Real projective groups are formal

Motivic and Equivariant Topology

Swansea University 15 May 2023

Gereon Quick NTNU

This is joint work with Ambrus Pál

Milnor conjecture:
 k field with $\operatorname{char}(k) \neq 2$

Milnor K-theory
$T\left(k^{\times}\right) /(a \otimes(1-a), a \neq 0,1)$
Voevodsky

$$
K_{*}^{M}(k) / 2 \stackrel{ }{\cong} H^{*}\left(k, \mathbb{F}_{2}\right)
$$

quadratic algebra

* - generators in degree 1
strong restriction on which \mathbb{F}_{2}-algebras can occur as the Galois cohomology of a field
- relations in degree 2

Question: What other restrictions are there?
n-fold Massey product:
$\left(C^{*}, \delta, \cup\right)=a$ differential graded k-algebra a_{1}, \ldots, a_{n} classes with $a_{i} \in H^{d_{i}}$

$$
\text { with } i<j,(i, j) \neq(1, n+1)
$$

$\left\{a_{i j} \in C^{d_{i j}}\right\}$ is a defining system if

$$
=(-1)^{d_{i k}} a_{i k}
$$

$$
\text { - } \delta\left(a_{i j}\right)=\sum_{k=i+1}^{j-1} \bar{a}_{i k} \cup a_{k j}
$$

- The n -fold Massey product $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is the set

$$
\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle_{\left\langle a_{j}\right\rangle}:=\sum_{k=2}^{n} \bar{a}_{1 k} \cup a_{k n+1} \in H^{d_{n+1}}\right\}
$$

for all defining systems

- $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is defined if a defining system exists.
- $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ vanishes if it contains zero.

Formal dg-algebras: $\left(C^{*}, \delta, \cup\right)$ a differential graded k-algebra

```
morphisms of dgas + qisos
```


Massey product set \&............................. Massey product set $\left\langle a_{1}, \ldots, a_{n}\right\rangle \quad$ bijection

$$
\left\langle b_{1}, \ldots, b_{n}\right\rangle
$$

$$
\delta=0 \text { implies }\left\langle b_{1}, \ldots, b_{n}\right\rangle \text { vanishes }
$$

Formality implies strong Massey vanishing.

Massey product vanishing:

- $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is defined if nonempty.
- $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ vanishes if it contains 0.

Hopkins and Wickelgren

$$
C^{*}=C^{*}\left(\Gamma(k), \mathbb{F}_{2}\right)
$$

for k a global field of char $\neq 2$
absolute Galois group

- triple Massey products of elements in $H^{1}\left(\Gamma(k), \mathbb{F}_{2}\right)$ vanish whenever they are defined.
for every field k
Mináč and Tân

Massey vanishing conjecture of Mináč-Tân:

 for every field k, all $n \geq 3$, all primes pConjecture: n-fold Massey products of elements in $H^{1}\left(\Gamma(k), F_{p}\right)$ vanish whenever they are defined.

- Matzri, Efrat-Matzri, Mináč-Tân: all fields, all primes $n=3$.
\rightarrow new restrictions for type of groups that can be absolute Galois groups
- Guillot-Mináč-Topaz-Wittenberg: all number fields, $p=2, n=4$.
- Harpaz-Wittenberg: all number fields, all primes, all $n \geq 3$.
- Merkurjev-Scavia: all fields, $p=2, n=4$.
- Quadrelli: Efrat's Elementary Type Conjecture for pro-p-groups implies Massey vanishing.

Hopkins-Wickelgren formality:

for k a global field of char $\neq 2$
Massey vanishing conjecture suggests

- Question: Is $C^{*}\left(\Gamma(k), \mathbb{F}_{2}\right)$ formal?

Question: Is $C^{*}\left(\Gamma(k), \mathbb{F}_{p}\right)$ formal for all fields and all primes?

- Positselski: $C^{*}\left(\Gamma(k), F_{p}\right)$ can be not formal.
- local fields of characteristic $\neq p$ which contain a primitive p th root of unity
but satisfy triple Massey vanishing
- Merkurjev-Scavia: $C^{*}\left(\Gamma(k), F_{p}\right)$ may be not formal.
- for every k_{0} of characteristic $\neq 2$
there is an extension k / k_{0} such that

Real projective groups: G a profinite group, A, B finite groups

real embedding problem
 solution

for every
G is real projective if it has an open subgroup without 2-torsion and every real embedding problem has a solution.
k a field with absolute Galois group $\Gamma(k)$
there exists an involution

surjective
Examples: - $\Gamma(k)$ real projective, if $c d(k(\mathbf{i})) \leq 1$

- k pseudo real closed field,

Haran-Jarden
k has virtual cohomological dimension ≤ 1
$k(i)$ pseudo algebraically closed, i.e., every geometrically irreducible $k(\mathbf{i})$-variety has a $k(\mathbf{i})$-rational point

Our main results (Pal + Q.): G a real projective group Formality of $C^{*}\left(G, \mathbb{F}_{p}\right)$ for p odd follows from $H^{i}\left(G, \mathbb{F}_{p}\right)=0$ for $i \geq 2$.

- The dga $C^{*}\left(G, F_{2}\right)$ is formal and satisfies

 strong Massey vanishing.k a field of virtual cohomological dimension ≤ 1

- k is formal and satisfies strong Massey vanishing. first case for field with infinite cohomological dimension
- $H^{*}\left(\Gamma(k), \mathbb{F}_{2}\right)$ is Koszul.

Kadeishvili's theorem: k field

Hochschild cohomology
A pos. graded k-algebra, $A_{0}=k$

If $\mathrm{HH}^{n, 2-n}(A, A)=0$ for all $n \geq 3$, then A is intrinsically formal.

- every dga with cohomology algebra equal A is formal apply this for $A=H^{*}\left(G, \mathbb{F}_{2}\right)=$?

* and get $C^{*}\left(G, \mathbb{F}_{2}\right)$ is formal.

Scheiderer's theorem: G a real projective group

$X(G)=$ set of conjugacy classes of involutions

connected sum of quadratic algebras
 - $(A \sqcap B)_{0}=\mathbb{F}_{2}$

- $(A \sqcap B)_{i}=A_{i} \oplus B_{i}$,
and $A_{+} \cdot B_{+}=0=B_{+} \cdot A_{+}$

$$
H^{*}\left(G, \mathbb{F}_{2}\right) \cong B_{*} \sqcap V_{*}
$$

$B=$ ring of continuous functions $\mathscr{X}(G) \rightarrow \mathbb{F}_{2}$

dual algebra

- $V_{0}=\mathbb{F}_{2}, V_{i \geq 2}=0$

$$
\begin{aligned}
& \text { graded Boolean } \\
& \text { algebra }
\end{aligned}
$$

- Boolean ring B : $x^{2}=x$ for all x
- $B_{*}=\oplus_{n \geq 0} B_{n}: B_{0}=\mathbb{F}_{2}$ and $B_{n}=B$ for $n \geq 1$ and use multiplication in B

Koszul algebras: $\quad A=T(V) /(R)$ quadratic algebra

$k=\mathbb{F}_{2}$ tensor algebra of vector space V

$$
\begin{aligned}
& \tau: T(V) \rightarrow A \\
& R=\operatorname{ker}(\tau) \cap(V \otimes V)
\end{aligned}
$$

- Koszul complex: $(K(A), d) \quad K_{0}^{0}(A)=\mathbb{F}_{2} \quad K_{1}^{1}(A)=V \quad K_{2}^{2}(A)=R$

$$
K_{i}(A)=A \otimes K_{i}^{i}(A) \otimes A \quad K_{i}^{i}(A)=\bigcap_{0 \leq j \leq i-2} V^{\otimes j} \otimes R \otimes V^{\otimes i-j-2} \subset V^{\otimes i}, i \geq 3
$$

- A is a Koszul algebra if the multiplication map $\mu: K(A) \rightarrow A$ is a quasi-isomorphism.
shift grading by s:

$$
M[s]_{n}=M_{n+s}
$$

- the complex $\underline{\operatorname{Hom}}_{F_{2}}\left(K_{*}^{*}(A), M[s], \partial\right)$ computes $\mathrm{HH}^{*, s}(A, M)$
graded
homomorphisms

$$
\begin{aligned}
& \partial^{n-1}(f)\left(x_{1} \otimes \cdots \otimes x_{n}\right) \\
& =x_{1} \otimes f\left(x_{2} \otimes \cdots \otimes x_{n}\right)+f\left(x_{1} \otimes \cdots \otimes x_{n-1}\right) \otimes x_{n}
\end{aligned}
$$

Cohomology algebra is Koszul:

graded Boolean
algebra

dual algebra

- $V_{0}=\mathbb{F}_{2}, V_{i \geq 2}=0$
- Boolean ring B :
$x^{2}=x$ for all x
- $B_{*}=\oplus_{n \geq 0} B_{n}: \quad B_{0}=\mathbb{F}_{2^{\prime}}$

$$
A=B_{*} \Pi V_{*}
$$

$B_{n}=B$ for $n \geq 1$, multiply in B

- B_{*} is a Koszul algebra.
- $V_{\%}$ is a Koszul algebra.

$$
\begin{aligned}
& \text { if locally finite, then } \quad K(A)=\text { bar resolution } \\
& B_{*}=\mathbb{F}_{2}\left[x_{1}\right] \sqcap \ldots \Pi \mathbb{F}_{2}\left[x_{n}\right] \quad
\end{aligned}
$$

connected sums and colimits preserve Koszulity

Theorem (Pal-Q.): A is a Koszul algebra.

Hochschild vanishing theorem:

graded Boolean
algebra
dual algebra

- $V_{0}=\mathbb{F}_{2}, V_{i \geq 2}=0$
- Boolean ring B :
$x^{2}=x$ for all x
$\bullet B_{*}=\oplus_{n \geq 0} B_{n}: B_{0}=\mathbb{F}_{2}, \quad A=B_{*} \Pi V_{*}$
$B_{n}=B$ for $n \geq 1$, multiply in B
Theorem (Pal-Q.): $\mathrm{HH}^{n, 2-n}(A, A)=0$ for all $n \geq 3$.
Idea of proof:
- Step 1: prove assertion for $B_{*}^{\prime} \subset B_{*}$ locally finite
- explicit combinatorial computation: every cocycle is a coboundary
- Step 2: colimit over all locally finite subalgebras
- spectral sequence and show higher lim-terms vanish

Hochschild vanishing theorem:
 $R_{B}=\oplus_{i \neq j}\left\langle x_{i} \otimes x_{j}\right\rangle$

Simple case: $A=B_{*}=\mathbb{F}_{2}\left[x_{1}\right] \sqcap \cdots \sqcap \mathbb{F}_{2}\left[x_{n}\right]$

$$
d^{k}: \operatorname{Hom}_{\mathbb{F}_{2}}\left(K_{k}^{k}(A), A_{2}\right) \rightarrow \operatorname{Hom}_{\mathbb{F}_{2}}\left(K_{k+1}^{k+1}(A), A_{2}\right)
$$

$$
d^{k}(f): x_{j_{1}} \otimes \cdots \otimes x_{j_{k+1}} \mapsto x_{j_{1}} \otimes f\left(x_{j_{2}} \otimes \cdots \otimes x_{j_{k+1}}\right)+f\left(x_{j_{1}} \otimes \cdots \otimes x_{j_{k}}\right) \otimes x_{j_{k+1}} \quad \text { with } x_{j_{i}} \neq x_{j_{i+1}}
$$

$d^{k}(f)=0$ if

$$
f\left(x_{j_{1}} \otimes \cdots \otimes x_{j_{k}}\right)=x_{j_{1}}^{2} \quad \text { for } j_{1}=j_{k}
$$

- $\operatorname{dim}_{\mathbb{F}_{2}} K_{k}^{k}(B)=n \cdot(n-1)^{k-1}$
- $\operatorname{dim}_{\mathbb{V}_{2}} \operatorname{Hom}_{\mathbb{V}_{2}}\left(K_{k}^{k}(B), B_{2}\right)=n^{2} \cdot(n-1)^{k-1}$
- $\operatorname{dim}_{\overleftarrow{F}_{2}} \operatorname{im}\left(d^{k-1}\right)=\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Hom}_{\mathbb{F}_{2}}\left(K_{k}^{k}(B), B_{2}\right)-\operatorname{dim}_{\overleftarrow{F}_{2}} \operatorname{ker}\left(d^{k}\right)$

$$
=n^{2} \cdot(n-1)^{k-1}-n \cdot(n-1)^{k-1}
$$

$$
=n \cdot(n-1) \cdot(n-1)^{k-1}
$$

$$
\operatorname{im}\left(d^{k-1}\right)=\operatorname{ker}\left(d^{k}\right)
$$

- Unfortunately, taking the sum with V_{*} makes life much more complicated...

Thank you!

