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Problem description

The Revolt project by DNV-GL in collaboration with NTNU aims to build knowledge
around autonomous surface vehicles, their application and challenges. This includes several
areas of interest such as collision avoidance, multi-target tracking and sensor fusion on
embedded systems.

The purpose of this specialization project is to prepare a real-time sensor fusion pipeline
on DNV GL’s ship ReVolt. The project diverges from previous contributions by focusing
on synchronized data acquisition. The specialized project addresses the following tasks:

1. Installation of Velodyne Lidar and Ladybug5+ camera on ReVolt

2. Synchronization of all exteroceptive sensors using GPS-time

3. Extrinsic calibration of exteroceptive sensors, including transformation from Revolts
BODY-frame to NED-frame.

4. Implementation of a detector based on a convolution neural network (CNN) for the
detection of boats in camera data.

5. Recording of time-synchronized data from sensors

6. Analysis of the extent to which Lidar detections correspond to camera detections
and vice versa



Abstract

Sensor fusion is a key component for providing autonomous surface vehicles and ships
with better situational awareness of its environment. Exteroceptive sensors such as lidar
and camera provide limited information by themselves, but when combined creates a
system resembling an eye, distinguishing colors, features and distances. Fusing sensory
data requires it to be captured and processed within the same short time-frame to accommodate
the dynamics of the system and its environment. Synchronization of sensory data is
therefor crucial for sensor fusion to work properly.

In this specialization project, a system for synchronization of a Velodyne VLP-16 lidar and
a Flir Ladybug5+ camera is implemented using NMEA-183 strings and PPS provide by
a Hemisphere VS330 GNSS. Accuracy of timestamping using GPS-time and the system
clock is compared. Sensor models for both lidar and camera are presented. A possible
method for extrinsic calibration of lidar and camera is presented and the transformation-
matrices from sensor to NED-frame are formulated. Two convolutional neural networks
for object detection are integrated. Extensive experiments in maritime environments onboard
the ReVolt model-scale vessel are conducted providing a significant amount of sensory
data for further analysis and research.

The experiments demonstrated that synchronization using GNSS worked as intended,
providing each exteroceptive sensor with accurate timestamping using GPS-time. Using
the system clock provided acceptable results as well when synchronized to an external
time-source, however it might not be an optimal solution given its requirement for continuous
wireless connection. The camera used in this project was discovered to have an unacceptable
transmitting-delay. The cause of this delay is yet to be investigated.
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Chapter 1
Introduction

Autonomous ships are expected to be used in maritime industry within 10 years[11].
Leading this development is organizations with projects within Autonomus surface vehicle(ASV)
/ Unmanned Surface Vehicle(USV). The last decade has seen wast improvements within
the ASV/USV industry, and it does not seem to be slowing down.

1.1 Motivation
As a leading organization within ship classification it is essential that DNVGL understands
new technology introduced to the maritime sector. Their participation in Advanced Autonomous
Waterborne Applications (AAWA) partnership supports their continuous commitment to
this. “Autonomous shipping is the future of the maritime industry. As disruptive as the
smart phone, the smart ship will revolutionise the landscape of ship design and operations”[23].

The Revolt project is a result of this commitment. In collaboration with NTNU, Kongsberg
and Maritime Robotics, the Autosea project[16] was founded with the main goal of developing
methods for guidance and navigation for autonomous ships. Sensor fusion is part of
the foundation for these tasks, providing improved situational awareness to be used in
navigation and control. This requires synchronized sensory data in real time.

1.2 Review of Previous Work
This specialized project is a continuation of previous work done on Revolt. Much of
the research done on Revolt have had an element which involved synchronization or
equipment used for this purpose.

• Kamsvåg [24] developed a Ros-based architecture for camera-lidar sensor fusion
and tracking on the Revolt model ship, where lidar was the primary sensor. DBSCAN
was used to cluster lidar-data and performed within expectations. Object detection
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Chapter 1. Introduction

was done using Faster R-CNN with a previously trained model provided by Tangstad
[36]. Synchronization of sensory data was done in two steps. The camera was
triggered by the arrival of TCP-packets from scans by the lidar. Secondly, timestamping
of data was done on arrival using ROStime. Lidar managed to track targets with
satisfactory results within 10-50 meters. Faster-RCNN had limited range, with few
detections passed 20 meters.

• Alfheim et al. [3] proposed a dynamic positioning(DP) system for the Revolt model
ship. It used high quality navigational sensors already integrated on Revolt using
ROS architecture. One of the navigation sensors provided high quality GNSS-data
on NMEA-183 format and options for synchronization using GPS-time.

A significant amount of research on synchronization and sensor fusion has been done
the last two decades. However, finding relevant research in sensor fusion which provides
detailed description off synchronization of sensory data has proved to be difficult. Especially
research that uses the same type of sensors used in this project. Two articles provide some
information:

• Schneider et al. [35] developed a system for accurate synchronization of camera and
lidar in a dynamic system. The system also provides a solution for occlusion given
different viewpoints of the fusioned sensors. By examining the bearing information
provided by lidar-packets, it is possible to estimate the duration of a Lidar revolution
and by that providing a trigger signal for synchronizing the camera.

• Albrektsen et al. [1] developed a timing board that accurately records Time of
Validity from sensors. A wide variety of sensors have been successfully integrated
with the board. It is also capable of triggering cameras to synchronizing with GNSS,
providing accurate time and position data to images.

Previous work shows that there is a possibility for precise timestamping using GNSS on
Revolt. Possible sources for time-delays are also well documented.

1.3 Contributions

The main contributions in this specialized project are:

1. Installation of the Lidar and Camera on the Revolt model ship.

2. Synchronization of all exteroceptive sensors using GPS-time and PPS from the
Hempishpere VS330 GNSS.

3. Integrating YOLOv3 provided by Grini[42] and SSD for object detection of maritime
vessels.

4. Comprehensive experiments of lidar and ladybug5+ camera on Revolt.

2



1.4 Report Outline

1.4 Report Outline
Chapter two gives a brief introduction to relevant theory and principles used throughout the
project. This includes an introduction to sensor fusion, sensor models, kernels and feature
extraction in convolutional neural networks, synchronization and the Robotic Operating
System.

Chapter three describes the integration of sensors on the existing system on Revolt, both
hardware and software. A possible calibration procedure for extrinsic parameters. The
different transformation-frames derived during this project. The process for synchronizing
sensory data and last but not least the visual detection pipeline.

Chapter four provides the experimental setup used during testing. It also goes into detail
of each experiment performed during this project.

Chapter five presents and discusses the results of performed experiments, this includes
the detection pipeline, synchronization-test and interference by USB3. Experiments to be
followed up is also mentioned in this chapter.

Chapter six concludes this specialization project and suggests new problems to be investigated

3
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Chapter 2
Background, Theory and Sensor
Models

The aim of this chapter is to provide the theoretical principles and theory used throughout
the report. This also includes an introduction to the sensors used in this project and their
respective sensor models.

2.1 Sensor fusion

2.1.1 Introduction

Physical systems is bound to have uncertainty in regards to behavior and dynamics. In
some cases, this uncertainty can lead to dangerous situations. Sensors, both external and
internal are used to combat this uncertainty, by providing information of environmental or
internal dynamics.

Unfortunately there does not exist a sensor that does it all, providing a wide span of
information needed to create a complete picture that gives the machine full situational
awareness. There do however exists methods to decrease uncertainty, by combining sensory
data from several sources/sensors such that the resulting data creates a better sense of
awareness than if the sensor data was used individually [13]. This process is called sensor
fusion.

2.1.2 Method

A good foundation is necessary before sensor fusion is possible / delivers reliable results.
The project goal is to provide proper timestamping to sensory data, minimizing time-
disparities, as well as creating an object detection pipeline with the goal to provide reliable
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Chapter 2. Background, Theory and Sensor Models

detections in a real-time setting for a high dynamic system. Given the practical aspect of
this projects, it is crucial to use correct methods and have a cohesive project plan. It can
be summarized by these points:

1. Evaluate the time-constraints of the system, choose hardware and algorithms accordingly.
The dynamics of the system affects its time-constraints.

2. Use a common time-reference for the relevant sensors used during sensor fusion.
This can be the system clock synchronized with an external source or internal clocks
on sensors synchronized to GPS-time from a GNSS. A possible different approach is
synchronization through triggering as mentioned in [35] and [1], or passive synchronization
discussed in [26].

3. Proper calibration of both intrinsic and extrinsic parameters. Extrinsic parameters
/ poses between sensor frames are used to project sensory data between different
frames.

2.1.3 Timing constraints

Systems with real-time constraints can categorize their time-constraints into three categories
based on the consequences for failing to deliver on time. This categorization can be seen
in table 2.1.

Table 2.1: The terminology for timing constraints in real-time systems

Constraints Consequence for missing deadline

Soft real-time constraints Quality of data degrades, reduces quality of service
Firm real-time constraints Data is no longer considered useful, reduces quality of service
Hard real-time constraints System failure

Firm real-time constraints is most relevant for this project. A sensor missing its deadline
for providing data to be fused reduces the overall quality for that iteration of sensor fusion,
but does not necessary lead to system failure.

2.2 Camera

2.2.1 Pinhole Model

A camera is essentially projecting 3D-points onto a 2D plane. The pinhole model describes
this relationship mathematically, and proves to be a good approximation to the behavior of
a camera. This section is large based on [20].
As illustrated in figure 2.1 the pinhole model inverts the image. By picturing a image plane
in front of the pinhole one avoids working with an inverted image.

6



2.2 Camera

Figure 2.1: The pinhole model

Intrinsic and Extrinsic parameters

As seen in figure 2.2 the mapping from Eculidean 3-space R3 to Eculidean 2-space R2 in
the image plane can be described as

(X,Y,Z)T 7→ (fX/Z, fY/Z)T (2.1)

Where f is the focal length, which is the distance from camera origin C too the principal
point Z = f, where the Z-axis/principal axis intersects the image plane. This gives the
following linear mapping / matrix in homogeneous coordinates

X
Y
Z
1

 7→
 fX

fY
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0




X
Y
Z
1

 (2.2)

This mapping does not take into account that the origin of coordinates in the image plane
might not be at the principal point. This general mapping is added

(X,Y,Z)T 7→ (fX/Z + pX , fY/Z + py)
T (2.3)

In homogeneous coordinates this becomes equation 2.4 where equation 2.5 is the camera
matrix that describes the intrinsic/internal parameters. The matrix is then customized to
CCD cameras, show in equation 2.6, where sx and sy is the pixel size. cx and cy is the
center of the image.

X
Y
Z
1

 7→
 fX + Zpx

fY + Zpy
Z

 =

 f 0 px 0
0 f px 0
0 0 1 0




X
Y
Z
1

 (2.4)

K =

 f 0 px
0 f px
0 0 1

 (2.5)
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Chapter 2. Background, Theory and Sensor Models

Figure 2.2: "The image plane is at a distance f in front of the camera’s origin, on which a noninverted
image is formed. The camera’s coordinate frame is right-handed with the Z-axis defining the center
of the field of view" as described in [5]

Figure 2.3: Example of radial distortion, figures are taken from [20]

K =

 f/sx 0 cx
0 f/sy cy
0 0 1

 (2.6)

The extrinsic parameters describes the pose/coordinate system of the camera in relation
to a known/fixed coordinate system. These parameters can be estimated using a process
proposed in chapter 3.2.

Radial distortion

The model for radial distortion is given in equation 2.7 where (x̃, ỹ) is the image position
that obeys linear projection. (xd, yd) is the image position after radial distortion. r̃ is the

8



2.3 Spatial Data Acquisition using 3D lidar

radial distance
√
x̃2 + ỹ2 from the centre for radial distortion. L(r̃) is the distortion factor,

which is a function of radius r̃[20].(
xd
yd

)
= L(r̃)

(
x̃
ỹ

)
(2.7)

Equation 2.8 corrects this distortion, where (x, y) are the measured coordinates, (x̃, ỹ)
are the corrected coordinates, and (xc, yc) is the center of radial distortion, with r2 =
(x− xc)2 + (y − yc)2[20].

x̂ = xc + L(r) (x− xc) ŷ = yc + L(r) (y − yc) (2.8)

Translation and rotation

When combining data from exteroceptive sensors such as the lidar and camera, the extrinsic
parameters between their respective frames/coordinate systems must be derived for the
data to be combined and used correctly. Here the position and orientation of frame b
relative to frame a is given by the homogeneous transformation matrix [12].

Ta
b =

(
Ra

b raab
0T 1

)
∈ SE(3) (2.9)

Where Ra
b is the rotational matrix, raab is the translation, and 0T is the zero-matrix.

Figure 2.4: Illustration of the Velodyne VLP-16 Lidar. Picture is taken from [38]

2.3 Spatial Data Acquisition using 3D lidar
The lidar used in this project is the Velodyne VLP-16 puck as shown in figure 2.4. It
provides a full 360°3D scan of its environment in real time, returning not only distance
measurements but also the intensity of reflections. The full list of specifications can be
seen in table 2.2. The lidar uses an array of 16 infra-red lasers paired with detectors[39].
Mounted vertically at 2°interval they create a field of view (FOV) equal to±15.0°from the
center as shown in figure 2.6b. It supports three different return modes: Strongest, Last
and Dual which can be configured via the sensor’s web interface.
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Table 2.2: Velodyne VLP-16 Specifications

Model VLP-16

Sensor 16 Channels

Measurement Range 100 m

Range Accuracy Up to ±3 cm

Field of View (Vertical) 30°, ±15.0°

Angular Resolution (Vertical) 2.0°

Field of View ( Horizontal) 360°

Angular Resolution(Horizontal / Azimuth) 0.1 - 0.4°

Rotation Rate 5-20 Hz

Precision Timestamps &GPRMC or &GPGGA strings and PPS

Weight 830 g

2.3.1 Lidar sensor model

Each reflected point is represented in a spherical coordinate frame with radius R, elevation
ω and azimuth α, see figure 2.5 and 2.6. This can be converted to a Cartesian coordinate
frame using trigonometry[40] as shown in equation 2.10.

X = R cosω sinα
Y = R cosω cosα
Z = R sinβ

(2.10)

The lidar uses time-of-flight(TOF) methodology. The range R is given by equation 2.11
where c is the speed of light, tt and tr is the time of transmitted and received pulse.

R =
c

2
(tr − tt) (2.11)

Pl
ij =

 Rij cosωi sinαj

Rij cosωi cosαj

Rij sinωi

 (2.12)

Each point in a pointcloud Pl can be represented with equation 2.12 where ωi and αj are
the vertical and horizontal angel of the fired laser pulse.
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2.4 Computer Vision

Figure 2.5: Each datapoint is given in spherical coordinates (radius R, elevation w, azimuth α)
and needs to be converted to Cartesian coordinates. Note: When a laser pulse doesn’t result in a
measurement, such as when a laser is shot skyward, both distance and reflectivity value will be 0 as
described in [40]

(a) Top view
(b) Side view

Figure 2.6: Top and sideview of the spherical coordinate system used by the lidar[40]

2.4 Computer Vision

Computer vision has seen rapid improvements the last decade. Deep learning has introduced
new methods/algorithms for object detection and recognition with vast improvements in
real-time performance and accuracy. This section will focus on convolutional neural
networks and assumes that the reader has basic understanding of deep learning in computer
vision.
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Chapter 2. Background, Theory and Sensor Models

2.4.1 Convolutional neural nets
How does one extract information/features from an image? For humans this process seems
intuitional and we manage to distinguish objects with similar characteristics easily in real
time. However for computers this task is quite the challenge. In traditional computer
vision, methods such as histogram of oriented gradients (HOG)[7] would be used to create
feature descriptors. By comparing feature descriptors with known descriptors HOG is
able to detect objects. This method is quite computational heavy, not suited for real time
purposes and not end-to-end trainable. End-to-end trainable means that the entire system
can be trained in one operation. This is where covolutional neural nets is a big leap in the
right direction. Given the right properties, it can be considered as a feature extractor and
classifier, with both real-time applications and considered end-to-end trainable.

Feature extraction

How does convolutional neural networks extract features? The solution goes by many
names, such as filters, kernels, sliders. Each pixel in an RGB-image is represented by
three numbers between 0 and 255. One colour of the entire picture can be illustrated as an
array with these pixel-values.

Figure 2.7: The convolution-operation, referred to as kernel or filters in neural networks. Illustration
is given by [18]

The kernel operation is done by sliding a window of size NxN depending on the filter-
size N over the entire picture as illustrated in figure 2.7. Each pixel-value is multiplied
by the corresponding filter-value and summed up. The filters can be seen as feature-
detectors. Usually each convolution layer consists off several filters, where each one
detects a different feature in an image.

Real time performance

Real time performance is determined by several factors, but there is especially two that
should be mentioned. The first one is the structure of the network. Secondly, the detection
pipeline.

The size obviously plays a big role in real-time performance. The more layers the network
consist off, the more computational heavy the operation is. Regarding the detection pipeline
there is two examples that illustrates this well, which is the differences between You Only
Look Once(YOLO)v3[31] and Faster-RCNN[32].

12



2.4 Computer Vision

Figure 2.8: Structure of YOLOv3 [30]

YOLOv3 uses one network for the entire detection pipeline. This is illustrated in figure 2.9
where the bonding boxes and confindence score of said bounding boxes are computed in
parallel with class probability. These are then combined and presented as final detections
which has reached a set threshold.

Figure 2.9: YoloV3 Pipeline[30]

Faster-RCNN diverges from this approach by using a region proposals network, essentially
using two networks instead of one in the detection pipeline. The pipeline illustrated in
figure 2.10 and specifically the region proposal network uses the feature-map given by
earlier convolution layers to predict possible locations for bounding boxes. These proposal
are sent to the classifier and evaluated.
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Chapter 2. Background, Theory and Sensor Models

Figure 2.10: Faster-RCNN pipeline [32]

Having only one network for the entire detection pipeline gives YOLOv3 an advantage
regarding real-time performance. However, Faster-RCNN has proven to give more reliable
detections. For more in-depth information the reader is advised to read [30].

2.5 Synchronization

In this report synchronization refers to precise time-stamping of sensory data.

2.5.1 Time sources

A time-reference is needed when time-stamping sensory data. The quality of this reference
can be described by the terminology "Stratum source" which is a hierarchic system from
0 to 16 where 0 is the most accurate time-source representing GPS-time. Time-servers
connected to a stratum 0 source are referred to as stratum 1 sources and so on. From this
it can be concluded that using time-references with a high stratum source increases the
probability of introducing a greater disparity between the reference and true GPS-time.

2.5.2 Time-disparities

"When Kalman filter measurements compare the outputs of two different navigation systems,
it is important to ensure that those outputs correspond to the same time of validity. Otherwise,
differences in the navigation system outputs due to the time lag between them will be
falsely attributed by the Kalman filter to the states, corrupting the estimates of those states.
The greater the level of dynamics encountered, the larger the impact of a given time-
synchronization error will be."[19]
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2.6 Robotic Operating System

Figure 2.11: Illustration of the hierarchic structure of stratum sources. The clocks represents gps-
clocks. The computers are time-servers.

Time of validity has the same importance as in the given example when fusing sensory
data. Revolt can be described as a system which experiences high levels of dynamics.
Waves is one example where both roll and pitch can experience this. If there are high
levels of time-disparities with what is assumed to be synchronized data, then translating
sensory data between sensor-frames will introduce translation/transformation errors.

2.5.3 Time delays

Retrieving sensory data from sensors includes several steps that might introduce time-
delays. Some examples of this are: The time-difference between time of capture and
transmitting data from a sensor. Finite transmitting-speeds from sensor to computer through
some data-transfer-interface. Continuously polling data rather than reacting when receiving.
Time-stamping when receiving data rather than at the time of capture[1]. All these are
possible contributors to a sum of delay that might affect the performance of the system,
depending on its dynamics and requirements.

2.6 Robotic Operating System
This section is largely based on [29]. Robotic Operating System, commonly refereed to
as ROS is an open source framework that provides libraries and tools to help software
developers create robot applications. This includes drivers, libraries, visualizers, package
management and more[27]. The main philosophy of ROS is decoupling and re-usability.
Ros systems usually consist of several small computer programs that are connected to
each other, communicating through message-passing. These programs can be written in
the language which provides the best efficiency and solution for the specific task, without
problems. This multilingual approach makes it that much easier to accomplish high-
productivity. Each program or software module is refereed to as a node, emphasizing
that one program is part of a larger system.
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Chapter 2. Background, Theory and Sensor Models

2.6.1 Roscore
Roscore provides connection information to nodes. This is used by nodes to form a direct
peer-to-peer connection with other nodes publishing and subscribing to the same topics.
See the following command for how to use it:

$ user@hostname r o s r u n

Figure 2.12: This illustrates the ephemeral connection between Roscore and nodes, initializing
peer-to-peer communication as well as message-passing using topics between nodes.

2.6.2 Rosbag
Rosbag is a tool used for recording and replaying published messages on topics. Its a great
tool, especially when debugging software. Experimental sensory data can be recorded
and used during development to test new algorithms. See the following commands for
recording of three or all topics respectively.

$ user@hostname r o s b a g r e c o r d t o p i c 1 t o p i c 2 t o p i c 3

$ user@hostname r o s b a g r e c o r d −a
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Chapter 3
Implementation

This chapter provides detailed descriptions of implementations done throughout the specialization
project.

Figure 3.1: The ReVolt model ship [11] in 2016

3.1 Hardware and Pipeline

3.1.1 Sensor Integration
Ladybug5+

The camera used in this project is the Flir Ladybug5+. It consists of 6 5MP imaging
sensors, providing a FOV close to 90% of a full sphere. Specifications can be seen in table
3.1. With its FOV and variety of software configurations, it provides a good foundation for
being used in sensor fusion. Its internal clock can be synchronized using PPS and NMEA-
strings, providing timestamps with accuracy close to 20 µs[21]. The camera is delivered
calibrated, which removes the uncertainty/error of manual calibration.

The ladybug5+ have two different ways of delivering its captured images. By using
the provided software in Windows (LadybugCapturePro), where image formating and
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Table 3.1: Flir Ladybug5+ specifications, given in datasheet[15]

Model LD5P-U3-51S5C-B

Imaging sensor 6 x Sony IMX264 2/3", 3,45µm

Resolution
2448x2048 at 30 FPS
2448x1024 at 60 FPS

Global shutter Yes

Field of View 90% of full sphere

Digital Interface USB3

Weight 3 kg

Precision Timestamps RS232 GPS NMEA strings and PPS over GPIO

stitching is done automatically. The other choice is using the provided library in Ubuntu
16.04. It provides "image capture only". Image formating and stitching is not performed,
and each picture is delivered individually. ReVolt is based on Ubuntu, so the last option
was chosen for this project.

The sensor is powered by 12-24V from one of two voltage regulators provided and installed
with assistance from DNV GL. This source is connected to the ladybug using the I/O
connector shown in figure 3.2. The sensor is interfaced with the on-board laptop using
USB3 for data transfer. Each of the six camera-sensors is set to capture 2 frames per
second(FPS), resulting in a total of 12 FPS combined. Each image is originally 2464x2048
but is resized down to 30% of original size, giving an image size of 739x614. The image
is captured sideways by default, so a rotation of the image is necessary to get it on the
correct form. Each image is captured in raw8 format.

Figure 3.2: Four of the 12 provided pins were used in this project. These were pin 4 for gps-data,
pin 12 for pps-pulse and pin 6 & 7 for power and ground respectively.[15]
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3.1 Hardware and Pipeline

Velodyne VLP-16

The velodyne VLP-16 lidar comes with its own interface box, providing convenient connections
for power, Ethernet and GPS inputs. It also provides protection from power irregularities.
The interface box and therefore the lidar is powered by 12V and up to 3.0A from the second
voltage regulator provided and installed with assistance from DNV GL. The rotation rate
is set to 10Hz, providing a full 3D scan every 0.1 second. The distance measurement is
given by the strongest reflection. Data packets are transferred over TCP.

Figure 3.3: The inferface box showing the different connections available[40]

Navigational sensors

ReVolt is equipped with an Xsens MTI-G-710, which is an industrial grade miniature
GNSS-aided, IMU-enhanced GNSS/INS and AHRS, providing high-quality inertial measurements[43].
Precise heading and real-time kinematic positioning is given by the Hemisphere VS330
GNSS compass with resulting heading and position accuracies of±0.2 and±1cm[3]. Both
sensors can provide accurate PPS-signals and NMEA-messages. These are connected to
the on-board computer, a Tank-720 high performance embedded system. It handles data
from both sensors and the existing control-system used on ReVolt.

ReVolt has two targa hoops mounted at both ends of its deck. They were installed by
the mechanical workshop at the Department of Engineering Cybernetics(ITK) at NTNU
during previous projects on ReVolt [2]. The front hoop has a built in mounting mechanism
for the velodyne VLP-16 lidar from previous implementations and was used for the same
purpose during this project. Both hoops are also used for mounting the two antennas
used by the Hempishpere VS330 GNSS. With limited space on the vessels deck, it was
concluded to place the remaining sensor, the ladybug5+, at the forefront of ReVolts deck
as shown in figure 3.4a. This position though not optimal given the obstruction by the
two hoops and antennas, provided enough FOV for this project. In an optimal situation
one would want the camera to have full 360°unobstructed view, however the lidar with
its range measurements was prioritized and therefor given full 360°FOV. The mounting
mechanism for the ladybug camera was also provided by the mechanical workshop at the
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Department of Engineering Cybernetics(ITK) at NTNU. It should be mentioned that it
was not possible to raise the sensor higher, since it would obstruct the forward view of the
Velodyne VLP-16 lidar.

(a) Positioning of ladybug5+ (b) Positioning of Velodyne VLP-16 lidar

Figure 3.4: Positioning of exterorecptive sensors implemented during this project

ReVolt was further equipped with an on-board laptop, specifications given in table 3.2.
This was used to handle the two new sensors integrated with the existing system, given the
high bandwidth from each sensor and limiting processing power on the on-board computer.

Table 3.2: On-board laptop specifications

Model HP zbook 15

CPU Intel Core i7-4800MQ 8x2.7 GHz

Memory 8 GM RAM

Graphics Quadro K2100M/PCIe/SSE2

Storage 250 GP Solid State HDD

Operating System Linux Ubuntu 16.04 LTS (Xenial)

3.1.2 ROS implementation, drivers and packages
The drivers for each sensor are based on ROS packages developed by the ROS community.
The driver for the camera is the pointgrey_ladybug driver from rpng[34], which uses the
ladybug SDK to interface with the camera. This driver is an expansion of the Autoware
driver[6], giving more options and support for the ladybug5+ camera. Flycapture2 SDK
must be uninstalled for this driver to function properly. The driver allows the user to
control several parameters through the accompanying ROS launch file, including framerate,
shutter time and gain. Each captured set of images consist off 6 individual images, which
are then published onto the ROS network as six individual topics, on the form: ladybug/camera[0-
5]/image_raw. All this is done in one single node. The driver for the Velodyne VLP-16
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lidar is velodyne_driver[33]. This driver receives raw data-packets over TCP and converts
it to a point cloud given the transformation in 2.12, section 2.3.1. The point cloud also
includes the intensity measurements from the reflected pulses.

3.2 Calibration
Intrinsic and extrinsic parameters were introduced in section 2.2.1. The intrinsic parameters
must be known to correctly map 3D-points to a virtual image. The extrinsic parameters
describes the rotation and translation between different poses/frames and is therefor required
for relating sensory data from one sensor to another. See section 2.2.1.

Technical difficulties were prevalent during several steps in this project, which ultimately
affected the calibration-process. Therefor there will only be given a short introduction
to the calibration-process, the resulting transformation matrices and an explanation of the
technical difficulties.

3.2.1 Camera calibration
The camera is said to be uncalibrated if the K-matrix, see equation 2.6, is not known.
For this setup the K-matrices are known, since Point-Grey/Flir provide their cameras fully
calibrated from factory. Using either provided software or library functions these matrices
can be extracted from the cameras.

The images captured by the ladybug suffers from barrel distortion described in section
2.2.1. The provided software on Windows deals with radial distortion automatically,
but the chosen camera-driver does not provide this functionality. Ladybug SDK is most
suited for using .pgr stream files, which the current driver avoid using. It can be argued
that drivers from Autoware and rpng does not use this filetype because of their use in
high dynamic systems such as self-driving vehicles and that using stream files introduces
unacceptable delays as described in section 2.5. It was attempted to extract the distortion-
parameters from the calibration-file, an attempt which proved to be unsuccessful. Flir does
not provide documentation for their calibration-files.

Through contact with Flir’s technical department, it was established a possible solution
for the problem. There exist two functions in Ladybug SDK, ladybugUnrectifyPixel
and ladybugRectifyPixel, that might provide the necessary functionality for undistorting
previously recorded data or data captured during run-time.

3.2.2 Lidar-Camera Calibration
When combining sensory data from several sources/sensors the rigid body transformation
between the respective sensors must be found. This transformation can be found through
a method proposed by An. Dahl, using 3D-3D correspondences as described in [10]. The
git-repository for this implementation can be found at [9]. This was not completed during
this project given technical difficulties relating to undistorting of images.
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3.3 Transformation to a common world frame
Assume the transformation from lidar to camera is known. The next step is to find the
transformation from camera-frame to the BODY-frame of ReVolt. Given the transformation
from camera to BODY it is possible to find the rotation and translation between the lidar-
frame and local NED-frame by first finding the transformation between BODY and local-
NED. Multiplying these transformations gives the final transformation-matrix from lidar-
frame to NED-frame.

Sensor frames

The resulting transformation-matrix from section 3.2.2 will take the form given in equation
3.1. This describes the rigid body transformation from the lidar frame to the camera frame.

Tc
l =

(
Rc

l rccl
0T 1

)
∈ SE(3) (3.1)

3.3.1 Body frame
The center of ReVolts body-frame is at the Xsens MTI-G-710 IMU, which is located at
the center of ReVolt. The z-axis of its coordinate-system points towards ground since the
sensor is placed upside down. The x-axis aligns with the front of ReVolt. As illustrated
in figure 2.2 and the positioning of the ladybug in figure 3.4a, the Z-axis of the cameras
coordinate-system aligns with the front of ReVolt. Its Y-axis points towards ground. The
rotation matrix for camera to body frame is therefor equal to equation 3.2. The translation
is measured by hand and is equal to equation 3.3, where the units are measured in meters.
The resulting rigid body transformation is given in equation 3.4

Rb
c =

 0 0 1
1 0 0
0 1 0

 (3.2)

rbbc =

 1.5
0

−0.17

 (3.3)

Tb
c =

(
Rb

c rbbc
0T 1

)
∈ SE(3) (3.4)

3.3.2 Local NED frame
The rotation between Body-frame and North-East-Down-frame(NED) is given in [41] and
[17]

Rn
b (Θ) =

 c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ) s(ψ)s(φ) + c(ψ)s(θ)c(φ)
s(ψ)c(θ) c(ψ)c(φ) + s(ψ)s(θ)s(φ) −c(ψ)s(φ) + s(ψ)s(θ)c(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)


(3.5)
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Figure 3.5: Roll, pitch and yaw rotations of the BODY frame [24]. Figure is used with permission
from the author.

where s = sin and c = cos. The NED-frame’s origin On is defined relative to
WGS-84, Earth’s reference ellipsoid. GNSS delivers GPS-positions in the Earth-centered
Earth-fixed (ECEF) frame. The NED-frames origin relative to the ECEF-frame is given in
longitude and latitude, herby refereed to as l and µ. By transforming the position of the
BODY-frame and local NED-frame from ECEF to x,y,z coordinates using equation 3.6,
where N is equal to equation 3.7. The parameters re and rp are given in table 3.3.

 x
y
z

 =


(N + h) cosµ cos l
(N + h) cosµ sin l(
r2p
r2e
N + h

)
sinµ

 (3.6)

N =
r2e√

r2e cos2(µ) + r2p sin2(µ)
(3.7)

Table 3.3: WGS-84 parameters[17]

Parameters Comments

re = 6378137m Equatorial radius
rp = 6356752m Polar axis radius

The rotation from ECEF to NED is given by [17]

Rn
e (Θne) =

 − cos (l) sin (µ) − sin (l) − cos (l) cos (µ)
− sin (l) sin (µ) cos (l) − sin (l) cos (µ)

cos (µ) 0 − sin (µ)

 (3.8)

where Θne = [l, µ]>. By subtracting the NED origin 0n in ECEF-coordinates from
the resulting BODY-ECEF-coordinates and multiplying it with rotationmatrix 3.8 gives
the correct position in a local NED frame. The resulting transformation matrix is shown
in equation 3.9

Tn
b =

(
Rn

b rnbn
0T 1

)
(3.9)
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where rnbn is the translation between the origin of the local NED-frame and the BODY-
frame in local NED-frame-coordinates.

3.3.3 Estimation of position
The local NED-frame is usually set after initialization of the navigation-system. After
this the NED-coordinates of the BODY-frame is continuously given by the hemisphere.
Inaccuracies in position of the BODY-frame relative to the local NED-frame will affect the
projection of sensory data from sensor frames to the NED-frame negatively. It is therefor
important to consider the necessity for estimating ReVolts position using navigation-data.
No further estimation is done in this project based on the assumption that the navigation-
data provided by the Hemisphere VS330 is of such quality that further estimation is of no
use.

3.4 Syncronization
There are six clocks on ReVolt that need to be synchronized. The first two are the real-
time clocks (RTC) on the onboard computer and laptop. The next two are the internal
clocks on each of the exteroreceptive sensors introduced in section 3.1.1 and 3.1.1. The
last two are the IMU and GPS-receiver. These two can provide GPS-time, which is
considered a stratum 0 source. Since the last two provided GPS-time, they can be consider
synchronized. That leaves four remaining clocks to be synchronized. Figure 3.6 illustrates
this.

Figure 3.6: Blue boxes represents internal clocks that needs to be synchronized. Dashed lines marks
wireless signals. Solid lines marks wired connections

3.4.1 Setup
Two different time sources are used. The first is GPS-time provided by the Hemisphere
VS330 GPS/GNSS-receiver. The Hemishphere is connected to the on-board computer
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through a standard DB-9 female to DB-9 male cabel providing NMEA-strings at rate of
20 messages per second for each type using the National Marine Electronics Association
(NMEA) 0183 standard. See 3.4 for illustration and [4] for in-depth information of its
format. The hemisphere also provides a pulse per second (PPS) signal, that indicates the
exact moment a second has passed.

Table 3.4: NMEA-messages and their format[8]. Used in synchronization.

GPGGA $GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M„*47

GPRMC $GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

The second time source is an NTP-pool server[28].This is the default time server used
by most linux distributions. This source corresponds to a stratum 2-4 source, depending
on which NTP-pool being used. Both on-board computers connects to the server that
provides the best accuracy. This requires a stable internet-connection, which is provided
by 4G mobile broadband on-board.

Figure 3.7: Synchronization setup - Some abstractions have been made in this figure. The lidar
provides a pointcloud by sending several packets, each stamped with GPS-time. Images from the
ladybug5+ contains timestamps with GPS-time.

3.4.2 GPS-time
GPS-time is used to timestamp data in each exteroreceptive sensor used in this project.
The internal clock of each sensor is synchronized to a source that provides GPS-time.
This is done by transmitting either a GPRMC or GPGGA-string with a corresponding PPS-
signal, depending on the requirements for the specific sensor. The ladybug5+ receives both
GPRMC and GPGGA from the on-board computer through a RS232-port. The ladybug
only accepts signals with TTL voltage-levels(0-5V), so a converter is used to transform
the RS232-signal to TTL. The velodyne VLP-16 lidar receives the data through UDP-
messages broadcasted on 192.168.1.201, port 10110. The PPS-signal is connected straight
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from the Hemisphere GNSS to the interface-box for the lidar and the I/O connector for the
ladybug5+ as illustrated in figure 3.7. The PPS-signal is a CMOS, active high, 0-5V, which
satisfies the voltage requirements of both sensors.

3.4.3 Ros-time
The reason for using both GPS and NTP-pools as time-sources is to see the difference
in accuracy and analyze the need for synchronization using GPS-time. Rostime is used
to timestamp the received data. Since this is done at the time of arrival on the on-board
laptop and not the respective sensors then there will be some time-delays as described in
section 2.5.3. Rostime uses the system-clock as reference when providing timestamps.

3.5 Visual Detection
Object detection is part of the sensor fusion pipeline. Its task is to detect and create
bounding boxes around boats in real time with firm real-time constraints. Firm constraints
is given by the dynamics of ReVolt, where data to be fusioned becomes both untrustworthy
and useless given enough time. The center of each bounding box provides an angle through
the transformations described in 3.3. This angle can be used with clustered detections from
lidar-data to provide higher probability for correct detections. Two detection algorithms
have been integrated and tested.

3.5.1 YOLOv3
YOLOv3, a detection-algorithm written by Joseph Chet Redmon, was chosen because of
its real-time performance and accuracy. For in-depth information the reader is advised to
read [31]. The weights trained for boat-detections were provided by Simen Grini[42]. The
network proved hard to integrate.

3.5.2 SSD
An implementation of the Single Shot Detector(SSD)[25] was trained on the VOC-datasets[14]
and images extracted from the detection-experiment explained in section 4.2.1. Images
from the experiment had to be labeled by hand, for this LabelImg[37] was used as illustrated
in figure 3.8. It streamlined the labeling-process avoiding loss of valuable time. The
network was trained for two whole days on the given dataset. Due to limited time there
were no opportunity to tweak both the network and dataset before testing it on data
accumulated during the experiment-phase.
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Figure 3.8: The dataset was labeled using LabelImg[37]
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Chapter 4
Experiments and Data Collection

In this chapter the setup for the testing phase is presented, as well as the different experiments
performed, their purpose and challenges.

4.1 Setup

To analyze the suggested system and its configurations, several experiments were planned
and performed to acquire sensory data. ReVolt was transfered from NTNU Gløshaugen to
Trondheim Harbor two weeks in advance of the first experiment. This provided easy access
to open areas with GPS-signals as well as Nidelva where the experiments were performed.
The two weeks were used to finish up the technical implementations required for proper
powering of sensors, synchronization and recording of sensory data. The experiments were
performed late November. Gunnerus Workboat pictured at 4.1 was rented through NTNU
and was used as a security-measurement and close proximity point for data recording on
ReVolt. It was operated by Tor Arne Pedersen from DNV GL.

4.2 Performed Experiments

4.2.1 Day 1 - Object detection and range measurements

The first day of testing revolved around sensory data for object detection and distance
measurements. It was done in proximity to the docks in Nidelva, close to Trondheim
Sentralstasjon. Figure 4.3 shows an overview of the specific testing area. It’s high concentration
of boats provided a wide variety of sensory data, including different types of boats, sizes,
obstructed views and distances. This experiment was done without gps-synchronized
sensors as it was not implemented in time. Rostime and rosbag were used to timestamp
and record sensory data respectively. ReVolt was controlled by Geir Hamre from DNV
GL using a Spektrum DX6i handheld remote controller.
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Figure 4.1: Tor Arne Pedersen and Geir Hamre from DNV GL contributed during the testing phase.
Picture shows the launch of ReVolt on the first day of testing

4.2.2 Day 2 - GPS-Synchronization and point estimation

Final implementation of GPS-synchronized sensors were completed a week after the first
experiment, see figure 4.7. The second experiment was performed after this and focused
on visual and synchronization data from ReVolt, including timestamps using Rostime and
GPS-time, IMU and camera images. The experiment had two purposes. Provide data for
analyzing the need for synchronization using GPS-time versus system clock and Rostime.
Secondly, provide imagery data for point estimation using the transformation found in
section 3.3. Using this it can be shown how accurate true world-coordinates correlates to
world-coordinates projected through the camera.
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Figure 4.2: Gunnerus Workboat was rented from NTNU’s maritime division

Figure 4.5: Area where synchronization-tests were done. The launch site for ReVolt can be seen to
the right. Picture provide by Google Maps

The experiment was performed at the launch-site for ReVolt, illustrated in figure 4.5. The
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Figure 4.3: Area where detection-experiments were done. Picture provide by Google Maps

Figure 4.4: ReVolt was controlled by Geir Hamre and driven up the entire length of the canal for
recording visual sensory data

boat was connected to shore using a rope and further stabilized by one of the two people
present. The boat was directed towards a known point on the other side of the canal and
vigorously shaken to provide movement in all directions, shown in figure 4.6.

4.2.3 Interference - Noise from USB3
With the amount of sensors required for this practical project in the limited space on
the ReVolt model ship, it is reasonable to believe that there will be some interference.
Given the sensitivity of some senors on-board (Hemisphere VS330, wireless), its was
interesting to see what might affect it. It was not possible to get quantitative data on this
experiment, since the hemisphere did not provide any software-tools for measuring signal
strength. Therefore the experiment was done visually, using the signal-strength-bar on the
frontpanel of the Hemisphere. The most prominent interference-source, USB3 between
the laptop and ladybug, was chosen. By wrapping the cabel around the antenna of the
hemisphere and observing the signal bar, it was concluded that it did not interfere with
the hempisphere. The wireless network was also not affected. The reasons for suspecting
USB3 as an interference source can be seen in this article provided by intel [22].
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4.2 Performed Experiments

Figure 4.6: Testing synchronization setup. ReVolt was shaken and stirred to provide kinematic-data
from the IMU

(a) On land synchronization test

(b) Interference-testing using USB3 cabel from
Ladybug5+

Figure 4.7: The proposed system was tested on land before live tests in maritime environments
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Chapter 5
Results and Discussion

5.1 Visual detection

5.1.1 Quality

YOLOv3 was tested using weights provided by Grini [42]. It did not provide sufficient
results and were excluded from this report. One possible reason for insufficient results
might be the dataset which the network was trained on. Grini’s dataset consisted of a
total of 1916 images recorded from various locations, primarily Hovik and Trondheim.
These were not taken at an angle which replicates the experimental data recorded during
this projects testing phase. Images captured during the testing-phase had a high degree of
water-reflections as well, which the neural network was not trained for. The second reason
might be human mistakes done during technical implementation of proposed network. It
can be argued that the latter is the most probable reason, given the results presented in
Grini’s master degree which were of substantial greater quality.
Figure 5.1 illustrates the current results given by SSD. These were some of the best
detections done by the network. These results can however be misleading. There is a
possibility that the testing set became to similar too the training set, giving unrealistic
good results when tested. This was not investigated further due to time constraints.

5.1.2 Distance

The lidar and camera has not been calibrated as mentioned in section 3.2.2. Their extrinsic
parameters are still unknown. It is therefor not possible to accurately find the distance to
a detected object using bounding boxes given by the detection-algorithms. It is however
possible to get a distance measurement by examining the data by hand. Taking the bounding
box which seems to be the greatest distance away and comparing it with lidar-data from the
respective rosbag at the given timestamp as pictured in figure 5.3 should provide enough
accuracy to be comparable with Kamsvågs results in [24].
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Chapter 5. Results and Discussion

(a) Distance test (b) Detection test

Figure 5.1: During distance-testing illustrated in 5.1a the lidar lost connection with the on-board
laptop, resulting in no distance measurements in open sea environment.

Figure 5.2: Lidar scan taken in Nidelva during the first day of testing. The lidar is located at the
center of the coordinate-system seen in the middle. Rviz[27] was used to create this illustration.

However, the poor results presented in section 5.1.1 makes the comparison with Kamsvågs
results unreliable and is therefor not included in this report.

5.2 Syncronization

The synchronization-test gave interesting results presented in table 5.1. By comparing
time-reference-messages from relevant sensors, it can be argued that using ROStime for
timestamping provides negligible time-differences between computers on board as long as
they are synced to NTP-servers through wireless. This can be seen because the Hemisphere
and Lidar are connected to separate computers. Both are timestamped using GPS-time.
Taking into account the transmitting-delay between sensor and computer gives a short
timespan which represents the time-difference between the system clocks on both the on-
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5.3 Experiments to be followed up

the

Figure 5.3

board computers. This timespan is arguably acceptable given the dynamic of ReVolt. This
does not mean that it is the best solution. System clocks on computers are not accurate
and will drift if not continuously synchronized with an outside source. Using NTP-pools
requires a constant wireless connection. Assuming this connection were to be lost would
introduce unacceptable time-disparities between the on-board computers.

Table 5.1: The absolute value of timestamps made using rostime and GPS-time for each sensor is
summed up and divided by the number of messages sent during one rosbag. This gives an indication
of how long the transmitting delays are, as well as the performance of ROStime. Values are given in
ms.

Sensors Result(ms) Iterations / Number of messages

Hemisphere 35.445728 1716
Velodyne Lidar 16.597913 31230
Ladybug5+ 909.882412 85

The ladybug5+ camera seems to be severely affected by transmitting/intermediate delays,
reaching close to a second delay between capture of image to received image on the on-
board laptop. This delay is unacceptable in a sensor fusion system with the dynamics of
ReVolt. The cause of this delay is not known. It might be software-related. There might
be delays introduced through the use of USB3. It might be the amount of data transferred
over USB3. This has yet to be investigated.

5.3 Experiments to be followed up

Since undistortion of images and extrinsic calibration were uncompleted, the point-estimation
test was not doable. This experiment was planned to test the transformations and extrinsic
parameters found in section 3.3. The experiment was to be performed as follows, given
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data recorded during day 2 of testing:

By projecting a virtual point through the camera to an existing known point, using the
position and kinematics of ReVolt, it could be determined how accurate the transformations/extrinsic
parameters are. The projecting would only give an angel since images do not have depth-
information, but using this angle and trigonometry it is possible to determine the distance
between virtual and real points. This test would also give an indication for whether
synchronization of sensory data is necessary, compared to timestamping data at arrival.

Figure 5.4: Panoramic image captured using ladybug+5 software on Windows

5.4 Quality of recorded sensory data
The experiments provided sensory data from all relevant sensors. There were some mishaps,
where cables fell out and sensors stopped working. However, this was not a substantial
problem and only affected a small part of the experiments. This data is in good condition
to be used for further research.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion
This project has several contributions. The first is installation of the ladybug5+ on ReVolt.
This provides ReVolt with a much large FOV than previous implementations. Synchronization
of every exteroceptive sensor to GPS-time is another contribution, laying a good foundation
for proper synchronized sensor fusion. A considerable amount of time was used to make
the latter work properly, investigating signal-disturbances, connecting signals, testing software,
but proved to be time well spent. Another unforeseen contribution by synchronizing
the sensors was discovering the transmitting-delay between the ladybug5+ and on-board
computer. One final contribution was the experiments performed during this project. The
detection-experiment done in Nidelva provides a dataset which can be used in training new
neural networks.

Technical difficulties were prevalent throughout the project and caused unexpected delays
and problems which contributed to tasks being left uncompleted. Undistorting of images
were one of these, directly affecting the completion of the calibration process described in
section 3.2.

6.2 Future work
• Point-estimation as mentioned in section 5.3.

• The ladybug-driver can be improved. Writing an entire new driver which relies more
on the Ladybug SDK will provide more options and possibly better results.

• The current system for synchronization is based on comparing times and using the
data that is closest to each other for fusion. By creating a trigger for the ladybug-
camera and synchronizing the trigger with the lidar as done in [35] could provide
lower time-disparities.
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• Investigate the functions mentioned in section 3.2 for undistoring images using
Ladybug SDK.

• Calibrate the extrinsic parameters between ladybug5+ and lidar using method referred
to in section 3.2.2.

• The ladybug5+ is currently not supported on embedded platforms. If the suggested
system is to be tested on an embedded platform, another camera has to be used.

• The ladybug5+ coordinate-system is located at the center of the ladybug5+. Each
camera-sensor comes with its own transformation-matrix to reach this frame. Rather
than calibrating one camera-sensor as proposed in this project, calibrate for the
main-frame of the ladybug5+ camera. By doing this each camera can be used rather
than just the front camera.
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