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ABSTRACT

The interaction effects for heaving axisymmetrical wave-
power buoys in regular waves are studied. Analytic approximations
for the hydrodynamical interaction forces are used for this
purpose. A new mathematical model - called the low-scattering
approximation - is derived. Since first order scattering effects
are taken into account, it represents an improvement or sophisti-
cation of a previosly used approximation which totally neglects
the diffracted waves. The low-scattering approximation is based
upon the assumptions of small buoys and large buoy separations.
Hence it neglects multiple scattering as well as local wave fields.
However, comparison with accurate numerical results for a two-
buoy system indicates that the low-scattering approximation is
fairly good even when the buoy diameter is as large as 1/5 of the

wavelength and the buoy spacing is as small as 5 buoy radii.

In contrast to most of the previous works in this field,
the effects of power losses have been included in the phenomeno-
logical formulation. These losses - in practical systems they are
inevitable - are represented by a so-called loss resistance
matrix which is assumed to be constant and symmetrical. It enters
the expressions for the useful power absorption and for the
optimal buoy motion.

In order to make our mathematical model even more applicable
to practical wave power buoys and to realistic sea conditions,
a method for power maximising under motion constraints is described
and implemented on a computer. The constraints examined are two
quite different types: 1) restriction on the individual buoy
amplitudes and 2) fixed values for some of the dynamical parameters
such as the buoy phases and the load resistances governing the
useful power take=~off.

The computer program - mainly written with the intention
of examining the power absorption characteristics - is used to
produce a lot of quantitative results concerning different buoy
configurations. Two different classes of buoy systems are
analysed: 1) the focusing system consisting of many non-absorbing

buoys acting as a dynamical reflector behind a power absorbing



IV

buoy, and 2) systems of merely absorbing buoys. As for the
former class it is demonstrated that dynamical focusing can be
achieved even by relatively small systems or few reflecting buoys.
The power available for the absorbing buoy, however, very much
depends on the phase of the focused wave and on the angle of
incidence. The results concerning the latter class of buoy
systems comprise a variety of configurations, ranging from the
simple two-buoy system to a linear row of twenty equally-spaced
buoys. Although the interaction effects for such absorbing

buoy systems are quite important,the total useful power is, in
general, less dependent on the wave frequency and the angle of
incidence than what is the case for dynamically focusing systems.
Another important difference between the two classes is that the
absorbed power per unit of volume displacement is substantially
less for focusing systems than for the ones of merely absorbing
buoys.

The effects of power losses and constraints are also
quantitatively studied. Not unexpectedly, the results show that
the hydrodynamical interacion forces become less influent on the
useful absorbed power when the loss resistance increases and
when the waves are high so that the buoy amplitudes have to be
restricted.
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1 INTRODUCTION.

After the so-called energy crisis in 1973 much interest
has arosen on the development of alternative energy resources,
in particular the renewable ones. One of these energy
resources 1is the ocean wave power. For countries, like Norway,
which has a long coast line, the ocean waves represent an

enormous amount of energy1’2.

A lot of different concepts for converting the wave
energy economically have been proposed. One of these concepts
is the Norwegian heaving buoy. Because of its small dimension,
compared to the typical wavelength,it is often called a point
absorber. A characteristical feature of the Norwegian buoy is
the phase control. By means of a special mechanism the buoy
is latched in certain time intervals of each ecyecle in order to
obtain approximate optimal heave motion. This latching
mechanism provides "artificial" resonance conditions over a
wide range of frequencies.

A proposed wave power plant consists of many point
absorbers. The interaction effects of such a multi-<buoy system
may be quite important, but in general it is extremely diffi-
cult to compute the interaction forces very accurately. It
involves solving a partial differential equation with non-
trivial boundary conditions. Except for rare and special cases
the boundary value problem does not have any simple analytic
solution. Different numerical methods have been used with
success to calculate the hydrodynamical forces for two-body and
three-body systems3"6 However, for multi-body systems of,
say, ten buoys or more the numerical methods probably are too
time consuming or expensive to use. For that reason it is
desirable to have an approximate, but simple analytic model
which can be applied for large systems. Analytic methods also
have the advantage in preference to more accurate numerical
methods that they more directly provide valuable insight into

the physics of the problem.

A main topic of this thesis is, in fact, to derive an
approximative analytic model reliable for axisymmetrical

heaving bodies of the same order of size as the Norwegian buoy.



The approximation is based upon

1) the small-body assumption which means that the buoys are
small compared to the wavelength, and

2) the far-field assumption, which implies that the buoys
are separated widely enough to make the local or
evanescent waves negligible.

The derivation proceeds in two steps. The first step leads to
what we have called the non-scattering (NS) approximation.

This approximation neglects cross-coupling forces due to
scattering, and it represents a slight extension of an analytiec
method previously indicated by Falnes 7. The second step leads
to what we have called the low-scattering (LS) approximation.
It is an improvement of the NS approximation and takes into
account the first order scattering effects.

The superior purpose of developing those analytic approxi-
mations 1s to have a good tool for investigating the absorption
characteristics for practical systems of heaving wave power
buoys. A considerable part of this thesis therefore concerns
applications of the analytic models. One of these applications
is the dynamical focusing system. This is a sort of synthesis
of the mentioned buoy concept and 5 focusing concept proposed
by Mehlum 8 . In contrast to the latter concept, which uses
static hydrodynamical "lenses" to accomplish the wave focusing,
the dynamical focusing idea seeks to concentrate the wave
energy by means of a dynamical, reflecting "mirror" consisting
of heaving buoys. Curiosity on the absorption character-
istics for such a system was, in fact, the starting point of
the work on this thesis. However, having developed a quite
general computer program for this task, it also became of

interest to investigate other buoy systems and compare those
with the focusing one.

The outline of the thesis is described briefly in the
following.

Chapter 2 presents a phenomenological and linear theory
for a general system of interacting bodies oscillating in monochro-

matic waves. TFrom the complex equations of motion an expression
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for the maximum useful power is derived. Finally, the chapter
includes a justification that the complex representation of the
dynamics applies even for phase-controlled buoys making non-
sinusoidal heave motion.

In chapter 3 we specialise to small axisymmetrical and
heaving buoys. Before deriving the analytical multi-body appro-
ximation already mentioned, some small-body results for isolated
buoys are presented. This single-buoy case is relevant, because
the NS approximation, as well as the LS approximation, is

based upon the hydrodynamical coefficients for an isolated buoy.

The validity of the respective approximations is discussed
in chapter 4. The discussion is based upon a comparative analysis
of the hydrodynamical parameters and is restricted to a few two-

buoy systems for which numerical results are available.

Chapter 5 concerns the computational methods used for
investigating the characteristics for the various buoy systems.
The computer program written also possesses the possibility of
maximising the power under motion constraints. This is of great
practical interest owing to the fact that the applied buoys are
so small that a lot of realistic sea conditions require amplitude-
restricted motion.

The main concern of chapter 6 is to present some quantitative
results for dynamically focusing systems and for various configu-
rations of merely absorbing buoys. On the basis of these results
it is tried to reveal the main differences between two kinds of
systems. In chapter 6 we also make some comments on the power
absorption according to different mathematical models.

In the final chapter 7 we give a short summary of those parts
of the thesis which are new and original contributions to the field.

Moreover, a few recommendations for further progress are given.



2. MULTI-BODY WAVE INTERACTIONS

In this chapter we firstly present a phenomenological
theory for a system of rigid bodies. The theory is quite
general in the sence that no assumptions have been made on the

body geometries. However, we adopt the usual assumptions of

i) ideal incompressible fluid
ii) irrotational flow

iii) small disturbances or oscillation amplitudes.
Then linear potential theory applies. See appendix A.

In the first two sections we also assume that the forces
acting upon the bodies are sinusoidal. In the last section,
however, is shown how the theory is modified when the forces

are non-sinusoidal.

2.1 Equations of motion.

We consider a system of N oscillating bodies, partially
or completely submerged in water. The system is schematically
shown in fig. 1, The total number of oscillation modes - or
degrees of freedom - is M. For rigid bodies M<6N. The
equality refers to the case when all bodies are free to move in
any of its six modes. In marine terminology these modes are
termed surge, sway, heave, roll, pitch and yaw-denoted by the
indices 1,2,3,4,5 and 6, respectively.

Because the system is linear and the motion is harmonical
we may write the equations of motion as a set of M complex,
algebraic and linear equations:

(Z + zm)g = F (2.1)

or - in component form

729 + zP4, Hu% = FP 2.2)
qu( ij m,ij’ "3 i (
where the subscripts i and j denote the body numbers and

the superscripts p and gq denote the oscillation modes of
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Fig, 1. Side view (above) and top view (below) of a general N-

body system. The fluid domain is enclosed by the bottom

surface SB , the free surface SF » the wetted body

surfaces _§1 Si and an imaginary cylindrical surface
1=

8, of infinitely large radius R_. (xi,yi,zi) and

(Ri’ei’zi) are Cartesian and cylinder coordinates for the
center of gravity of buoy no. i, respectively. Local cylinder
coordinates (relative to buoy no. i) of an

arbitrary point P is (di,yi,z)



the bodies no. i and j, respectively. (For convenience we use
the term "oscillator p(i)" for the oscillation mode no. p of
body no. i.) The gquantities which enter into the equations
above are the following.

FE is the generalised force acting on oscillator p(i)
when all bodies are fixed. It is proportional to the
undisturbed incident wave amplitude at (xi,yi) which are the
horizontal components of the mean center of gravity of the body
no. i. Using the plane wave potential ¢, of (A.19) this
elevation is
-ik(xjcosB+yisinf) (2.3)

no(l) = ne

where n, (i) is an abbreviated notation for l%}xi,yi).

The exciting force, then, may be expressed by
P _ P ;
FY = k3n (2) (2.4)

where the complex constant of proportionality KE is termed
the exciting force coefficient.

Z 1s called the radiation impedance matrix. It represents
the hydrodynamical forces arising when the bodies are
oscillating. The product 'ZE%U? is, per definition, the
complex force amplitude acting on oscillator p(i) due to
the motion of oscillator q(j) with velocity amplitude ug.
The radiation impedance matrix 2Z may be decomposed into real

and imaginary parts:

Z =R+ iX = R + iwm (2.5)

where R and X are here termed the radiation resistance
matrix and radiation reactance matrix, respectively. The
former is commonly termed the added damping matrix while the
latter is often written as the product of the angular frequency

w and a so-called added mass matrix m.

%m is called the mechanical impedance matrix. It takes
care of the inertia forces, the loss and load damping forces

and the spring forces. Its elements Zﬁqij may be defined in
>



the same way as for the radiation impedance matrix elements

ZE% . For convenience, we shall throughout make the assumption
that
Pq = 74P

Hence %m i1s symmetrical as well as 7. See (A.u42).

2.2 Maximising the useful power.

In many practical wave power systems some part of the total
converted power will represent lost power, it be viscous
friction losses or conversion losses. Although it may not
always be true, we shall, for mathematical convenience, assume
that these undesirable damping forces are linear functions of
the variables (e.g. oscillation amplitudes). They may then be
represented by a constant loss resistance matrix Bl which is
included in the mechanical impedance matrix

Zn = R, o+ Ry +iX) (2.7
The "conversion resistance matrix" R, then represents the

useful part PC of the absorbed power. An expression for this
useful power may be found as outlined in the following.

The real force balance equation is, according to (A.10)
and the complex matrix equation (2.1)

1wt 1wt
(R + BC + Bl)Re{He }"(5 + gm)Im{Be }

= Re{pel¥?) (2.8)

By premultiplying this equation by the transposed real velocity
vector Re{Ue*®%} and taking the time average of the product

we obtain the following power balance equation:

P =P - (PP + P.) (2.9)

c e 1

Here Pe is the so-called9 exclting power, given by
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_l ~_ X ~ o = ~ o
P, =g (UE™+ U'F) = 5 Re{u™F} (2.10)
P, and Pl are the radiated and the lost power, respectively,

related to the corresponding radiation and loss resistance

matrices by

- 1 ~5
PI‘ = 51.1 11 (2.11)
and
B
Pl = 7 Bl};l‘ (2.12)

Rewriting (2.9) in a more explicit form we have for the

converted useful power

_ 1 P, Px Px. Py _ 1 Px,oPq jole] q
l,P ].'SP
J-9 (2.13)

In the case of no motion constraints the maximum of Pc has

to satisfy 2M derivative conditions:

P 8PC
= s - Q0 (Z2.14)
Buk

au

~ B0

This leads to the following matrix equation for the optimum
velocity vector Ropt

1
(R + Ry = 7 E (2.15)

The corresponding power maximum is

I
= u

*
Pc,max ? R Ju (2.16)

opt(B * ~1"~opt
Provided that (R + 51) is not singular (2.18) may alter-
natively be written
P = L¥ @R+ r)OTF (2.17)
C,max 8 ~ ~1 ~ :
Note that egs. (2.15) to (2.17) represent an extension of

corresponding equations obtained by Evans10 and Falnes11; they



did neot take any losses into account. Results similar to
(2.16) and (2.17) are derived previously12 for the special case
when M = 1.

The velocity amplitude vector u has to satisfy the
equation of motion (2.1). The requirement (2.15) on Hopt )
therefore, 1s a requirement on the matrices Bc and Em'
Stated in an other way: optimising P, with respect to the 2M
real varables of u 1is mathematically equivalent to optimising
Pc with respect to 2M wunbounded parameters of the conversion
resistance matrix R. and the mechanical reactance matrix
X,- However, in many practical situations neither the elements
of these matrices nor the oscillation amplitudes can be chosen
freely. This problem of power maximising with constraints is

discussed later on. See section 5.3.

2.3 Latched nonsinusoidal motion.

So far we have assumed that all forces acting on a body
are sinusoidal. Now we want to see whether the previous
phenomenological formulation applies to a system acted upon by
non-harmonic but periodic forces.

For simplicity we confine ourselves to a system of one
oscillator only, say a heaving buoy. The exciting force
Fé(t) ~ dashed symbols denote quantities which are real and
time dependent - is balanced by a mechanical force Fé(t) and
a hydrodynamical force F;(t)

F& + F; = Fé (2.18)

Both F& and F; are forces which arise because of the buoy
motion which is described by a displacement function s'(t).
Since these functions are periodic with the wave period T =

2m/w , they may be expressed by fourier series:

3= 8 = Ref § u(Meinuty (2.19)

n=1



F! = Re{ } pln) inuty (2.20)
n=1
F! = Re{ } (_Z(n)u(n))elnmt} (2.21)
n=1
F' = Re{ § (—z;n)u(“))elwnt} (2.22)
n=1
When the system 1is linear the expansion coefficient F(n> and
the parameters Z(n) and Z;F) are independent of the
displacement s'. Each frequency component, therefore, can be
treated separately. That is
(2 4 gy, () p) (2.23)
for all n21. When n =1 (2.23) is just the one-dimensional

version of the matrix equation (2.1).

The power balance equation is obtained by multiplying the real
force balance equation (2.18) by &' and taking the time

average of the resulting equation. After some manipulations
we arrive at

<0 x <0
) P;n) + 57 opW oy piw) (2.24)
n=1 n=1 M n=1 €
where
2
(n) _ 1 _(n), ()
P =5 R |u | (2.25)
2
(n) 1 o(n), (n)
P, =3 R | u [ (2.26)
Pén) = % Re (F{™)*u(n)y (2.27)
and R(n) and Rén) are the real parts of the radiation
impedance Z(n) = Z(nw) and of the mechanical impedance Z;n%
respectively.

As an illustrating and relevant example of application

10



we consider the phase-controlled wave power buoy proposed by
Budal and Falnes13 heaving in a monochromatic incident wave.
See fig. 2. Because the mechanical force F_(t) is not known
in detail, it is rather inconvenient to define 2;1) by the

equation (2.22).

Fig. 2. Wave elevation n'(t) and vertical displacement
s'(t} of a latched buoy as a function of time.
The buoy is held fixed in certain intervals of
each cycle so that the velocity s{t) is in
phase with the exciting force. In that way one
obtains "artificial" resonance condition even
for a light buoy of eigenperiod To smaller
than the wave period T. The dashed curve is

the first harmonic fourier component of s'(t).

However, it is possible to give meaningful physical interpre-
tation for the mechanical resistance Ré1) as well as the
reactance X;1) without relating them to the mechanical force
Fﬁ. This is seen by the following.

For the case of sinusoidal exciting force it is seen, by
means of (2.23) and (2.24) that

2
1 (1) (1)
5 R lu* 7] =P+ Ph loss (2.28)

where Pm is the total mechanical converted power

11



P = ) P (2.29)

and P is the loss power due to radiation of higher
r,loss

harmonic waves:

% (n)
PL1oss © ¥ P (2.30)

If, therefore, the equation of motion (2.1) is applied to a
system of latched buoys, the matrix Bm has to be regarded as
a generalised mechanical resistance matrix which includes the

effect of higher harmonic wave radiation.

As indicated by the term "phase-controlled", the phase

P('1)

angle ¢ between the force and the first harmonic

velocity component u(1) is a directly controlled parameter.

That is

(1)/u(1)

o = arg(F ) (2.31)

On the other hand,we have that ¢ is related to the imaginary
(1)

and the real parts of (Z + 2;1)) by
X(1)+Xé1)
th = 7T)——(1—y (2-32)
R +R
m
The total reactance (X(1)+Xé1)) ,. therefore,is a measure for

the points of time when the buoy is released. Consequently,
the diagonal elements of the radiation reactance matrix X

becomes of 1little or no significance for phase-controlled buoys.



3. APPROXIMATIONS FOR SMALL AXISYMMETRICAL HEAVING BUQYS

3.1 Presumptions.

We now want to leave the general description and consider

the case when

i) the bodies are allowed to move in the heave mode,
only. For convenience we adopt the following
convention. Unless the mode superscript is
explicitly indicated, the implied mode is heave.

. 3 _ .33
(Examples: «k; = K; Zij = Zij‘)

ii) the bodies are vertical axisymmetrical buoys. The
buoy radius a; at the center of gravity (xi,

Yi

a characteristic buoy dimension. See fig. 3.

s zi) of buoy no. i is assumed to represent

iii) the buoys are small compared to the wavelength.
Because this is the definition of a point-absorber14

we could call it the "point-absorber assumption'.

Its mathematical formulation is

a; = kai << 1 R i=1,,...N (3.1)

iv) the buoys are widely separated so that the local
field of a buoy is small compared to the corre-
sponding far-field at the location of its nearest
neighbour buoy. This far-field assumption may be
formulated either by

kdij >> 1 s i%j (3.2)
or by
dij/ai >> 1 R i#j (3.3)

dij being defined in fig. 3,

Although we confine ourselves to heaving buoys only, the next
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Fig. 3. Top view of a system of N axisymmetrical buoys.

>
Ri B (xi!Yi)

(di’Yi)

= |R, -R,|
1] hi i
Ylj

horizontal radius vector for the
center of gravity of buoy no. i.

local polar coordinates for an arbitrary
point P. That is, d, = | and

;|
.) and
i

o tod

R-
v; is the angle between (R -
the x-axis.

the horizontal distance between two

different buoys 1 and j.

the angle between (ﬁﬁ-—ﬁi) and the

x-axis.

14



section concerns the surge and sway modes as well. The

reason 1s that the surge force coeffiéients are used
later on. See section 3.5.

3.2 Isolated buoy.

Far-field potentials for the translation modes

Consider the case of one isoclated buoy (N = 1). For
simplicity we assume the z-axis to coincide with the axis of
symmetry. For reasons of symmetry the far-field parts of the
normalised surge, sway or heave potential may be expressed by
one single term of eq. (A.30). That is

A1e(kz)H1(kR)cose , P = 1
wg’o = 9 A1e(kz)H1(kR)sine s p = 2 (3.4)
; Ae(kz)H  (kR) R p = 3

where the additional superscript © indicates that the
quantity refers to an isolated buoy, and the subscript
indicates that the local field is not included. See (A.29).
The exciting force coefficients for the translation modes are

accordingly
KSCOSB s p =1
<@y =1 «%sing , p = 2 (3.5)
k® N p =3

where k° » per definition, is the isolated surge force
coefficient at normal incidence.

By means of (A.47), (A.u48) and the asymptotic expression (A.28)
1 and AO

in eq. (3.4) may be expressed by the exciting force coeffi-

cients Ks and KO , respectively. Eq.(3.4) then becomes

for the Hankel functions Hn the coefficients A
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Xk s
TogD © e(kz)H, (kR)cosé , p = 1
@229 = 4 §§%5 <Se(kz)H,(kR)sin8 , p = 2 (3.6)
. k o
=1 m K E(kZ)Ho(kR) 3 p = 3

The isclated far-field potentials wE’S of an arbitrary buoy
3

no. i is obtained by substituting the global coordinates

(R,8) Dby the local coordinates (di,Yi) which are defined in

fig. 3.

At present the exciting force coefficients «k° and «°

are unknown functions of wave frequency, buoy gecmetry,
submergence and depth of water. Because these guantities are
quite fundamental for the multi-buoy approximations presented
later on, they will be subject of some investigation in the
following.

Surge and heave force coefficients

We still consider an isolated buoy with its center of
gravity at 31 = (0,0,21). See fig. 4. In accordance with
point-absorber assumption (3.1) the incident wave potential

¢, and its gradient are approximately constant on 81. That
is
¢ S ~ b > > (3.7 )
1 P=ry
3¢ 3¢
3;9 ~ g;g = vp(1) , p=1,2,3 (3.8)
Pls Plp=r

where VP(1) denotes the fluid velocity of the undisturbed
wave at the center of gravity.

It can be shown15

that this approximation leads to the
following expressions for the Froude-Krylov force and the

diffraction force

FEK ~ pgA N (1)8,  + Lwiv (1), p = 1,2,3 (3.9)
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X
Fig. 4, Side view of an isolated axisymmetric buoy
& - buoy radius at the center of gravity.
ByaZaZy T vertical coordinates for top, center
and base of the buoy, respectively.
S1 - average wetted buoy surface.
. - water plane area (= 0 for a
completely submerged buoy).
v - average displaced volum
P 2 .pq
Fy ™ Y 2 vq('l) s P = 1,2,3 (3.10)
q=1

respectively, where

)

3p

Differentiating the incident wave potential (A.29)

we find that

is the Xronecker delta symbol.

17
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20 f1wn°c_:osB s, q =1
vq(1) = .3?9 = § f,on sing , q = 2 (3.11 )
9|22 .
1 1g1wno > q = 3

where f1 and g1 are submergence factors given by

cosh(kz1+kh)
f = - (.12 )
1 sinh(kh) :

sinh(kz, +kh)
&, T sinh(xn) (3.13)

(For half-immersed bucys on deep water g = £f,= 1

It is convenient to introduce the non-dimensional versions
€ and u of the radiation resistance and reactance, respec-

tively, by

2P = wov(eP? + iyPY (3.14)

For reasons of symmetry there is no cross-coupling between
different translation modes, that is, the radiation impedance
matrix for the three translation modes (p = 1,2,3) is

diagonal.

qu = pra

Dq ’ p>q = 1,2,3 (3.15)

Also it may be realised’® that for point absorbers

ePP <<« uPP - o¢1) . a << 1 (3.16)

From the small-bcdy equations (3.9) and (3.10) we obtain the

exciting force coefficients

ralogtitt + u' g o a4 0ta?)) (3.17)

ma

A
1

A
< ﬂang — -1+ u33)g Yoa o+ 0(&2) 1(3.18)
2 1__3 |
Ta Ta

for the surge mode and the heave mode, respectively. Some
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Fig, 5. Normalised exciting force coefficients for a semi-

submerged vertical cylinder of hemispherical base

on deep water.

The values 4s- calculated by a sink-source method

7

using 87 buoy elements ',

o 2 ka - normalised buoy radius.
0

LY

8
K

- heave force coefficient.

- surge force coefficient.
smell-body approximations according to
(3.17) and (3.18).



Normalised exciting force coefficients for a

semisubmerged sphere on deep water, calculated by
a multi-pole expansion technic18

o = ka — normalised buoy radius.

o . .
K = heave force coefficient.
K® - surge force coefficient.
—-— small-body approximations according to

(3.17) and (3.18).
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comments on these formulae are listed below.

1) The diffraction force is of the same order as the Froude-
Krylov force, except for floating buoys in heave
where the latter dominates.

2) To the first order in o the surge force coefficient
k® and the heave force coefficient «° are imaginary
and real, respectively. Physically this means that the
surge force is approximately 90° out~of-phase and the
heave force is approximately in-phase with the incident
wave elevation no(1).

3) Comparisons with more exact numerical values for °

and k° - see figs. 5 and § - indicate that the

small-body approximations of (3.17) and (3.18) are quite

accurate for non-dimensional buoy sizes less than

o~ 0.3.

4} The significant phase difference between the heave force and
the incident wave elevation goes like a2 for smail

floating buoys. That is

arg{k°} =~ 0(a?) (3.19)

provided that Awaunaz. Moreover, a quantitative
expression for this phase shift is derived below.

Significant imaginary part of «k°

19 that the Froude-Krylov force on a

It can be shown
heaving axisymmetrical buoy is real, irrespective of buoy size
¢ and depth of water kh. Any imaginary part, therefore, has
to be found in the higher orders terms of the diffraction
force Fd. See (A.36) and (A.37). 1In order to derive the
second order term of Fd it is necessary to expand the
gradient of ¢, toa higher order than what is done in (3.8 ).

That is, we have to use the approximation
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2%
X

s v Moy (1) +# 9v (1)-(BE-3
q q
qs,l

) ( )
afg 1 3.20
1
Without loss of generality we confine ourselves to the case of

normal wave incidence (B = 0). From the incident wave poten-
tial of (A.19) we find that

.

(—i,O,tanh(kz1+kh))kv1(1) » q

n
-

Vv =1 0 , q = 2
dig
1 (-i,O,tanh(kz1+kh)+1/cosh2(kz1+kh))kv3(1)
» q@ =3
(3.21)
Eq. (3,207 then reads
. 2
= (M {1 + (-1 + Ja + 0 7.9
vy ’ Vg { £ Cq (")} (3.22)

where £ and ;q are non~dimensional surface coordinates
defined by

£ = x/a
tanh(kz1+kh)z/a » q = 1
Ty -
{tanh(kz +kh)+1/cosh (kz,+kh)}z/a , q = 3
(3.23)

Inserting (3.22) into the diffraction force expression (A.u44)
and using the expression (A.41) for the radiation impedance
matrix it is seen that

Fg ~ vqm { zP9 - jupa g tpp(-i5+cq)nqd8} (3.24)
1

3
q=1

Taking the benefit of the symmetry for the problem and using

(3.11), we finally get the diffraction part of the heave force
coefficient.



23

o} . o 2 3 _
Kq ™ 1wg12«-m po ﬂ-w (f1£n1 g1c3n3)d8 (3.25)

54

This expression is consistent to significant order of the

3 that is for wa(a = 0). From

the free surface condition (A.13), rewritten as

normalised heave potential ¢

3?%%37 = atanh(kh)¢ s z =0 (3.26)

it is realised that the degenerated "free" surface condition
is just

g—$=o , z=0,a=0 (3.27 )

Hence (3¢3/3n) is real on all surfaces enclosing the fluid
domain. See (A.14) and (A.15). It may then be realised - by
the uniqueness theorem20 and physical arguments -~ that w3

has to be real within the fluid. The significant imaginary part

of the heave force coefficient is consequently

Im{«°} = Im{Kg} £ g1wRo (3.28)

or - alternatively, by means of the relation (A.46) -

Im{k®} = wang {;g1azlxo/wang|2} (3.29)
For half-immersed buoys (z1 = 0) the significant phase shift
of the heave force coefficient «° is

arg{x°} = % o’ + 0¢a®) (3.30)

To our knowledge the results of egs. (3.29) and (3.30) are not

previously published. They are, however, confirmed by nume-
rical calculations. See fig.7.

Because of the neglected terms of (3.25) - being of order
0(a3) - it should be noted that (3.29) is not consistent for
completely submerged buoys.
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Normalised imaginary part of the heave force coefficients

for two different floating buoys s on deep water.

Curve (1) :  Numerical values for buwy (1),
according to Greenhow18.(Values are
missing for a<0.2)

Curve (2) : Numerical values for buoy (2),
according to Count T .

Curve {3) : Lowest order term na2/2 of eq. (3.29)

Curves (1b) and (2b): Approximations for the buoys (1) and (2),
respectively, obtained by (3.29) when

. 0
numerical values for |k | are used.
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3.3 The non~scattering approximation.

It is intuitively evident that the scattering effects
decrease as the dimension of the buoys decreases (ai-+0).
As a first approximation we therefore neglect the diffraction
interaction forces, that is, the cross-coupling forces acting
on a buoy due to the scattered waves from other buoys. Here
we shall call this approximation the "non-scattering" (NS)
approximation. For an arbitrary buoy no¢. i, then, neither the
exciting force F. nor the diagonal element Z;,; of the
radiation impedance matrix are affected by the presence of
other buoys. Consequently, we just have that

NS _ o
KT o= oKy ) (3.31)
7NS . 79 (3.32)
11l 11

NS

where the superscript refers to the non-scattering

approximation. It should be noted that this approximation do

o

not totally neglect the diffraction potential since ks

¢
d
includes both the Froude-Krylov force and the isolated

diffraction force. See (A.34).

According to the NS assumption the potential due to
heave motion wu, of buoy no. 3 1is not disturbed by the other

buoys. The corresponding wave elevation, see (3.6) and (A.18),is

o lw o wk o
: w.P N - k:H (kd.)u. (3.33)
] g ! 2=0 QDgQD o ] ]

According to the far-field assumption (3,72) this radiated wave
may be treated approximately as a plane wave at the site of
another buoy. Thus the corresponding heave force acting upon
another buoy no. i is

25y ™ n2n§(i) ,  i%j (3.34%)

NS

The NS off-diagonal elements Zij of the radiation impe-

dance matrix are consequently
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NS wk o o _
Z.% = k.k:H_ (kd..) . i%] (3.35)
1j 2pg2D 1 3]0 1]
Alternatively
o 0
Ka+K.
NS _ 17 0o L0 A
Zij = T;?ZST RiiRjj Ho(kdij) ) i%) (3.36)
i7]

where the relation (A.46) has been used.
The right hand side of (3.36) is quite similar to a corre-
sponding formula obtained by FalneszT, except for the use of

the Hankel function Ho and for the additional phase factor

An approximate value for the off-diagonal element Rij
of the radiation resistance matrix may alsc be derived from

(A.45). Assuming isotropic heave force coefficients - that is,

k; ™ Kg > L = 1,...,N =~ (A.45) reduces to
*
R “’k2 <$ kST (kd, ) , i (3390
37 20g%D j i

where a well-known integral expression22 for the Bessel
function J, has been used. It should be noted that this
approximation is consistent with (3.35) only when the exciting
force coefficients are real. Although either of the two
approximate formulae (3.35) and (3.37) are based upon the
assumption of isotropic heave force coefficients, the former
seems tobe the most accurate one. See fig.11.

3.4 Power invariance.

We have seen 1in section 3.2 that the heave force coeffi-
cient «k° for a small axissymmetrical buoy is approximately real,
irrespective of the buoy shape. Hereafter we shall use the term
"ideal point absorber" for a buoy which has a real heave force
coefficient and do not scatter waves. In the following we will
show that the maximum power absorbed by a system of heaving ideal

point absorbers is. independent of the specific’ buoy shape.
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We define the absorbed power P +to0 be the sum of the

useful P_  and the lost power Py- According to (2.9) this
total absorbed power is
P=P, +P =P (R = Q) (3.38 .2

} urF. (3.39)

where the,otherwise unrestricted, velocity amplitudes us have to
satisfy

(3.40)

ne~—19g
b=
e
1]
b
'

’ 13773 2 i

Now, imagine that the geometry of buoy no. k is changed in a

way so that K is changed by a real factor, say c¢ :

K. »K! = (3.41)

Because the NS approximation is an exact mathematical model
for ideal point absorbers, eqs. (A.46), (3.31), (3.35)
and (3.40) imply that

e Rii R i=3 =k
ij-+Rij = 4 CRij , i = k#j or ixk = j (3.42)
i3 s 1k#]
% Uy s 1 = Kk
u. +u! = (3.43)
* + Uy s 1%k

and finally from (2.4), (3.39) and (3.41)-(3.43)

T -
Pmax'*Pmax - Pmax (3.44)

Thus we have shown that the maximum power absorbed by a system
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of unconstrained, heaving and ideal point absorbers is
invariant to changes of the individual absorber geometry.
23 but his
analysis is restricted to identical buoys and to special

Similar results are obtained previously by Budal

configurations.

Realising that the heave potential is approximately
isotropic for small bodies even if they are not axisymmetrical,
the statement above is valid even for arbitrary bodies provided
that they are small enough.

3.5 The low-scattering approximation.

We now wish to look for an improvement to the NS appro-
ximation by taking also into account the interaction between
bodies due to diffracted waves. This improvement leads to

what we shall term the "low-scattering" (LS) approximation.

The first stage of this approximation involves writing the
diffracted wave as a sum of elementary waves. That is

¢d ~ Z ¢§ i (3.45)
i ]

where ¢§,i represents the exact diffracted wave of buoy no.
i if it were isolated. This approximation implies that
multiple scattering is neglected. As opposed to the NS
approximation the far-field parts of ¢g,i are now taken into
account.

In general, an analytic solution of the single buoy diffrac-
tion problem does not exist. Fortunately, for small buoys it is
possible to obtain good approximations for ¢g,i without
solving the diffraction problem numerically. This is realised
by the following.

A light and small body floating freely on surface
waves does obviously not disturb the waves very much. This
idea leads to a more general statement which is mathematically
justified in appendix B. This statement is: When a small

body, say buoy no. j, is moving in such a way that its



center of gravity (xj,yj,zj) follows the orbit of the fluid

particle of the incident wave, the disturbance of the incident

wave is much smaller than the disturbance represented by the

diffraction potential ¢3 5 That is, the radiated wave
?
potential ¢; 5 due to the described motion approximately
2

cancels the diffracted one. Hence

e} o
ICTE Rl

1~

4,0 3 3.u46
: w] vq(]) ( )

By means of eq. (A.18), the far-field expressions for the
normalised radiation potentials w?’o , see (3.6), and the
explicit expressions for the undisturbed fluid velocity ampli-
tudes vq(j) , see (3.11), we deduce that the wave elevation
-associated with ¢Z,j is approximately

ke (kz.)

~ e

o) o
. .+ ; . WU
nd,j {tanh(kz3 kh)KJHO(de) (3.47)

s .
+ KjH1(kdj)COS(Yj*B)}no(j)

According to the far-field assumption this wave acts upon

another buoy no. i by the force

0_0 .y _ O .
AFi A Kind,j(l) = Kino(l)Aij (3.u48)

where the non-dimensional diffraction interacticn term Aij
is given by

kze(kz.)
= 1

o)
Aij __7355_— {tanh(kzj+kh)KjHo(kdi.) (3.49)

3
_ S _ -ikd; ;cos(yi:-B)
KjH1(kdij)C°S(Yij B)}e 13 1)

Because multiple scattering is neglected we simply obtain the

LS heave force coefficient KPS by summing all such terms:
LS _ o
KT = Ki(1 + § Aij) (3.50)
J#i
Remember that the diffraction force F9 . due to is

o}
d,1i ¢d,i



30

already included in Kg.

The LS radiation impedance matrix EFS is derived in a
similar way. The normalised radiated wave potential wj of
buoy no. j is approximately

0. @2 + Y oo (3.571)
3 3 K dsk
k%]

where wj K represents the scattered wave on buoy no. k due
2
to the undisturbed radiated wave from buoy no. j, represented

by wg. In analogy with (3.46)
3 3P
- 2O 1 .
(pj,k ~ Z @ e (3.52)
q_1 > >
rar,
By means of (A.18), (3.68) and the fact21+ that
dHO(x)
T = -H_I(X) (3.53)

it can be seen that the wave elevation nj Kk corresponding to
3

the velocity potential @. A is
1.k7]
: wk3 0
nj,kﬁ“;_—mK-e(kzk){tanh(kz +kh)|( H (kd )H (kd )
Up"g™ D
- ik H (kd )H (kd )cos(Yk-ij)} U3 (3.54)

The associating force acting upon another buoy no. i is
approximately

-(AZ..)u. °n. i ] .
( Zl])UJ Ay Kin],k(l) , 1%k (3.55)
This leads to the following expression for the LS radiation

impedance matrix

OO

LS NS g o o
Zo. o= ALY AL, . 3.56
iy 1] IK I 11 33 ikj ( )

i ] k#l,j
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where the non-dimensional impedance correction term Biys is

j
given by
A =i k2 e (kz ){tanh(kz +xn)kCH (kd.. )H (kd. .)
ikj ~ 2pgD k k ko jk o ki
— 3 S -
LkpH, (ed ) OH, (kdy ;o8 vy ij)} (3.57)

An alternative expression

2
«%)
e} i o] _
Zii * |K9I2 11 E Aiki ® b =1
1 k#i
LS _ <
Zij = (3.58)
K.K.
1] 0o L0 s
—KQK? \/RiiRjj{HO(kdij)+ 12< Aikj} s J#i
o K#i,]

may be obtained by means of (3.32) and (3.36).

It is easily seen that A. . = 4. ..
lk]LS jk1
radiation impedance matrix Z is symmetrical and satis-

fies the resiprocity relation (A.42), as expected. Also it

should be noted that for the special case N=2 we have that
ZLS - ZNS
12 12

Consequently, the LS



4. DISCUSSION OF VALIDITY.

The main topic of this chapter is to see whether the NS
and LS approximations are applicable to practical wave power
buoys designed for typical ocean wave frequencies. In accor-
dance to a suggestion made by Budal and Falnes 13 we concentrate
our analysis about semisubmerged spherical buoys of diameter
2a = 10 m. Operated in ocean waves of period T = 6.5 s
- which represents the higher part of the energy spectrum -
this is equivalent to a non-dimensional buoy radius o = 0.7.
See fig. 8. The pointabsorber assumption. (3.1) 1s consequently
not very well satisfied.

: . . | ,
l 040 SR r v I
1 " 2 ! ¥
™5 12 10 ) 7 6 T Is]
01 02 0L 06 = fo=5m)

Fig. 8. Conversion scales for wave frequency v ,
wave period T and non-dimensional buoy radius
¢. The buoy radius is a =5 m and deep water
conditons are assumed. The dashed bars indicate
the limits of the wave energy spectrum of most

; 1
interest

As the suggested wave power plant involves buoy separation of
as little as d = 30 m the neglected local fields may perhaps
be of some importance. See assumption 1iv) of section 3.1.
These facts, therefore, make it necessary to investigate the

regimes of validity for our present approximations.
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4.1 Comparison with numerical results for two-buoy systems.

The two-buoy system has already been nymerically investi-
gated by several authorsg's_ . Most of the methods used in
the referred papers are general in the sense that they apply to
bodies which need not satisfy the point-absorber assumption
(3.1).

First, we compare our LS approximation with numerical
results '’ for a pair of vertical floating cylinders with hemi-

spherical bases. See fig. 5. The numerical method is a sink-
source method and the two-buoy calculations has been carried out
with 46 elements on each buoy. The associate discretisatiocon

errors are claimed to be less than 1-2%.

°l

Results for the heave force ratio |K1/K , the radiation
resistance ratios RH/RO and R12/RO are shown in figs. 9.,
18 and 11, respectively. (As the buoys are identical we have,
for convenience, omitted subscripts 1 or 2 on «%and R®.) The
LS values for the two-buoy system are, according to (3.50) and

(3.58)

KLS
1 _
—| - |1 + 8., 1 + Re{d,,} (4.1)
RLS
11 o) Oy.,2
el T+ Re{(k /| D70, 54} (4.2)
and
RLS
—%g = Re{(x°/|x°)%H_(kd)} (4.3)
R o
where the non-dimensional correction terms A12 and A121
reduce to
b =i X (H (kd) - xSH. (kd)sing)e-ikdsin8
12 208 o 1 sinpre
(y.4)

and

O (e kd)? v 1S, kan?y @5

when the buoys are situated along the y-axis and their centers
coincide with the mean free surface.
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lised separation kd of two identical buoys.
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force ratio [K1/KO| with the norma-

The buoys

are vertical floating cylinders with hemispherical base

and submergence L

Normalised buoy radius is

Curves (1) and (2):

® and o

= 1.05a. See fig. 5.

o = 0.473.

LS values according to (k.1} and
(4.4) when numerical values for K

and «° are used. See fig.5.

Numerical values obtained by the

17

sinc-gource method '.
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50 — 100 ed]

Variation of the diagonal radiation resistance ratio

R11/RO with the normalised separation kd of two

identical buoys, as in fig. 9.

Solid curve: LS values according to (4.2) and (4.5)
when numerical values for «° and K-
are used., See fig. 5.

) : Numerical values obtained by the sink-

17

source method .
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kd

Off-diagonal radiation resistance ratio R12/Ro versus

the normalised separation kd of two identical buoys

as in fig. 9.

Curve (1): LS values according to (L.3) when numerical
value for k° is used. See fig.5.

Curve (2): The Bessel function Jo(kd).

o : Numerical values obtained by the sink-

source method17.
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We see that the agreement between the LS approximations and
the numerical results is excellent. TFor most cases the devi-
ations are of the same order as the uncertainty of the nume-
rical values, about 1-2%. However, we note that the filled
and open rings in fig.9 tend to lie systematically outside
and inside the solid and the dashed curve, respectively. This
indicates that higher anisotropic terms - proportional to

cos(nyi) and sin(nyi), n > 2 - of the exact scattered wave

o
¢d,i may be of some significance when a > 0.5 . Nevertheless,

the numerical results very well confirm the following:

1) The exciting force of buoy no. 1 is affected by another
buoy in a way that causes K, to oscillate about its
isolated value «k°. The oscillation is governed by the
diffraction interaction term A12 which goes like

-ikd(1+sing)

-1
8, = (kd) Ze (4.6)

according to the asymptotic behaviour of the Hankel
functions.

2) Also the radiation impedance 241 of a buoy is substan-

tially influenced by the scattering effect of a second buoy.
The scattered wave from buoy no. 2 causes the diagonal

radiation resistance R4 to be an oscillating function
o

which tends towards R for large spacing. By means of

the asymptotic behaviour of the correction term A121

-1 _=-i2kd
194 « (kd} ‘e (w.7)

A
and of (4.6) it is realised that the scattering effects
on the elements of the radiation impedance matrix decrease

more rapidly with the spacing d than what is the. case for the
exciting forces.

3) The off-diagonal radiation impedance element Z is an

12
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oscillation function proportional to the Hankel function.
However, there is a significant phase shift between
212/R0 and H_. This phase shift is associated with the
complex phase factor (K?K?/]K?Kgl) and vanishes for
ideal point-absorbers.

The excellent agreement between the LS wvalues and the nume-
rical values for K, and R11 do, in fact, indicate that the
approximations (3.46) and (3.51) are quite good even for

relative large buoys not satisfying the point-absorber assump-

tion (3.1) very well,

Next presented are some results concerning two floating
vertical cylinders of flat bases and submergence L =_—Zb = a/2.
Numerical results - obtained by Matsui and Tamaki6 - as well

as LS results are presented in figs. 12 and 13 for |K1/KO[
and R,H/RO s respectively. As opposed to the previous two-
buoy system the hydrodynamical parameters for this system have
been evaluated as functions of frequency at the constant
spacing/radius ratic d/a = 5. The method used for computing
the numerical results take into account local fields as well

as multiple scattering. Although the corresponding values are
claimed to be quite accurate there is a substantial uncertainty
associated with the solid curves of figs. 12 and 13. This is
because they are redrawn from very small graphs in the published
paper. For the highest frequencies corresponding to o > 0.5
also the LS curves of figs 12 and 13 have to be treated with
some caution. This is because the parametric approximations
for k° and «° - used in the LS formulae - are based upon
small graphs26 for [«k°| and |x°| and are consequently not
quite reliable in this region. Nevertheless, the results shown
in figs. 12 and 13 clairly demonstrate the applicability of the
LS approximation.

3 . .
Greenhow has done calculations on two semisubmerged
spheres. However, the heave force correction term due to

scattering do not agree with our LS +term &
e-ikdsinB

19 It seems

as if the orientation factor is missing in his

. 27
correction term
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0.5¢ -

Fig. 12, Variation of the heave force ratio |K1/KOI with the
normalised frequency a for two identical buoys of
spacing/radius ratio d/a = 5. The buoys are vertical
cylinders with flat base. The submergence is Z, = -a/2.
Solid curve: LS values, according to (4.1} and (k.k)

when approximate values for «k° and «°

are used.
25

Dashed curve: Numerical velues according to Matsui and Temski
The horizontal line IK1/KO[ = 1 corresponds to the

NS approximation.
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Variation of the diagonal radiation resistance ratio

R”/Ro with the normalised frequency o for two

identical buoys of spacing/radius ratio d/a = 5. The

buoys are vertical cylinders with flat base. The

submergence is Zy = -a/2.

Solid curve: LS values, according to (l.1) and (4.h4)
when approximate values for Ko and

8
K are used.

26

Dashed curve: Numerical values according to Matsui and Tamaki
The horisontal line R”/Ro = 1 corresponds to the

N8 approximation.



4.2 Regimes of validity.

Now we are in the position of estimating the regimes of
validity for the NS approximation as well as the LS
approximation. The limits of these regimes are, of course,
depvendent on the requirement of precision. Here we choose the
5% relative error of the hydrodynamical parameter as a
confidence criterion. First, we analyse our two approximations
- the NS and the LS approximation - for systems of
floating buoys. Next we will make some comments on the
differences between such systems and systems of entirely
submerged buoys.

The Non-scattering approximation

Having seen that the LS approximation is quite good for
@ ~ 0,47 , we may analyse the NS model by means of the the

LS parameters. For the heave force coefficient this is

NS NS LS o)
AKi = K. Ky ™ K. K (4.8)

This error is, of course, a function of buoy configuration and
the specific buoy geometry as well as of o and separation
kd. Confining ourselves to the case of two semi-submerged
buoys we get a rough estimate of the relative error by using
the lowest order term of (y4.4)

NS

-] - . -
Ak o A12 - /% az(kd) Ze i[kd(t+sinR)=-3m/4]

o
K

(4.9)

It should be emphasised that the expression above is based upon
the far-field assumption. See (3.2) and (3.3). OhkusuLP has
done calculations on wave forces on vertical cylinders and he
claims that the local fields are negligible when

d/azbs (4.10)

This far-field criterion is, in fact, confirmed by the the
results of figs. 9 , 10 and 11, too. Except for quite special
buoy geometries, therefore, we assume our error analysis to be

valid for d/az5. In fig. 14 is tried to visualise the
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10.0 kd

A visualisation of the limitations for the NS and the LS
approximations when applied to floating buoy systems.

Neither of these two approximation is assumed to be
valid for buoy spacings less than d = 5 a , which

corresponds to the domzin to the left of curve IITI. The
domain below curve I corresponds to the situations when
the NS approximation is reliasble. Accordingly, the curve

II indicates the limit of validity for the LS approximation.
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situations for which the NS approximation is applicable.
Curve I 1is the limiting case when the modulus of the right
hand side of (4.9) equals 0.05. Although the present
analysis concerns the two-buoy system we expect that the regime
of validity is almost the same for a multi-body system. For
most configurations and frequencies the phases of the scattered
waves will be distributed in such a way that they, to some
extent, cancel each other. That is

IZ Aijl << Z |Aij| N >>1 (%.11)
] -Ju
J#*3 R
and
|}§ Aiij << 1% |Aﬂ<j| N >>1 (4.12)
k#i,j kK#i,3

Caution, however, has to be taken for some special
configurations, for example a line of equidistant buoys of
spacing d = n+A. Then the scattered waves will interfere
constructively, and the resulting correction terms may become
father large.

See section 6.3 for further comments on the NS approximation.

The low-scattering approximation

Because accurate numerical results are missing for
@>0.5 , it is difficult to fix the regime for which the errors
of the LS parameters are less than 5%. Nevertheless,
knowing that the errors are less than 1-2% for a = 0.47
even when d/a = 5, it is reasonable to suppose the LS
approximation to be valid for o = 0.7. The results of figs.
12 and 13 do in fact, support this assumption. The correction
terms decrease with separation so we have chosen the domain
of confidence to be as indicated in fig. 14%. Because the local-
field effects are not investigated in detail we, for sure,
adopt d = 5a as being one of the limitations for the LS
approximation, too. In many cases the errors of the NS para-
meters are probably less than 5% even for shorter spacings.

The regime of validity of the LS approximation is less



sensitive to the configuration and the number of buoys than
what is the case for the NS approximation. This is because
all the first order scattered waves are taken into account and
the errors may not accumulate in the same way as in the NS
model. On the other hand, the regime of validity is very much
affected by the accuracy of the coefficients «% and «°
entering the L8 formulae. Curve II of fig.14 would, for
instance, be substantially lowered if the small-body approxi-
mations (3.17) and (3.18) were used instead of the "exact™
coefficients.

The results of the LS model itself justify the
neglection of multiple scattering. From the results of section
3.5 it may be deduced that

4,13
Na,i

|Aij| << 1 (4.13)

where ng i3 denotes the second order scattered wave on buoy
H
Nq.1° Thus, if
b}
multiple scattering were included in the LS model, the added

no. j due to the first order scattered wave

terms would hardly be of any significance. It should, however,
be noticed that inclusion of higher order scattered waves in
the LS approximation would be inconsistent. This is because

the first order scattering terms Aij and Ai represent

k3
approximations which neglect terms of the same order in magni-

tude as the twice scattered waves.

One should at last notice that the correction terms
Aij and Aikj are of order 0(1/vkd) and 0(1/kd),
respectively. TFor large separations, therefore, it is

consistent to put ELS R ZNS while retaining the LS

exciting force vector £L§. With reference to fig. 10
such an approximation would not be reliable unless the
more restricted far-field assumption (3.2) is satisfied,

that is for kd greater than, say, 10.

Submerged buoy systems

It is instructive to study the asymptotic behaviour

of the scattering terms Aij and Aikj as o + 0. Assuming deep



water condition it can be seen from (3.17), (3.18), (3.49) and

(3,57)-that
az/VFdij for half-immersed buoys
8, ]
+ e-2klzlla3/VEdij for submerged buoys
and
2
o /k\/dikdjk for half-immersed buoys
[Aj_kjl"‘

e‘2k|2k1a3/kaikdjk for submerged buoys

The lessons to be learned from these asymptotic expressions are

1) The scattering effects are less for small submerged
buoys than for floating buoys of corresponding size.

2) The depth factor. exp(«2k|zi[) causes the scattering
effects to stay small for submerged buoys even when
o 1is not much less than unity.

From this we deduce that the NS approximation is more precise
for submerged systems than for systems of floating buoys. The
regime of NS wvalidity is consequently larger for submerged
buoys than what is indicated by curve I in fig. 14. Probably,
the regime of validity for the LS approximation, too, is
larger than what is indiated by curve II of the same figure.

4.3 Conclusions.

1) It has been justified that the scattering effect may be
neglected provided that the buoys are small enough and
that they are not too closely spaced. The relative
significance of the scattering correction terms go like

a2 and a3 for floating and submerged buoys, respec-

tively.

2) The approximation of the isolated diffraction wave ¢3 i
3
by the composite radiation wave -¢r seems to be pretty

good even for floating buoys of normalised radius as



3

4)

5)

L6

large as o =~ 0.5,

Except for buoys of guite special geometry the far-field
assumption seems to be pretty well satisfied when the
buoy spacings d is larger than ba.

A consequence of 2} and 3) is that the LS approxi-
mation applies for most of the ocean wave frequencies of
interest even for buoys of diameter as large as ?2a =

10 m and spaced as closely as d = 25 m.

The LS approximation is a simple analytic model for
interacting buoys. Its hydrodynamical parameters are
expressed by the isolated exciting force coefficients
only, and the execution times needed for computing the
LS parameters are probably significantly less than

what is needed by the methods used in the above cited
3-6

references See table 1, page u48.
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5. COMPUTING METHODS.

In order to gain knowledge of the dynamical behaviour and
the power absorption properties of specific many-buoy systems,
our mathematical model has to be implemented on a computer.

The present chapter concerns assumptions and brief descriptions
27b

of the methods used in the computer program

5.1 Computing the hydrodynamical parameters.

The fundamental quantities of the LS approximation as well
as the NS approximation, are the surge and heave force coeffi-
cients «° and «k°. Because their small-body approximations
(3.17) and (3.18) are not valid unless @ < 0.3 it is preferable
to use more accurate values, for instance, parametric approxi-
mations based on numerical results. The parametric expressions
used for evaluating the exiting force coefficients of the two
buoy types shown in figs.5 and 6 contain enough fitting parameters
to ensure quite correct coefficients for o < 1.0.

The remaining hydrodynamical parameters- K;S , ZN? or

i ij
ZE? - are evaluated according to (A.46), (3.36), (3.50) and
(3.58). It should be noted that the diagonal radiation
reactances X?i = wmgi are not considered since the model

is intended for applications to phase-controlled buoys only.

The use of fast and accurate standard routines for
evaluating the Hankel functions implies that no significant
computer errors are attached to the output figures. The
execution time needed for computing all the hydrodynamical
parameters increases rapidly with the numbers of buoys. See
the table 1 below. Of course, the resiprocity relation (2..4Y)
is used so that only half of the off-diagconal elements of
Z are explicitly evaluated.
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N B(s) 5 (s)
5 0.018 0.083
10 0.067 0.561
15 0,150 1.699
20 0.272 3.827
25 0.430 T.436

Table 1. Typical execution times Tt for computing all the
hydrodynamical parameters {Ki} and {Zij}

N = number of buoys

TNS - execution time when the non-scattering

approximation is used

TLS - execution time when the low-scattering

approximation is used.

5.2 Unconstrained power maximisation.

Hereafter we confine ourselves to multi-buoy systems where

1) all buoys are identical, that is

> = S
1

kK¢ =« } i=1, .. N (5.1)
l 3

722, = 7°
11

ii) the buoys are mechanically decoupled, that is

Z .. = 7 & = (R .. + R

m,1i] m,ii * Xp, 1108

ij c,il 1,ii m,ii” “ij
(5.2)

iii) the loss resistance matrix is a constant diagonal matrix,
that is
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I (5.3)
I Dbeing the NxN matrix of identity.

Because we consider phase-controlled buoys it is
convenient to write the diagonal elements of the total impe-~

dance matrix in the following way

Zeogi = %3t Zpis F Ryp ORI (5.%)

where the conversion impedance elements Zi are defined by

Zi = Ri +ix Rc,ii + J.(Xii + X ) (5.5)

m,ii
(We use a single index 1 on Zy in order to avoid confusion

with the radiation impedance element Zii')

A consequence of the assumption ii) is that the useful
absorbed power by a system of N buoys equals the sum of
absorbed power in each buoy:

N " N
P, = 1 Pei T3 ¥ (5.6)
1=1 =

Now, let us turn to the power maximisation problem. If
there are neither bounds on the elements Z; nor restrictions
on the heave amplitudes |ui] the maximum power is found by
the following three steps.

1) Find the optimal velocity vector by solving the

opt

u
matrix equation (2.15). Use u = u in the following

opt
steps.

2) Find the corresponding optimal conversion impedance
elements Zi from the equations of motion which may be
written in the following way

(Ry; + Ry + Z0u; = F, - % Zijuj (5.7)

3) Find P, by using (5.6).
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Although the complex matrix equation of (2.15) may be split
into two real equations, a general routine for solving complex
linear equations is applied. The routine is a single precision
one, but several checkings of the solutions did not reveal any
rounding errors of significance. However, the execution times
become seriously long for large N. See table 2.

N t(s)
5 0.022
10 0.097
15 0.251
20 0.517
25 0.915

Table 2. Typicael execution times T for solving a set

of N linear complex equations.

5.3 Power maximisation under motion constraints.

In many practical situations it is difficult or even prac-
tically impossible to achieve optimum buoy motion as described
by (2.15). For instance, the heave amplitude for a floating
buoy cannot be larger than its physical dimension. This leads
to the problem of power absorption under motion constra%nts.
This problem is recently studied by Evans28 and by Falnes and
Budalzg. We here present a computer implemented technique for

solving a quite general problem of constrained power maximisation.

We distinguish between the following kinds of constraints.

a) Bounds on the variables, which are the real and imaginary
parts of Zi'

b) Amplitude constraints.

The first kind is generally of the form
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xmlngxixmax (5.8)
where x represents one of the variables. Resonant buoy

condition is a special case of this:
x’i‘a":x‘;’m:o , 1= 1,... (5.9)

For non-absorbing reflecting buoys the appropriate bounds on
R. are

max
R,

] 3 = 0 (5.10)

The resistance bounds for practical absorbing buoys depend on

the specific turbine and generator characteristics.

For simplicity we shall here confine ourselves to the case
when the variables are either fixed or unbounded. It is then
convenient to introduce a new real vector x containing
those resistance elements Ri and reactance elements Xi

which are not fixed. The dimension of x thus equals the

number of unbounded real variables in the conversion impedance
matrix and is denoted by Nk For instance, if each buoy is
resonant and possesses an adjustable power take-off equipment,

then X contains the resistance elements, only, and Noax = N.

While a) represents a special type of linear constraints,
the amplitude restrictions of b) are non-linear. This is
because the velocity amplitude Iui] is not a linear function
of the variables of x. It is usual to write the non-linear

constraints as inequality constraints; in our case we set

c;(x) =1 - Iui]/wsmax 20 , i=1,...,N
(5.11)

These constraints are said to be active if c; are negative.

The mathematical formulation of the simplified maximisation
problem we term "P1", and it reads

P1: Maximise {Pc(ﬁ)lci(ﬁ) >0 , i=1,...,N}
X

Ll



The problem of unconstrained power maximisation - hereafter
called PO - is a special case the problem of P1 if Spax

In this case x contains all the 2N real parameters of Ri

and Xi and all the amplitude constraints (5.11) are inactive.
However, the general problem P1 1is by far much more complicated
to solve than PO. Firstly, the constrained optimum velocity

vector u cannot be found by any simple relation. Secondly,

~opt
analytic expressions for neither the first nor the second order
derivatives of PC - with respect to the variables x; - are
available. The reason is that Pc = PC(E(Em(g))) is an implicit

function of x. See (2.10), (2.1) and (2.7).

Although éomputer routines for non-linear constrained
minimisation problems are available, none of them were used
for solving P1. The reascons for that are: 1) the routines are
very general so that a lot of programming work 1is required,

2) it is feared that execution times due to frequent function
evaluations will be large, and finally 3) an alternative
simple procedure did work for most cases of interest. This
procedure is outlined in the following.

Motivated by the Langrangian method30 we consider a related but

simpler problem

P2: Minimise {F(x)}
X

where F(x) 1s an objective function chosen so that the
solution of the problem P2 is approximately equal to the
solution of P1. 1In the computer program we have chosen one of
the following three forms of F(x)

Filx) = -P_(x)
F(x) = F2(x) = -Pc(g) + W(x) (5.12)
F3(5) = —Pc(g) + W' (x)
where
N 2
W=Cc } min(0,c ()N (5.13)

1=1

is a smooth barrier function, and
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N 2
W' = C §  (e.(x)) (5.14)
i=1 * 7

is a smooth well function. C is a positive constant or
variable. The functions W and W' are illustrated in fig.

15. The splitting up into three different cases has been done

| )
F F
- (
z=-P¢+W 3 - P‘.'.W
WS,
I\l}s-‘.
T a - < 1 o
; © Juoo| R ! luem|
, - -
. =-p
N e 1 €
=R

Fig.15. Schematical drawings which show the effects of

using a barrier function W and a well function

W'. Minimisation of the objective functions F2
and F3 ensure that the inequality constraint
[u <ws _ and the equality constraint |ul =

ws . respectively, are approximately satisfied.

for computational reasons. Because the second order derivatives

of the barrier function W(x) are not continuous when c;(x) =

0 , it causes some troubles in the minimisation procedure.

Therefore, at low incident waves when none of the constraints

(5.11) are active, the first objective function F, is used,

whereas the last one, F3 » 1s used when the waves are so large that
all of the <constraints are active. Supported by the illustrations ir
fig.15 it is realised that the solution of P2 approximates the
solution of the original constrained problem P1 when the

constant C- becomes large, that is, when C"/Pc + o,
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The routine written for solving the problem P2 is based

upon the following simplified algorithm

i) Select an objective function F(x), a coavergence

criterion and a starting variable vector x(O)

ii) Set n = 1 ~

iii) Minimise ({F(x) }. Update the variable X
X

n
iv) Repeat 1iii) for n = 2,...,n
P s 0o x
v) Return to ii) if the convergence criterion

is not satisfied.

The convergence criterion used in the computer program is

IAF(i)| ]F(i) - F(i_1)| < |F(i)|€ (5.15)

where F(i) denotes the objective function after running through
the loop 1ii)-iv) 1 times and € 1is a convergence parameter.

Step no. iii) is a one-dimensional optimisation problem because

all the remaining variables {xi|i¢n} are regarded as being
constant parameters. The method used for executing the step

no, 1ii) 1is illustated in fig.16. It is based upon the assump-
tion that the objective function F(xn) in a certain neighbour-
hood of the minimum may be approximated by a second order polynomial
in X - Because each evaluation of F involves solving the
N-dimensional complex equation of motion (2.1) the total execution
time for the optimisation routine critically depends on the
efficiency of step no. iii). See table 2. 1In order to combine

the requirements of solving this one-dimensional minimisation
problem by a minimum of steps and to an acceptable accuracy the
subroutine possesses some refinements not shown in fig.15:

1) the initial step length is adjusted according to the convergence
parameter € and to the curvature of F(xn), and 2) a special
procedure handles the cases when the second order derivative

i

(32F/3x§) is non-positive.

5.4 Comments on the computer efficiency.

The results exhibited in table 1 tell us that the
execution times for computing the hydrodynamical parameters may
become seriously long for large systems. However, it is not
believed that Fhese times can be drastically reduced by any
programming tricks. Evaluations of the Hankel functions
Ho(kdij) and H1(kdij) probably represent the major part of
these execution times, but the applied single precision
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Fig. 16. An example which illustrates the method applied for

solving a one-dimensional optimisation problem. The

objective function and an arbitrary variable are denoted by

y and x, respectively. Explanation of the successive

steps:

1) A point P, = (x1 ,y1) is evaluated beside the

2)

3)

L)

starting point Po'

Evaluate the second point P2 in the direction of
negative slope.

A parabola f(I) {dashed curve) is
fitted to P ,P. and P, , and £V hich mini-
mises §(1), is found analytically.

Because ﬁ(1) is outside the region defined by %,
and X, » & new po%g? P3 is evaluated.

Ancther parab?%§)§ is fitted to the points P3,
P2,PO s an?e)x is derived.

Because X lies within the region defined by

Xy and x = we assume that y(i(e))

a4 .
ymln
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routines proved to be very fast, even compared to a self-
supplied and less accurate Hankel function routine.

The execution time for solving the unconstrained optimi-
sation problem would probably be reduced by rewriting (2.15)
as two real NxN matrix equations. This is because it is
faster solving a real matrix equation of two right hand side

vectors - Re{F} and Im{F} - than solving a general complex

matrix equation with a sigle right hand vector. In the actual
computer program the equation (2.15) was, for convenience,solved by
the same routine as used for solving the equation of motion (2.1).

The greatest problems and challenges to improvements are,
however, to be found in the problem of constrained optimisation.
Difficulties tend to pile up when

1) the couplings between the buoys are strong, for example
when lightly loaded buoys are closely spaced.
2) the barrier function W is used.

3) the number Noax of variables is large.

The typical problem of case 1) 1is slow convergence. See
the illustration in fig. 17. Bad or missing convergence is the
problem of the case 2) as well, but now the reason is probably
that the quatratic approximation of the objective function F,
fails when the constraints are active. This is realised from
the fact that second order devivatives BQW/Bxi are discontinous
when ci(ﬁ) = 0. A common problem associated with case 3) 1is
that the objective function possesses local minima. Not unexpect-
edly,this problem is most pronounced when the reactances Xi are
variables of optimisation. When the optimal phase or relative

reactance (Xi/R ) 1is large, the corresponding buoy motion

is small, implyigélihat a sign flip Xi > -Xi will affect the
power PC to a small extent. See the illustration in fig.18.
Consequently, it is difficult to optimise the power with respect
to the reactances for large systems, especially if the buoys are

lightly loaded and strongly coupled.
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Confours of F(Z)

P(OJ

Fig.17. Geometrical interpretation of the optimisation
procedure for two different cases:
1) the coupling terms between the variables are
small.
2) the coupling terms are strong.
While the the minimum of F is found in a few
steps for the first case, the zigzagging path of

the latter case implies slow convergence.

Some of the mentioned convergence problems would probably
be reduced by using.a more sophisticated optimisation procedure.
With reference to fig. 17 a sort of directional descent method3?
would probably be more efficient for systems where the couplings
are relatively important. However, a thorough outline of an
improved method in constrained optimisation is beyond the scope
of this thesis. We are content to point out that there is

room for considerable improvements.



Fig. 18.

Illustration of & situation which causes troubles
in the procedure for constrained optimisation. The
objective function possesses a local minimum in
addition to the global one. This is a typical
situation when x represent a reactance and the

number of optimisation variables, LN is large.

58
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6. APPLICATONS.

6.1 Definitions and some results for an isolated buoy.

A main topic of this chapter is to investigate the inter-
action effect within groups of equal wave-power buoys. Therefore,
it is reasonable to study the ratio Q defined by

Q = P /NP°

e, max’ Ve (6.1)

Here Pc,max is thg maximum useful power converted by the whole
system. Further, Pc is the maximum useful power convertable by
one isolated buoy. Both Pc,max and Pg are, in general,

functions of a lot of factors, included the loss resistance R

and, if any, the imposed constraints. Hereafter we shall ter'm1

Q@ the "interaction faotor". Its value gives some information

of how the wave-power buoys within a given configuration are
interacting. If the interaction forces between different buoys

are relatively small, Q will be approximately equal to unity.

It should be noted that @, in general, differs from the interaction
factors used by Budalza, Falnes7 and Evans10. Their expressions

for the interaction factor are based upon the assumptions of

1) real exciting force coefficients, 2) no losses and 3) no
amplitude constraints. (Budal also assumed equal heave amplitudes.)
Denoting the interaction factor used by Falnes and Evans by QE,

we thus have that QE is a special case of the more general
interaction factor Q:

QE = 1lim Q(R, = 0) , No constraints (6.2)

a-{ 1

The interaction factor Q does not give any information
of how the power is distributed among the individual buoys. In
order to study this distribution, therefore, it is convenient

to define an individual interaction factor Qi by

/p° (6.3)
(o]
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=1
c,i ~ 2
by buoy no. 1. Hence Q 1is simply the mean value of all Qi’

where P Rilui{2 is the actual useful power converted
In the special case of dynamical focusing, see section 6.2,
where all the reflecting buoys are non-absorbing (Ri =0,
i=2,..,N) , we have that Q@ = Q1/N.

Next it is convenient to introduce a critical wave ampli-

tude |ncr[ defined by

Max{[uipt|:i = 1,...,N} = ws (6.4)

max ’lno] =|ncr|

where u?pt is the unconstrained optimum of the velocity
amplitude of buoy no. i. Hence |ncr| represents the largest
incident wave for which all amplitude constraints are passive.
max in (6.4) by

a frequency dependent factor because the first harmonic compo-

Strictly speaking, one should multiply ws

nent |u;|/w of a latched buoy motion is slightly greater than
the physical maximum Smax See fig. 2. However, it is
assumed that this correction factor will affect the absorption

characteristics very little.

In fig.19 is shown how the critical wave amplitude anrl
for an absorbing, isolated and semi-submerged sphere varies
with the wave frequency v. The depth of water used throughout
is h = 500 m which ensures deep water condition for all
frequencies considered. We see that |ngr| increases very
rapidly with the wave frequency v. This fact is easily
derived from (2.1), (3.18) and (A.46), showing that buoy/wave

amplitude ratio is

OPt

UJF]O

Q Q
= ( = R . L"OL = 0(a”%y = 0w ™) (6.5)
R +R1+Rc wR

in the low~frequency limit w=>0. Another feature indicated
by the different curves of fig.19 is that the critical wave
amplitude increases as the total load resistance (Rc + Rl)

increases.

Most of the results in this chapter are presented in

normalised form. In order to get a feeling of what is the
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absolute value of the absorbed power we have plotted the
constrained maximum power Pg in fig. 20 for some frequencies.
We see that Pg is a quadratic or a linear function of |[n_]

o .
or |n_|>[n .| , respectively.

o]
for [n | <[n .l

The results of figures 19 and 20 should be treated with
some caution because they are derived from linear theory. For
buoy amplitudes as large as 8 ax the exciting force is
obviously not independent of the buoy elevation as assumed in
linear theory. Especially, we expect that non-linearities
become significant when the actual water-plane area is not a
constant. Nevertheless, we assume that the results of fig. 19
and 20 represent reasonable estimates of the true values for

o o .
lncrl and P_ , respectively.

For later use it is convenient to give a precise definition

of the following terms:

1) resonant buoy: a buoy, say no. i, for which the
diagonal reactance is fixed and equals

zero, that is, X; © 0.

2) phase-optimisation: optimisation of power with respect
to the principal reactance elements

Xg -

3) non-absorbing buoy: a buoy of no power take-off equip-
ment, also called a reflecting buoy.

4) beam seas: incident waves with wave crests

parallel to a linear row of buoys.

5) head seas: incident waves which have their
direction of propagation parallel

to a linear row of buoys.
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(m]

20t

1.0

Q15 (Hz] v

Criticel wave amplitude ]n2r| versus wave frequency
v for an isolated semi-submerged sphere of radius

a =5m and maximum heave amplitude |u/m]max =
Spax — 5 D¢

Curve (a): Unloaded buoy of no loss resistance.

Curve (b): Optimelly absorbing buoy of no loss resistance.

Curve (c): Optimally absorbing buoy with loss resistance

I
Rl =3 R (v).
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Fig. 20.

- (o] . .
Maximum absorbed power Pc versus incident wave

amplitude ]n0| for an isolated semi-submerged sphere
of radius a = 5 m and maximum heave amplitude

1 0
max max 1 2 R (v)

is assumed for all curves.

|u/w| = g = 3 m. A loss resistance R, =

The dashed vertical bars indicate the critical wave

amplitudes as given by the curve (c) of fig. 19.
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6.2 Dynamical focusing.

It has been demonstrated31

that a linear row of equidistant
resonant buoys is acting as a dynamic reflector provided that
the interspacing is below a certain limit (which is one wave-
length at normal incidence). This fact leads to an interesting
question: Is it possible to focus ocean waves by reflecting
buoys analogous to focusing acustical waves or visible light by
parabolic mirrors? In order to answer this question we investi-
gate the system shown in fig. 24, The buoy no. 1 - hereafter
referred to as the "focal buoy" - is the only absorbing buoy.
The other ones are non-absorbing reflecting buoys positioned
along a parabolic curve given by

x = d, - y2/'+df : (6.6)

f
Here df is the distance - termed the "focal length" - between
the focal buoy and the point where the parabola intersects the
x=-axis. The y-coordinates of the reflecting buoys are chosen
to be

y; = dw/2 - (N=-1)d 5 2<1XN (6.7)

where d 1is the lateral buoy spacing and dw is the mirror
width. Hereafter d, is called the "aperture", in analogy to
optical systems. It just equals the distance between buoy no.
2 and buoy no. N.

d, = (N-2)4d (6.8)

Although the basic idea - to concentrate the wave energy

in a small area - is the same, the focusing system described
above is quite different from the focusing system proposed by
Mehlum® . The latter is a forward focusing system based upon
refraction on fixed submerged plates or lens elements while our
system 1s a backward reflection focusing system. Also the
cemversion unit proposed by Mehlum is quite different from the
absorbing heaving buoy. Further, the focal length of Mehlum's
"lens" is dependent on wave frequency, while the dynamical

mirror - provided that the interspacing d is small enough -



Schematical top view of a dynamically focusing
wave-power system. The dashed curve going through
the centers of the reflecting buoys (no. 2,3,...,N)
is a parabola which has its focal point at origin.
See eq. (6.6). The only absorbing unit is the buoy
no. 1, called the "focal buoy”.
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is expected to have a focal length independent of the frequency.

Results for relatively small systems are shown in figures
22 to 27. M"Small" in this context means that the focal length
de
the wavelength. Because merely low and moderate wave frequencies

and the aperture dw are of the same order of magnitude as

(v < 0.11 Hz) are used and because qualitative characteristics
are of more interest than very accurate results, the mathematical
model used in this section is the simplest possible one: the NS
approximation for small buoys having real heave force coefficients.
From these results, although they concern one special configura-
tion,we deduce that following features are typical for small

dynamically wave focusing systems:

1) The power absorbed by the focal buoy is very much
affected by the phase of the focused wave, that is,
whether it interferes constructively with the inci-

dent wave or not.

2) The power absorption for oblique wave incidence

(B#0 ) 1is poor.

3) The absorbed power is increased if the phases of the
reflectors are optimalised. Especially the perfor-
mance for oblique waves is much improved by phase-

optimisation. See fig. 23,

4) Losses in the reflectors very much reduce the

absorbed power.

In fig. 24, it is shown how the amplitude of the focused wave
increases with increasing aperture or number reflecting resonant

buoys. When the focused wave ]nfl is of the same order as
the incident wave ]nO] ,» one may expect that for some frequen-
cies these two waves will interfere destructively and cause

the power to be less than for an isolated buoy! In fact, this
is just what is happening for N = 10 and R, = % R® (when the

curves pass below Q = 0.1 in figs. 22 and 23). The

results of fig. 25 and additional calculation (not shown

here) indicate that the focused wave amplitude |nf] is

more affected by the aperture dW than by the lateral
interspacing d , provided that kd < 4. The power absorption,

therefore, is probably not much improved by using
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more but less spaced buoys. However, this argument is valid

only if the reflecting buoys are not restricted in their amplitudes.
The heave amplitude distributions for - the two cases when

d =100 m and d = 50 m are shown in figs. 26 and 27, respec-
tively. From these results we deduce the critical wave ampli-~

tude Incrl
Consequently, 1f the reflecting buoys have to be amplitude

increases as the interspacing d decreases.

restricted, the efficiency of a dynamical reflector will increase
with increasing buoy "density" (N - 1)/dw.

The sudden decrease of the interaction factor Q@ for
relative small angles of incidence B (see fig.?25) 1is
explained by the fact that the effective focus will not coin-
cide with the site of the absorbing buoy. (With "effective
focus" 1s meant the position where the focused or reflected
wave has its maximum amplitude.) Calculations, not presented here,
indicate that the lateral shift of the effective focus is appro-

ximately

Ay ~ d_tanB (6.9)

£

Thus we deduce that the longer the focal length df the
narrower band of the angular wave distribution can be absorbed.
The physical interpretation of the improvement due +o phase-
optimising the reflecting buoys is that the effective focus,

to some extent, is directed or steered back to the focal buoy.

It should be emphasised that the the presented results
concern small systems. For large systems, say df ~ dw £3
4
10

optics where the linear dimensions are much larger than the

m , the situation will be more comparable to geometrical

wavelength. Although numerical calculations have not been
carried of for such large systems - the computer program would
be very expensive to use when N = 100 - we may expect the
following. The focused wave at normal incidence will be much
larger than the incident one, making the interaction factor
less sensitive to the phase difference between the respective
waves. However, the focused wave may become so large that
linear hydrodynamics will not apply in the focal region.
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Fig. 22,

Interaction factor @ versus wave frequency v for a

dynamically focusing system.

~ Number of buoys (ineluding the focal buoy): N = 10.
Focal length: df = 500 m.

Aperture: 4 = 800 m. (Lateral spacing: & = 100 m.)
- Angle of incidence: B = 0.

Curve (1): Each non-absorbing buoy is phase-optimised.

The loss resistance 1s R, =0

1
Curve (2): All buoys are resonant. The loss resistance is
Rl = 0.
Curve (3): All buoys are resonant. The loss resistance is
= 1 g0
Rl 3 R (v).

The horizontal dotted line Q = 0.1 (= Q1/N) represents
the maximum power when all of the (N-1) reflecting buoys
are held fixed.



— =y,
T g —

Interaction factor @ versus incident wave angle B

for the focusing system described in fig. 22.

‘- Wave frequency: v = 0.101 Hz,

— Loss resistance: R1 =0

Curve (1): All buoys are resonant.

Curve (2}): The non-absorbing buoys are phase-optimised.
The horizontal dotted line @ = 0.1 represents the
maximum power absorbed by the focal buoy when all the

remaining buoys are held fixed.
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Fig.2l, TFocused wave amplitude ratio ]nf/nol versus the

aperture dw or the number of buoys N. nf is the
wave elevation at the fixed focal buoy due to the

motion of the remaining (N-1) resonant and reflecting
buoys.

— Focal length: df = 500 m.

- Lateral buoy spacing: 4 = 100 nm

- Incident wave frequency: v = 0.100 Hz.

- Angle of incidence: 8 = O,
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Fig. 25. Focused wave amplitude ratio |nf/no| versus wave

frequency v. n_ 1is the wave elevation at the fixed

f
focal buoy due to the motion of the remaining (N- 1)
resonant and reflecting buoys.

Focal length: df = 500 m.

- Aperture: d_ = 800 m.

- Angle of incidence: R = 0.
- Loss resistance: Rl = 0,
Curve (1): N =10, 4 = 100 m.

Curve (2): N =18, 4 = 50 m.
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Fig. 26.

N NNNNNN\N\

2 3 4 5 6 7 8 9 10
buoy no.

Histogram showing the distribution of heave amplitude
ratios |ui/u°I for a ten-buoy focusing system. (u°

is optimal velocity amplitude for sne absorbing isolated
buoy.)} The hatching of post no. 1 indicates that this
bucy is the only absorbing one.

- Wave frequency: v = 0.10 Hz.

- Angle of incidence: B = 0.

- Loss resistance: R, = 0.

- Aperture dw = 800 m,

- Lateral buoy spacing 4 = 100 m,

T2
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4 6 8 10 12 14 16 18
buoy no.

Histogram showing the distribution of heave amplitudes
|ui] for a focusing system of N = 18 buoys. (u°

is the optimal velocity amplitude for one absorbing
isolated buoy.) The hatched post indicates the
absorbing focal buoy.

— Wave frequency: v = 0,10 Hz.

- Angle of incidence: B8 = 0.

— Loss resistance: Rl = 0.

- Aperture: dw = 800 m.
- Lateral buoy spacing: 4 = 50 m.
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6.3 Systems of absorbing buoys.

As opposed to the previous section we now consider wave
power systems of absorbing buoys only. That is, each buoy is
assumed to have a power take-off equipment. We also assume
that the power take-off has a linear characteristic, that is,

the effective conversion resistance Ri is independent of the

heave amplitudes. The results of the previous section on
dynamical focusing are not attached to any special buoy geometry
because the approximation for ideal point absorbers was used.

In contrast to this, the results presented throughout this section
concern semi-submerged spheres of radius a = 5 m. The implied
mathematical model is the LS approximation.

The results shown in fig. 28 concern rows of equidistant
buoys lined up along the x~-axis. With a loss resistance of
Ry = % R°(v) and a buoy interspacing of 4 = 30 m the results
indicate that the interaction factor Q decreases with
increasing buoy number N. Figure 29 shows that the inter-
action factor Q also depends quite a lot on the angle of

incidence 8.

The results of figs. 3¢ and 31 try to reveal the effects
of losses and amplitude constraints, respectively. Although
the results concern a special two-buoy system, the following

features are probably quite general:

1) The interaction effects become less significant, that
is, Q approaches ynity when a) the loss resistance
increases or b) the incident wave amplitude exceeds
the critical value |ncr| which means that the

amplitude constraints become active.

2) Resonance conditions do not, in general, represent the
optimal phases for the buoy motion, a result previously

pointed out by Falnes ’

The former point is simply explained by the fact that the

diagonal elements of the total impedance matrix (Z + Em) in
either case become larger. Thus the hydrodynamical coupling
forces become of less relative importance. As for the latter
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Fig. 28. The interaction factor Q versus wave frequency V
for one linear row of egquidistant unconstrained buoys
in head seas. N = 2, 3 or 5 bucys in the row.

- Buoy interspacing: 4 = 30 m.

- Loss resistance: Rl = % RO(\)).
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Fig. 294 The interaction factor § versus the wave frequency
v for a system of three unconstrained buoys at various
angles of incidence.
- Buoy spacing: 4 = 30 m.

- Loss resistance: R, =
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The interaction factor @ versus the wave frequency

for an unconstrained two-buoy system in head seas with
various loss resistances Rl.
- Buoy interspacing: 4 = S0 m.
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Fig. 31.

1 - M .
010 015 [Hz] v
The interaction factor @ versus the wave frequency
v for a two-buoy system in head seas.

- Buoy interspacing: 4 = 50 n.

- Loss resistance: Rl = 0.

Curve (1): Unconstrained and phase-optimised buoys.
Curve (2): Unconstrained and resonant buoys.

Curve (3): Constrained and resonant buoys.

Incident wave amplitude: ]nol = 2|ngr€v)

78
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point it should be noted that the increase of the power Pc
due to phase-optimisation is quite small in most cases. In
fact, the interaction factor of curve (3} in fig. 31 would not
be detectably enhanced if the constrained and heavily loaded

buoys were phase-optimised.

The relatively large difference between curve (1) and curves
(2) and (3) in fig. 31 for the lowest frequencies is explained
by the following. As the frequency v tends towards zero, the
optimum motion for the two buoys without loss resistance approaches
that of an ideal dipol radiator. That is, the front and the rear
buoy move with large amplitudes but with opposite phases. When
losses are included this dipol behaviour will be ceased and the

maximum power will be substantially reduced.

While the figs. 28-31 mainly concern linear rows in head
seas, the fig. 32 shows some results for a linear row in beam
seas. Although losses are included we see that these results

qualitatively confirm what is previously indicated by Budal23

10: 1) the interaction factor Q changes rapidly

and by Evans
at the frequency corresponding to kd m~ 2m and 2) the changes
are more pronounced with increasing number of buoys. The results
in fig. 33 show the effect of placing additional rows of absor-
bing buoys behind the first row. They indicate that the drop in
Q{v) at the frequency v corresponding to X ~ d becomes

less distinect when the number of rows, Nr’ increases. This is
not unexpected for the following reason. The radiated waves

from the buoys within one group - the configurations in fig. 3
may alternatively be regarded as five groups, each consisting

of Nr buoys - will have different phases and partly cancel each

other at the site of another group.

In order to compare with the dynamically focusing system
we present the heave amplitude distribution for a ten-buoy system
with no loss resistance. See fig. 34. Comparing these results
with those in fig. 26 it is seen that the optimal heave ampli-
tudes at beam seas are approximately one half of the corresponding
values for the focusing system. Despite of the large amplitudes
the absorbed power is substantially less for the focusing system.

This i1llustrates a feature which is probably quite general: The
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absorbed power per unit volume of displacement, PC/Vd » 1s
larger for systems of absorbing buoys than for system where
the major part of the buoys are reflecting or non-absorbing.
The volume of displacement Vd is here defined by

o N

V., =ma"- ¥ 2fu l/w
i=1

Additional calculations, not shown here, indicate that the
optimal buoy amplitudes in beam seas are roughly proportional
to the normalised buoy interspacing Kkd, provided that kd < 2m.
For the particular frequency v = 0.10 Hz the results of fig.3u
show that the optimal heave amplitudes as well as the absorbed
power are substantially reduced at head seas relative to beam
seas. However, at frequencies v < 0.07 Hz the conditions are
quite different. Provided that there are neither losses nor
amplitude constraints, the head sea orientation then represents
the greatest amount of power and the largest heave amplitudes
as well. This low frequency behaviour is previously predicted

by Evans10.

In chapter 4, the validity of the NS and the LS
approximation was discussed on the basis of their hydrodynamical
parameters. It is, however, of interest to compare the inter-
action factors for these approximations with the interaction
factor QE used by Evans10. We firstly present some results
for a two-buoy system of neither losses nor constraints. See
fig. 35. These results surprisingly indicate that the interac-
tion factor QE fits better to QLS
QNS. (QLS and QNS

to the LS and NS approximations, respectively.) The
NS

than what is the case for

denote the interaction factors according

difference between Q and QE must be ascribed to the "phase"

shift of ng (= R%i for the two-buoy system) relative to
ROJO(kd12). Although R?? is a better approximation than its
limit  lim R?? = ROJO(kd12) » the results of fig. 35 need not

represent a paradox. See Appendix C for an explanation. However,
the curves in fig. 35 and their analytical counterparts (C.13)-

(C.15) indicate that the NS approximation is not consistent
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unless the exciting force ccoefficients Kg entering the NS
formulae are real. On the other hand, the results increases
the confidence of the ideal point absorber approximation.
Probably, it gives reliable values for the absorbed power even
for frequencies or buoy sizes corresponding to the region

above the curve I in fig. 14.

Finally, in fig. 36 are shown some results for a five-
buoy system. In contrast to most of the graphical presentations
in this secticn the interaction factors in fig. 36 are shown
versus the normalised bucy spacing kd and at a constant wave
frequency. This is done in order to facilitate the comparison

with previously known resultsza’aa.

The relative high frequency,
corresponding to a« = 0.5, is chosen in order to display a
significant difference between the curves (1) and (2). However,
it also corresponds to an incident wave amplitude - implied
in curve (u) - which is rather unphysical. See curve (c) of fig.
19. Nevertheless, the curve (4) clearly demonstrates the effect

of amplitude constraints at lower frequencies.

The curves in fig. 36, in fact, display our main original
contributions to a more thorough knowledge about interacting
wave power buoys. The simple mathematical model for ideal point
absorbers {(curve (2)) is improved by the LS approximation
which applies for relatively large buoys. Secondly, the power
absorption has been made more realistic by the inclusion of
conversion losses. And finally, a method for power maximising

under quite general motion constraints has been developed.
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Fig. 32. The interaction factor § versus the wave frequency
v for a finite row of unconstrasined absorbing buoys in
beam seas.
- Buoy interspacing: d = 100 m.

R°(v).

. 1
Loss resistance: Rl =3
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The interaction factor Q versus the wave frequency Vv for
one, two and three parsllel rows of five equidistant
buoys. N is the number of rows.

- Buoy spacing within one row: d = 100 m.
- Row spacing: dr = 30 m.

— Angle of incidence: B8 = 0.
- Loss resistance: R =-% Ro

1 {v}.
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head seas
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Fig. 3L. Histograms showing the optimum heave amplitudes lui/u |

for of a ten-buoy system. (W is defined in fig. 26 )
- Configuration: linear row of equidistant buoys.

~ Buoy spacing: 4 = 100 m.

- Wave frequency: v = 0,10 Hz.

Loss resistance: Rl = 0.

Interaction factors: @ = 1,95 at beam seas.

Q = 0,63 at head seas.
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Fig. 35.

006 Qo o5 M3V

Interaction factors for two identical buoys versus the
wave frequency Vv for different mathematical approxi-
mations.

- Buoy interspacing: 4 = 50 m.

- Loss resistance: Rl = 0.

- Constraints: no.

Q.

—————— Q . See eg. (6.2).
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Fig. 36.

!
20 1o L0 6.0 kd

Interaction factor @ versus the non-dimensional buoy
spacing k4 for & linear row of N = 5 equidistant buoys
in beam seas. The wave frequency is v = 0.157T7 Hz,

corresponding to k = 0.1 mf1 and o = 0,5,

Curve (1): QLS(R1=O). Constraints: no.

Curve (2): QE s, Originally calculated by Evans33.

See also {6.2).
Curve (3): QLS(Rl= %

Curve (k): QLS(R1=% R°). Constraints: 1) resonant buoys

Ro). Constraints: no.

and 2) amplitude constraints corresponding to
.. 0
an incident wave Inol = 2|ncr|

Curve (S5): 1im QE , according to Bud3123.
N-reo
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6.4 Concluding remarks.

The results presented in this chapter provide a lot of
valuable information about the absorption characteristics for
some wave power buoy configurations. It is, however, useful
to give a short summary and to make some supplying comments on
the results.

As for dynamical focusing systems we have demonstrated

the following.

1) It is possible, by means of a parabolic line of non-absorbing
heaving buoys to concentrate a substantial part of the incident

wave energy in a small focal area.

2) Unless the dynamical mirror is very wide and consists of
numerous buoys, the power take-off by the focal buoy very much
depends on the phase of the focused wave relative to the

incident one.

3) The wave focusing ability will be reduced if there are losses
in the non-absorbing buoys or if the amplitude constraints

become active.

k) The power absorption rapidly falls off in oblique waves,
especially when the reflecting buoys are resonant. Phase-
optimisation substantially improves the performance at normal

as well as oblique incidence.

The possibilities of phase-optimising in practical situations
depend on the actual wave spectrum. It is obviously very difficult
to perform phase-optimising by means of buoy latching when the

sea condition is represented by a number of waves of different
frequencies and angles of incidence. At wide angular wave spectra,
therefore, the possibility of steering the effective focus are
perhaps practically limited. Also it should be noted that at

large incident waves (|nol>[ncr[) the possibility of phase-optimi-
sation is reduced because "distuning" or steering "out-of-phase"
is the only way of performing amplitude restriction. A suggestion
for improving the bad angular band-width for the dynamical focusing
system is to apply more absorbing devices on either sides of the
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focal buoy. At oblique incidence the effective focus then would
hit one or two of the other absorbing devices. This idea is

based upon a proposal previously made by Mehlumsz.

As for wave power systems consisting of merely absorbing

buoys we have demonstrated the following:

1) The interaction forces between different wave power buoys
have substantial influence on the power absorption in each
buoy. Consequently, the maximum power available for the
whole system dépends on ‘the buoy configuratuon and on the
angle of incidence.

2) Inclusion of power losses in the buoys reduces the maximum
useful power convertable by the system. Also the interaction

effects decreases when the loss resistance increases.

3) Constraints on the heave amplitudes have somewhat the same
effect as a loss resistance. That is, the interaction

effects are reduced relative to an unconstrained system.

4) Compared to buoys which are always resonant, phase-optimisation
does not increase the power significantly when the absorbing
buoys are heavily loaded.

5) The power absorption is pretty good for all angles of

incidence.

The greatest advantages of such systems in preference to
focusing systems are i) the absorbed power per displacement
volume is much larger, ii) the absorption characteristics in
oblique incident waves is better. Another advantage, not
mentioned yet, is that the power output from many absorber units
will be more smooth than from a single one. Unless non-absorbing
buoys are much cheaper than absorbing ones, the dynamically focusing
systems probably are economically disfavourable.
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7. CONCLUSION

The preceding chapters provide a lot of interesting and
useful knowledge about wave-power buoys and, in particular, the
interaction effects arising in muiti-buoy systems. Some of the
results represent well-known knowledge, but the thesis also
contains some new and original results not published previously.
It is, therefore, appropriate to give a short summary of what
is new in this field. TFinally we give some recommendations and

suggestions for further progress.

The summary comprises the following points:

1) The phenomenclogical formulation of a general multi-body

system includes a loss resistance matrix R, which takes

1

care of all the inevitable power losses in a practical system.

The expression (2.16) for the maximum useful part P
c,max

of the total absorbed power ,therefore,represents an extension

of a similar result obtained by Evans10 and Falnes11.

2) We have explicitly shown that the maximum total power
P, max(El = 0) for a system of unconstrained, heaving and
b
ideal point absorbers is independent of the specific buoy

geometry.

3) By extenting the well-known small-body theory to second

order in o we have derived the following interesting result.

The significant imaginary part of the heave force coefficient

k® for a floating semisubmerged buoy is

lim (%} = nang-%az
a0

irrespective of the buoy geometry.

4) An analytic approximation for the far-field scattered wave
of an isolated buoy is derived. This approximation is
composed of two terms: one isotropic term proportional
to KOHO(kd) and one anisotropic term proportional to

k> H1(kd) cos(8-R),



5)

6)

7)

8)

g0

On the basis of this scattered wave approximation a mathe-
matical model for interacting heaving buoys is formulated.
This model - which is termed the LS approximation -~ takes
care of first order scattering effects but neglects multiple
scattering effects as well as the influence of the local
fields. It therefore represents a large simplification
relative to more accurate methods solving the differential
equations numerically. The corresponding reduction of the
execution times is of vital importance in studying systems of
numerous interacting buoys. On the other hand, the LS
approximation represents a substantial improvement or
sophistication of the ideal point-absorber approximation.
Comparison with accurate numerical results indicates that the
LS approximation is reasonably good for floating buoys even
for diameters 2a as large as 1/5 of the wavelength and for

buoy spacings d as small as 5 buoy radii.

A method for calculating the maximum useful power under

motion constraints is described and implemented on a computer.
The constraints are of two different types: 1) restricted
heave amplitudes and 2) fixed values for the locad resistances
Ri or the reactances Xi' These constraints are more

general than ghe simple global censtraint (ﬁ*g < Const.)

used by Evans 8 or the equality constraints (|u.]| = ws )
29 i max

discussed by Falnes and Budal®”.

Quantitative results from the written computer program have
demonstrated the possibility of dynamically focusing of ocean
waves by a parabolic line of reflecting non-absorbing buoys.
With the proviso that the analysis concerns a small system

we have,however, found that dynamically focusing systems

have many disadvantages in preferance to systems of merely
absorbing buoys.

In addition to the focusing system a lot of practically
interesting buoy configurations have been analysed. For

some of these systems the effects of power losses and of
motion constraints have been demonstrated. Not unexpectedly,
these quantitative examples show that the hydrodynamical

interaction forces become less influent on the power
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absorption when the loss resistance increases and when
the waves are high so that the buoy amplitudes have to be

restricted.

9) Finally, we have noticed that the interaction factor for
two interacting ideal point absorbers surprisingly well
coincides with the LS interaction factor even for frequen-
cles corresponding to non-dimensional buoj_sizes as large as
@ ~ 0.5. Moreover, an analytic investigation provides a
plausible explanation to this: the scattering effects
are smaller on the absorbed power than on the hydrodynamical
parameters because the different scattering terms - to the

lowest order in a - cancel each other.

It is hoped that this thesis provides increased understanding
in the field of wave power conversion. Also it is hoped that the
presented results will be valuable and useful in the process
of determining the optimal buoy configuration of a practical wave
power plant. Nevertheless, more work ought to be done in this
field. 1In the following we shortly mention some recommendations

or suggestions for how to make further progress.

Clearly, an important aspect of optimising the buoy
configuration is to maximise the average power enhancement due
to the interaction effects. Better than using the simple
interaction factor shown in the figures of chapter 6, therefore,

is to study an effective interaction factor, for instance

Qee = I Q(v,8) E(v,8) dBdv

e
where Q denotes the interaction factor at a typical wave

no(v,B) and E 1is the energy spectrum or another suitable
weight function. However, this sophistication requires some
knowledge of the wave climate at the site of the actual wave

power plant.

Also the mathematical model may be improved. Firstly,
the LS model may be further improved, for instance, by inclu-
ding additional and more accurate terms in the expression for

the scattered waves Secondly, a more realistic loss

')
. nd’i . 1 L0
resistance Rl(v) than R1 = = R7(v}) should be used in the

calculations. The ratio Rl/R for a practical wave power buoy
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probably depends on the frequency v as well as the conversion
resistance RC (non-linear losses). It is, indeed, of great
importance to investigate the non-linearities because it may

turn out that they play an important role at large waves.
Inclusion of non-linearities, however, implies that the equations

of motion must be solved by iterative methods.



APPENDIX A. BASIC HYDRODYNAMICS FOR SURFACE WAVES.

The subject matter presented in this appendix represents
well-known theory available in books of hydrodynamics16’34.
For completeness and convenience of reference, however, some
fundamental equations and useful relations are here briefly

reproduced in our notation.

A.1 Basic equations.

For irrotational flow of an non-viscous and incompressible
fluid the velocity field 3'(;,t) always can be written as a
gradient

Vo= Ved! (A.1)

where ¢'(;,t) is a scalar field - termed the velocity

potential - satisfying the Laplace equation:
¥ ¢' = 0 (A.2)

The absolute pressure (;,t) within the water is related

pf
tot
to ¢' through the Bernoulli equation:

' P Pl

3¢~ + l (v¢')2 + tot + gz = c = air (A.3)

t 2 p

where p 1is the density of water, g 1is the acceleration of
gravity and C 1is an arbitrary function of time, chosen so

that the absolute pressure equals the atmospherical

)
ptot
pressure at the free surface.

The boundary condition at rigid surfaces is

3¢' - > 1 - 1
S = n-ve' = u! (A.4)
where 0 is the normal vector pointing inwards the fluid

domain (see fig. 1) , and uﬁ is the normal component of the

surface velocity.



The free surface condition is a bit more complicated. It
may, however, be derived from the fact that a water particle

on the free surface will stay on the free surface. That is

1 1
%;: = %ﬁ? + (V¢p')-¥n' = %%% s, 2z = n' (A.5)

where n'(x,y,t) is the wave elevation. The Bernoulli
equation (A.3) gives
A’ Py 2
3t )

(V¢ +gn' =0 , 2z =n' (A.6)

[T

Combining these two last equations, evaluating them at the the
mean free surface, 2z = 0 , and dropping all second and
higher order terms in ¢' , we arrive at the linearised free

surface condition

2
2% 391 _
<Z 83z 7

., 2z =0 (A.T7)

The linearised expressions for the wave elevation n' and the

hydrodynamical pressure p' are

4
nt = - 834)2_ . z = 0 (A.8)

Y

and

P'" = Pioy * P82 T Puip TP %%é' (A.3)
From now on we assume harmonical time variation. However,
in linear theory this does not imply any loss of generality
since a large class of time-varying functions can be
decomposed into harmonical components which can be treated
independently. For convenience we use complex representation.
Any time-dependent physical quantity represented by a primed
symbol, say A' , 1is related to a corresponding complex

amplitude A Dby
A'(t) = Re{ael¥t} (A.10)

where 1 1is the imaginary unity and o is the angular
frequency related to the wave period T by



w = 27/T

(A.11)

e

on

The complex versions of the Laplace equation (A.2) and the free

surface condition (A.3) are Jjust

vy = 0
and
2
3¢ _ w” _ -
3z g $=0 , 2=

(A.12)

(A.13)

Assuming constant depth of water h the boundary condition

(A.4) is conveniently split into two terms:

%% =0 , z =-h (A1)
and

0 _

35 7 Y4, » on body surfaces. (A.15)

The complex amplitudes of velocity, hydrodynamical pressure

and wave elevation are

3 )
vi=ﬁ‘2_- , i= 1,2,3
1
P = -iwpd
and

respectively.

3 (A.16)

(A.17)

(A.18)
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A.2 Plane and circular waves.

A solution of the boundary value problem (A.12)-(A.14)

which represents a progressive plane wave is

6, = - f% n, o (kz)e 1k(xcosB+ysing) (A.19)

where g is the complex wave elevation amplitude at origin,

k 1is the wave number related to the wave length XA by
k = 2n/) (A.20)

Further, B is the angle of incidence and e(kz) 1is the

depth function

_ cosh(kz+kh)
elkz) = cosh (kh) (A.21)
approximating exp(kz) for deep water (kh>>1). Inserting
¢ into the free surface condition (A.13) we get the
dispersion relation for surface waves
w? = gktanh(kh) (A.22)

It can be shown that the wave ¢O is carrying a mean power of

2
. pg"D 2
K B I (A.23)
pr. unit length of the wave crest, D being a non-dimensional

depth factor given by
D = tanh(kh) {1 + 2kh/sinh(2kh)}} (A.24)

It is easily seen that D = 1 on deep water.

Before presenting circular waves we introduce an
additional condition which has to be satisfied by potentials
representing scattered or radiated waves. This is the so-
called radiation condition

kR

1imé = b(8)e(kz) (kR) Ze i (A.25)

kR0
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where b 1s a function of the azimuthal angle 8. The
physical interpretation of this condition is that ¢ has to

represent an outgoing progressive wave.

Two linearly independent solutions of the boundary value

problem (A.12)-(A.14) which represent outgoing circular waves

are
wg = e(kz)H_(kR)cos(n8) (A.26)
wi = e(kz)H_(kR)sin(n8) (A.27)

where Hn is the Hankel function of order n and second
kind. (The commonly used superscript (2) is omitted, for
convenience.) The fact that these eigenfunctions satisfy the
radiation condition (A.25) is seen from the large argument
expansion 35 for Hn

H () = (n)2x)2e 2T/ D g oy (an2e)

Because Hn tends to infinity as the argument x+0 it 1is
realised that neither wi nor wi are regular at the z-

axis. In general we may decompose a potential ¢ =~ satisfying
the boundary value problem, including also the body condition

(A.15) and the radiation condition (A.55) - into two parts

¢ - ¢10C + ¢°° (A.29)

The far-field potential ¢ _ may be expanded in terms of the eigen-
functions wi and wi , that is

{Anwi + ani} (A.30)

A, and B/ being complex coefficients. The local field

potential has to be added in order to 1) make ¢

¢loc
being regular at the z-axis and 2) make ¢ satisfying the
body condition (A.15). 1In some special cases the local field
potential ¢loc may be expanded into wave-free eigenfun?tions
of the boundary value problem (A.12)-(A.14), but in general

analytic expressions do not exist. Anyway, represents

¢loc
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a local standing wave of no average energy transport. We
therefore have that

¢loc = 0(1/kR) , kR>>1 (A.31)

A.3 The hydrodynamical parameters.

By the hydrodynamical parameters are meant the exciting
force coefficients KE and the radiation impedance elements
ZE? . Their physical meaning is explained in section 2 1,
Knowing the geometry of each body and their position it is -
in principle at least - possible to calculate these parameters
for an arbitrary wave frequency . The exciting force

coefficients are determined from the

diffraction problem:

Consider the case when all bodies are fixed and the

incident wave is represented by the plane wave potential ¢

as given by (A.19). The total potential then is

+ 0y (A.32)

where ¢d is the diffraction potential satisfying the Laplace
equation (A.12), the free surface condition (A.13), the bottom
condition (A.14), the radiation condition (A.25) and finally
the body conditions

_ s - = on S. s 1 = 1,..,N (A.33)

S; 7representing the average wetted surface of body no. i.
The exciting force FE corresponding to the mode p(i) is
given by the integrated hydrodynamical pressure p

FE = -”.pnpds = iwp ﬂ.(¢o + ¢d)npdS (A.34)
i i

where the normal component np is



> >
ep-n P = 1,2,3
= (A.35)
"p
- > >
e(p_3)(pixh) P = 4,5,6

- > -> ’ >
Here €15 €5, €5 are the unit vectors in x~, y- and z-

direction, respectively, and the radius vector Ei is
referred to the center of rotation. The exciting force is
conveniently decomposed into two terms: 1) the so-called

Froude-Krylov force

P -
Fi,FK = iwp ﬂ.¢onpd8 (A. 36)
S.
i

and 2) the diffraction force

p o =
Fi,d = iwp ﬂ-¢dnpd8 (A.37)
S.

1

The radiation impedance matrix elements are determined
by the

radiation problem:

Consider the case of no incident wave and body no. j
oscillating in mode q , all other modes being fixed. The

potential then is

¢ = w§u§ (A.38)
where u® is the generalised velocity amplitude and o3 is
the normalised radiation potential for the oscillating %ode
q(jJ). This normalised potential has to satisfy the same
equations as the diffraction potential, with exception of the
body condition which takes the form

2o [Ma 3
wJ
an

(A.39)
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The force component corresponding to mode p(i) due to the

motion in mode q(j) 1is

-ZE?ug = lwp ﬂ.w§u§npd8 (A.40)

Thus we have that

Pq _ _: q
Zij = -lwp Sﬂ tDjnpdS (A.41)

1

It also can be shown36 that the radiation impedance matrix
Z is symmetric:

7Pe - z9P (A.42)
1] ji

which i1s the so-called resiprocity relation.

Some other useful relations are presented below.

1} The Froude-Krylov force and the diffraction force may

alternatively be expressed by

dp¥
2P DR | i
Fi,FK = —-iwp JJ¢O s das (A.43)
Soo
and
3 3¢
D o ff.p 7o
Fi’d = ~iwp 21 ﬂ.”i = nqu s (A.b44)
q=1 4" q
i
respectively.

2) The radiation resistance element RE? = Re{ZE?} may be

expressed37 by the exciting force coefficients for the

modes p(i) and q(3)

2w
RE? = _{BL.Z‘]_TT I KE(B}*K(%(B)e‘lkd.ijcos(’Yij—B)dB
2p8 D g (A.45)

where the distance dij and the angle viy are defined



3)

101

in fig. 3. As a special case of (A.45) we get the

radiation resistance R° for an isolated heaving buoy

R = -Z—T IKOI (A.48)
pPg D

K being the isolated exciting force coefficient in

heave.

The far-field coefficient bE(Yi) defined by

-1 9 B
lim ©f = bP(y.)e(kz) (kd.) Ze Kdi (A.47)
kd 1 1 1 1
1

is related to the exciting force coefficient KE by

p . pgDh im/4. p
Ki(yi+n) = VZTe bi(yi) (A.u48)

where (di,yi,z) are local cylinder coordinates. See fig.t.
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APPENDIX B. ANALYTICAL APPROXIMATION OF THE DIFFRACTED WAVE
POTENTIAL

In this appendix it will be shown that the diffracted wave
of a small isclated buoy is approximately equal to a certain
composite radiation potential. The analysis below is not restricted
to symmetrical bodies. We therefore let "a" be a characteristic
buoy dimension. The body may be floating or submerged and its

mean center for gravity is ;1 = (x1,y1,z1).

Suppose the body is moving in such a way that its center
of gravity follows the orbit of a fluid particle of the undisturbed
incident wave ¢o' Let the resulting wave potential be ¢. The

perturbing potential A¢ then is

Ap = ¢ = 6 = 0, *+ 0 (B.1)

< r

where ¢ is the diffracted wave potential and ¢ is the
ul r

radiation potential due to the prescribed motion. That is
3 o o
o = 1 O 3 (B.2)

since rotary motion of the body is neglected. According to
(A.39) and (A.33) the boundary conditions for ¢r and ¢4
at the body surface § (581) are

3¢ 3 ¢
Dls p=1 d xp ;
1
and
3¢ 3 Y] 3 ad
) ngomo| T CLong el {1+ 0}
S p=1 Plg E=1 P ;1

(B.4)

respectively. The boundary condition for the perturbing

potential is consequently
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3¢ 3¢
a(Ad) o) r
S = =) n 0(a) = = —| O0(w) (B.5)
an S 2 P axp - an S
T
1
From this we deduce that
%9 = 0(a) (B.6)
T
or., equivalent
0g = 0,1 + 0(a)) ~ -¢, @ << (B.7)

A few comments on this result are listed below.

1) This approximation is built-in in the small-body formula
(3.10) for the diffraction force Fg. The approximation
above is, however, valid not only at the body surface S,

but in the far-field region as well.

2) From egs. (3.6), (3.17) and (3,18) it is realised that
the heave potential ©° is the dominant one for floating
small buoys. In the long-wave limit (a+0) , therefore,

flcating bodies scatter waves isotropically.

3) For a floating body the neglected term A¢ of the
diffracted wave potential ¢d may be of the same order
as the surge and sway terms of ¢r. However, we shall
here assume that the complete potential, —¢r, much better
than its leading term approximates the diffraction

potential ¢.. This assumption is, in fact, supported
d p PP

by the results of figs. 9-11.

4) For axisymmetrical buoys the approximation (B.7) implies
that the higher anisotropic terms - proporsional to cos(n8) and
sin(ng) - is neglected for n > 2. See (3.6) and (A.30).
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APPENDIX C. ANALYTICAL INVESTIGATICN OF THE INTERACTION FACTOR
FOR A TWO-BUOY SYSTEM.

The results shown in fig. 35 raise the following questions:
LS and QE - for LS
absorbers and ideal point absorbers, respectively -

1) Why do the interaction factors Q

display such a good agreement and

2) Why does the NS approximation lead to an interaction

factor QNS seemingly less accurate than QE?

In order to give an answer to these questions we investigate
the limit &ig QLS for two identical floating buoys of no losses

and no constraints.

The Cartesian coordinates are chosen to be (0,0,0) and (0,d4,0)
for the centers of buoy no.1 and buoy no. 2, respectively. By
means of the expression (2.17) for the maximum power it can be
seen that
|2

2 * 0,2 o}
$UE/ET 4 |F,/F° %) (R, /R®) = Rel{F F /|F7|“}(R ,/R)

Q =
2 0,2
(R, ./R%)° = (R,,/R®)

" 12 (Cc.1)

is a general and exact expression for the two-buoy interaction
factors. It is convenient to introduce the non-dimensional
parameters ¢ , Oq s Gy 5 Oy and G40 by

¢ = kd sing (C.2)

%(IFI;SI2 + lF12‘512)/|F°|2 =1+ 0, (C.3)
*

Re{F%Sng /1FC|} = cosg + 9, (C.4)
LS, o _

R11/R = 1 + 941 (C.5)
LS,,0 _

R12/R = Jo(kd) t 04, (C.86)
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By means of the two-buoy results (4.1)~{(4.,5)and the small-body
approximations (3.17), (3.18) and (3.30) for «°, ¥° and
arg{Ko}, respectively, it can be seen that

o4 = nYOcos?a2 + 0(&3) (C.7)
- 2 3
0, = nYoa + 0Ca™) {(C.8)
g,.= 1l Y a2 + 0(&3) (C.9)
11 0 0 '
Oyg = nYoa2 + 0(a3) (C.10)

The LS interaction term then may be written as

LS (1+o1)(1+011) - (cos?+02)(Jo+o )

QM = 12 (C.11)
(140,02 = (J_+3,,)°
11 o 12
or
1-cos¥J_  + o, +0,,-J _0,-cosqfg
QLS ~ o} 1 11 o 2 12 (c.12)
2
1—J0+2011-2J0012

when higher order terms of the numerator and the denominator
have been omitted. Inserting (C.7)-(C.10) into (C.12) we find

that #he terms of order 0(&2) surprisingly vanish. Hence

1-cos?Jo+0(a3)

LS
Q™ = ;
1-02+0(a?) (C.13)
Now, remember that the NS approximation includes the term S
but concurrently 1t neglects the terms and o,..(The term

C,5 O
2 11
0,, Tepresents the'"phase'shift of (R??/Ra) relative to Jo(kd)}.

Consequently,we have that

NS 1-cos?JO-vcos?Yoa2+O(a3)
Q - (C.14)
2 2 3
1-JO-chos?Yoa +0(a™)
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It should be noted that when a-o QLS as well as QNS reduce

to the formula for QE previously found by Falnes39 and by Evansuo

E 1=-cos¥yJd
Q- = __7_:Fr42 (C.15)
o

However, (C.13) and (C.14) indicate that QLS reduces more

rapidly to QE than what is the case for QNS. This fact probably

explains the differences between QLS s QNS and QE as displayed

in fig. 35.



APPENDIX D. NOMENCLATURE

The thesis contains a rather large number of symbols and,
in many cases, a lot of variants of one basis symbol. In order
to help the reader, we therefore enclose an alphabetic list
of the most frequently used symbols. A symbol - or a symbol
variant - is usually not included in the symbol 1list if 1) it
occurs rather locally in the text or 1i) it differs from another
symbol by one of the special superscript or subscripts; see
below. TFor most of the symbols inclosed a reference is made to

the equation or the figure where it is defined or first occurs.

Special superscripts or subscripts:

- symbol denoting a matrix or a vector.

t

!

- symbol denoting the transposed of a matrix or a vector.
* - complex conjugation.
! - real and time-dependent quantity; eq. (A.10).

Pand® - mode indices. Default mode is heave (p,q = 3).

iandj - buoy number indices. Default number is i,j = 1 for one
isolated buoy or many idendical buoys.
(n)  _ n'th harmonical component.
© - 1isolated buoy.
NS - . .
- non-scattering approximation.
LS

- low-scattering approximation.

- far-field part of a wave or wave potential.

Symbol list:

A - far-field coefficient; eq. (A.30).

A - waterplane area, fig. 4.
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a - buoy radius, fig.4.

ci(é) - heave amplitude function, eq. (5.11).

D - depth factor, eq. (A.24).
d - buoy separation distance.
di - radial distance from buoy no. i to a point in the

fluid, fig. 1.

dij - radial distance between the centers of two buoys, fig.3.

e(kz) - depth function, eq. (A.21).

3 - generalised exciting force vector; eq. (2.1).

FE - element of T ; eq. (2.2).

F(x) - objective function; eq. (5.12).

£, - submergance factor, eq. (3.12).

g - acceleration of gravity.

g4 -~ submergance factor, eq. (3.13).

Hn - Hankel function of order n and second kind (= Jn—iYn) .
eq. (A.26).

h -~ depth of water, fig. 1.

i - imaginary unity (= V=T ).

JO - Bessel function of zero order.

k - wave number; eq. (A.20).

M - total number of oscillators.

N - number of buoys.

np - normal vector component; eq. (A.35).

n - number of real optimisation parameters.

max



useful converted power, eq. (2.9).

exciting power, eq. (2.10).

radiated power, eq. (2.11).

loss power, eq. (2.12).

amount of power available for one isolated buoy, eq.
hydrodynamical pressure, eq. (A.17).

interaction factor, eq. (6.1).

interaction factor according to Evans, eq. (6.2).

horisontal distance from the origin to a point in the
fluid, fig. 1.

radiation resistance matrix, eq. (2.5).

radiation resistance for a heaving isolated buoy,; eq.
conversion resistance matrix, eq. (2.7).

diagonal element of Ec s eq. (5.5).

loss resistance matrix, eq. (2.7).

wetted buoy surface, fig. 1.

physical maximum for the heave amplitude, eq. (5.11).
wave period ( = 2m/w).

variable of time.

generalised velocity amplitude vector;, eq. (2.1).
veloclity amplitude for mode no. q of body no. J.j eq.
immersed buoy volume; fig.u.

fluid velocity component in the g-direction; eq. (A.

(6.1).

(A.u46).

(2.2).

17).



(xi,yi,zi)

HEs

ij

A..
1]

ik]
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cartesian coordinates for the center of buoy
no. 1 , fig. 1.
radiation reactance matrix,; eg. (2.5).
mechanical reactance matrix.
diagonal element of (X + Em); eq. (5.5).
vector of optimisation variables.

Neuman function of zero order.

radiation impedance matrix, eq. (2.5).
mechanical impedance matrix, eq. (2.1).
element of Z ; eq. (2.2).

non-dimensional buoy radius, eq. (3.1).
angle of incidence; fig.3.

azimutal angle for a fluid particle, fig. 3.

azimutal angle for buoy no. j relative to buoy

no. i, fig. 3.
non-dimensional scattering force; eq. (3.48).

non-dimensional scattering term of the radiation

impedance Zij > eq. (3.58).

Kronecher delta ( = 1 for j=i, 0 otherwise).
non-dimensional radiation resistance, eq. (3.14).
convergence parameter, eqg. (5.15).

complex wave amplitude, eq. (A.18).

wave amplitude at buoy no. i.

incident wave amplitude; eq. (A.19).

radiated wave amplitude; eq. (3.33).



scattered wave amplitude, eq. (3.47).

scattered wave from buoy no. k caused by the

radiated wave ng » eq. (3.54),.

azimutal angle, fig. 1.

exctiting force coefficient, eq. (2.4).

heave force coefficient for an isolated buoy, eq. (3.5).
surge force coefficient for an isolated buoy, eq. (3.5).

wavelength; eq. (A.20).

non-dimensional radiation reactance or added mass,
eq. (3.14),

wave frequency ( = 1/T = w/2w).

normalised buoy surface coordinate, eqg. (3.23).
water density.

total velocity potential, eq. (A.12).

incident wave potential, eq.(A.19).

diffracted or scattered wave potential, eq. (A.32).
potential corresponding to ng’i.
normalised radiation potential, eq. (A.38).

angular wave frequency, eq. (A.22).
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