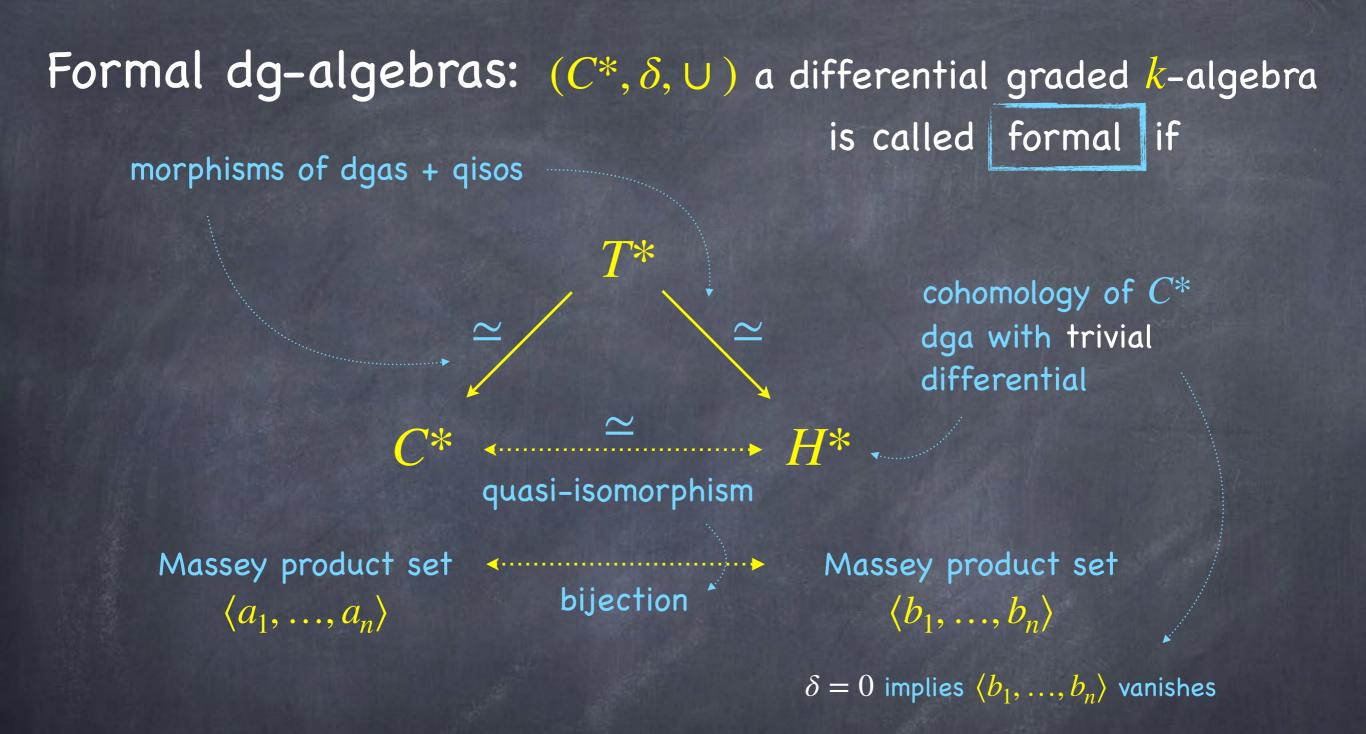
• generators in degree 1

• relations in degree 2

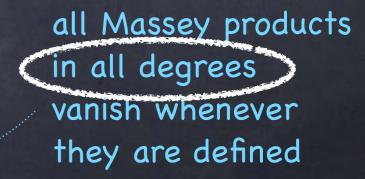
strong restriction on which F_2 -algebras can occur as the Galois cohomology of a field

Question: What other restrictions are there?

 $(C^*, \delta, \cup) = a$ differential n-fold Massey product: graded k-algebra a_1, \ldots, a_n classes with $a_i \in H^{d_i}$ with $i < j, (i, j) \neq (1, n + 1)$ { $a_{ij} \in C^{d_{ij}}$ } is a defining system if • a_{ij} represents a_i • $\delta(a_{ij}) = \sum_{k=1}^{j-1} \bar{a}_{ik} \cup a_{kj}$ • The n-fold Massey product $\langle a_1, \ldots, a_n \rangle$ is the set $\left\{ \langle a_1, \dots, a_n \rangle_{\{a_{ij}\}} := \sum_{k=2}^n \bar{a}_{1k} \cup a_{kn+1} \in H^{d_{n+1}} \right\}$ for all defining systems • $\langle a_1, ..., a_n \rangle$ vanishes if it • $\langle a_1, ..., a_n \rangle$ is defined if a defining system exists. contains zero.



Formality implies strong Massey vanishing.



Massey product vanishing:

• $\langle a_1, ..., a_n \rangle$ vanishes if it contains 0.

• $\langle a_1, \ldots, a_n \rangle$ is defined if nonempty.

Hopkins and Wickelgren $C^* = C^*(\Gamma(k), \mathbb{F}_2)$

absolute Galois group

for k a global field of char $\neq 2$

• triple Massey products of elements in $H^1(\Gamma(k), \mathbb{F}_2)$ vanish whenever they are defined.

for every field k

Mináč and Tân

Massey vanishing conjecture of Mináč-Tân: for every field k, all $n \ge 3$, all primes p

Conjecture: *n*-fold Massey products of elements in $H^1(\Gamma(k), \mathbb{F}_n)$ vanish whenever they are defined.

- Matzri, Efrat-Matzri, Mináč-Tân: all fields, all primes (n = 3)
 - new restrictions for type of groups that can be absolute Galois groups
- Guillot-Mináč-Topaz-Wittenberg: all number fields, p = 2(n = 1)
- Harpaz-Wittenberg: all number fields, all primes, all $n \ge 3$.
- Merkurjev-Scavia: all fields, p = 2, n = 4.

 Quadrelli: Efrat's <u>Elementary Type Conjecture</u> for pro-p-groups implies Massey vanishing.

Hopkins-Wickelgren formality:

for k a global field of char $\neq 2$

• Question: Is $C^*(\Gamma(k), \mathbb{F}_2)$ formal?

Massey vanishing conjecture suggests

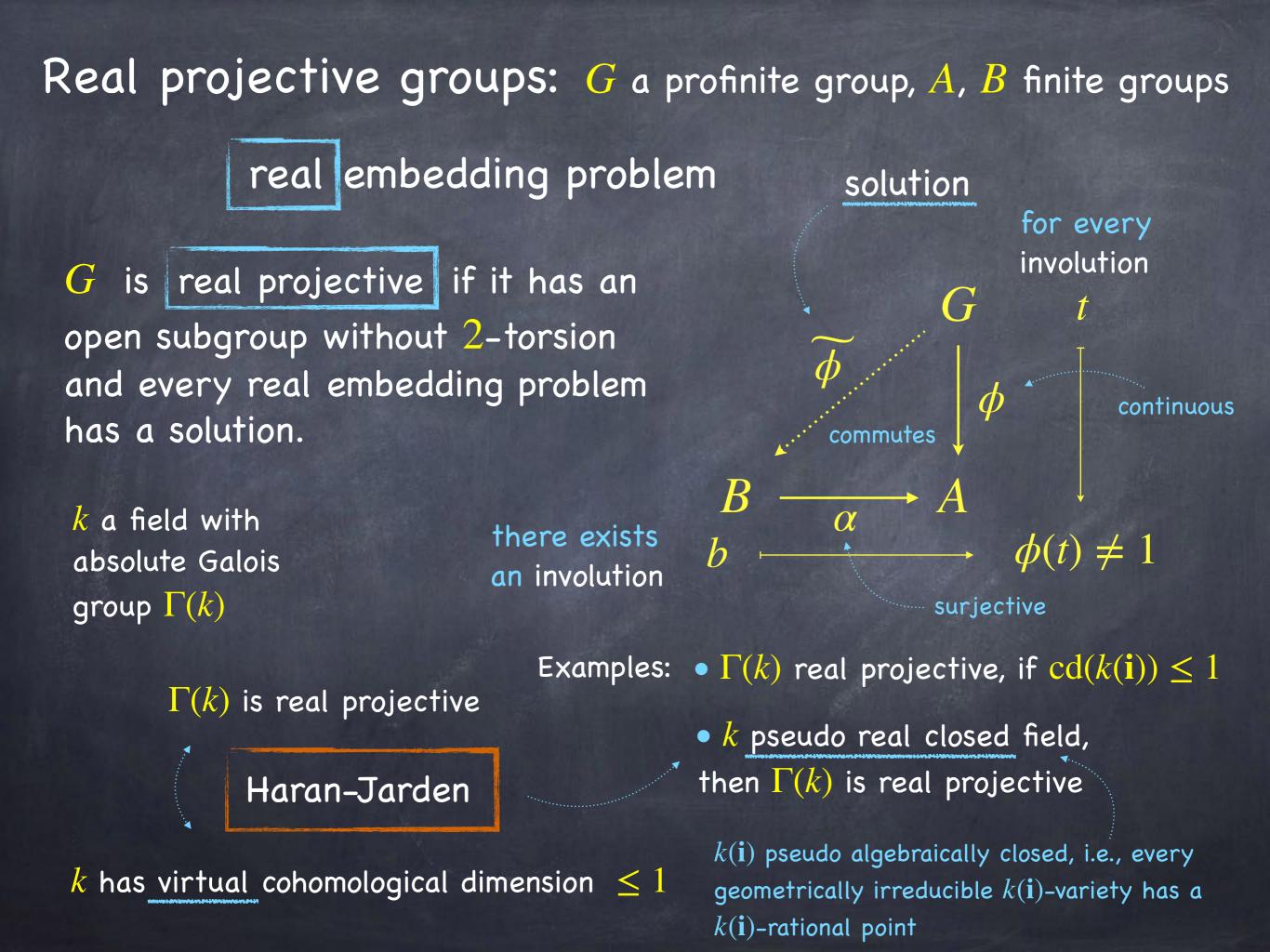
Question: Is $C^*(\Gamma(k), \mathbb{F}_p)$ formal for all fields and all primes?

Positselski: $C^*(\Gamma(k), \mathbb{F}_p)$ can be not formal.

• local fields of characteristic $\neq p$ which contain a primitive *p*th root of unity but satisfy triple Massey vanishing

• Merkurjev-Scavia: $C^*(\Gamma(k), \mathbb{F}_p)$ may be not formal.

• for every k_0 of characteristic $\neq 2$ there is an extension k/k_0 such that



Our main results (Pal + Q.): G a real projective group Formality of $C^*(G, \mathbb{F}_p)$ for p odd follows from $H^i(G, \mathbb{F}_p) = 0$ for $i \ge 2$.

• The dga $C^*(G, \mathbb{F}_2)$ is formal and satisfies strong Massey vanishing.

k a field of virtual cohomological dimension ≤ 1

• k is formal and satisfies strong Massey vanishing. first case for field with infinite cohomological dimension

• $H^*(\Gamma(k), \mathbb{F}_2)$ is Koszul.

Kadeishvili's theorem: k field

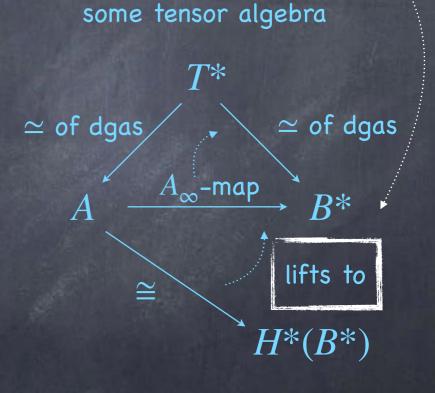
Hochschild cohomology A pos. graded k-algebra, $A_0 = k$

If $HH^{n,2-n}(A, A) = 0$ for all $n \ge 3$, then A is intrinsically formal.

> every dga with cohomology algebra equal A is formal

apply this for $A = H^*(G, \mathbb{F}_2) = ?$

and get $C^*(G, \mathbb{F}_2)$ is formal.



Scheiderer's theorem: G a real projective group

 $\mathscr{X}(G)$ = set of conjugacy classes of involutions

connected sum of quadratic algebras $(A \sqcap B)_0 = \mathbb{F}_2$

• $(A \sqcap B)_i = A_i \bigoplus B_i$, and $A_+ \cdot B_+ = 0 = B_+ \cdot A_+$

$H^*(G, \mathbb{F}_2) \cong B_* \sqcap V_*$

 $B = \operatorname{ring} \operatorname{of} \operatorname{continuous}$ functions $\mathscr{X}(G) \to \mathbb{F}_2$

> graded Boolean algebra

• Boolean ring B: $x^2 = x$ for all x • $B_* = \bigoplus_{n \ge 0} B_n$: $B_0 = \mathbb{F}_2$ and $B_n = B$ for $n \ge 1$ and use multiplication in B

dual algebra

• $V_0 = \mathbb{F}_2, V_{i \ge 2} = 0$

Koszul algebras: A = T(V)/(R) quadratic algebra tensor algebra $\tau: T(V) \to A,$ of vector space V $R = \ker(\tau) \cap (V \otimes V)$ $K_0^0(A) = \mathbb{F}_2$ $K_1^1(A) = V$ $K_2^2(A) = R$ • Koszul complex: (K(A), d) $K_i(A) = A \otimes K_i^i(A) \otimes A$ $K_i^i(A) = \bigcap V^{\otimes j} \otimes R \otimes V^{\otimes i - j - 2} \subset V^{\otimes i}, \ i \ge 3$ $0 \le j \le i - 2$ • A is a Koszul algebra if the multiplication map $\mu: K(A) \to A$ is a quasi-isomorphism. shift grading by s: $M[s]_n = M_{n+s}$ the complex $\underline{\operatorname{Hom}}_{\mathbb{F}_2}(K^*_*(A), M[s], \partial)$ computes $\operatorname{HH}^{*,s}(A, M)$ graded

 $\partial^{n-1}(f)(x_1 \otimes \cdots \otimes x_n)$

homomorphisms

 $= x_1 \otimes f(x_2 \otimes \cdots \otimes x_n) + f(x_1 \otimes \cdots \otimes x_{n-1}) \otimes x_n$

Cohomology algebra is Koszul:

graded Boolean algebra

• Boolean ring *B*: $x^2 = x$ for all *x*

• $B_* = \bigoplus_{n \ge 0} B_n$: $B_0 = \mathbb{F}_2$, $B_n = B$ for $n \ge 1$, multiply in B $A = B_* \sqcap V_*$

• B_* is a Koszul algebra.

if locally finite, then $B_* = \mathbb{F}_2[x_1] \sqcap \ldots \sqcap \mathbb{F}_2[x_n]$ • V_* is a Koszul algebra.

K(A) = bar resolution

connected sums and colimits preserve Koszulity

Theorem (Pal-Q.): A is a Koszul algebra.

dual algebra • $V_0 = \mathbb{F}_2, V_{i \ge 2} = 0$

Hochschild vanishing theorem:

graded Boolean algebra

- Boolean ring B: $x^2 = x$ for all x
- $B_* = \bigoplus_{n \ge 0} B_n$: $B_0 = \mathbb{F}_2$, $B_n = B$ for $n \ge 1$, multiply in B

 $A = B_* \sqcap V_*$

dual algebra • $V_0 = \mathbb{F}_2, V_{i>2} = 0$

Theorem (Pal-Q.): $HH^{n,2-n}(A,A) = 0$ for all $n \ge 3$. Idea of proof:

• Step 1: prove assertion for $B'_* \subset B_*$ locally finite

explicit combinatorial computation: every cocycle is a coboundary

• Step 2: colimit over all locally finite subalgebras

spectral sequence and show higher lim-terms vanish

 $R_B = \bigoplus_{i \neq j} \langle x_i \otimes x_j \rangle$ Hochschild vanishing theorem: with $x_i \cdot x_j = 0$ if $i \neq j$ Simple case: $A = B_* = \mathbb{F}_2[x_1] \sqcap \cdots \sqcap \mathbb{F}_2[x_n]$ d^k : Hom_{\mathbb{F}_2} $(K_k^k(A), A_2) \rightarrow \operatorname{Hom}_{\mathbb{F}_2}(K_{k+1}^{k+1}(A), A_2)$ $d^{k}(f): x_{j_{1}} \otimes \cdots \otimes x_{j_{k+1}} \mapsto x_{j_{1}} \otimes f(x_{j_{2}} \otimes \cdots \otimes x_{j_{k+1}}) + f(x_{j_{1}} \otimes \cdots \otimes x_{j_{k}}) \otimes x_{j_{k+1}}$ with $x_{j_t} \neq x_{j_{t+1}}$ $f(x_{j_1} \otimes \cdots \otimes x_{j_k}) = x_{j_1}^2 + x_{j_k}^2 \quad \text{for } j_1 \neq j_k$ $d^k(f) = 0 \quad \text{if} \quad$ $f(x_{j_1} \otimes \cdots \otimes x_{j_k}) = x_{j_1}^2$ for $j_1 = j_k$ • dim_{E₂} $K_k^k(B) = n \cdot (n-1)^{k-1}$ • dim_{\mathbb{F}_2} ker $(d^k) = n \cdot (n-1)^{k-1}$ • dim_{F₂} Hom_{F₂}($K_k^k(B), B_2$) = $n^2 \cdot (n-1)^{k-1}$ • $\dim_{\mathbb{F}_2} \operatorname{im}(d^{k-1}) = \dim_{\mathbb{F}_2} \operatorname{Hom}_{\mathbb{F}_2}(K_k^k(B), B_2) - \dim_{\mathbb{F}_2} \operatorname{ker}(d^k)$ $= n^2 \cdot (n-1)^{k-1} - n \cdot (n-1)^{k-1}$ $\operatorname{im}(d^{k-1}) = \operatorname{ker}(d^k)$ $= n \cdot (n-1) \cdot (n-1)^{k-1}$ $= n \cdot (n-1)^{k-1}$

• Unfortunately, taking the sum with V_* makes life much more complicated...

Thank you!