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Abstract

An important part of autonomous ship systems, such as collision avoidance systems, is to
determine the movement, size and shape of other objects in the vicinity.

Extended object tracking (EOT) is the problem of estimating the movement and the extent
of an object based on high-resolution measurements, such as lidar measurements, while Gaus-
sian processes (GPes) offer a stochastic model for parameterizing the object’s extent, and a
well-established regression technique.

In this study, a single object that resembles the hull of a maritime vessel is considered.
Different GP models for the object’s extent are studied, and Kalman filters are developed us-
ing these GP models together with lidar measurements to solve the EOT problem for this object.

Among others, an original GP that models axis symmetric extents, as well as an original
extended Kalman filter based on implicit derivation are presented.
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Chapter 1
Introduction

1.1 Background and motivation

The ability to estimate the position and direction of vessels, as well as to detect other objects
in the vicinity and predict their movement, has been crucial for successful seafaring since the
dawn of time. Throughout history, different instruments and techniques have been developed to
help the crew navigate by enhancing their situational awareness, such as the classical celestial
navigation, charts, sextants, compasses and light signals to a plethora of modern sensors and
systems such as gyroscopes, radars, sonars, global navigation satellite systems (GNSS), auto-
matic identification systems (AIS), etc. Nevertheless, lookouts have always been heavily relied
upon in maritime navigation, and humans are still mainly responsible for integrating the avail-
able navigational information in order to guide their vessels. However, this is starting to change.

In the last years, the continuous growth in processing power and the access to more capable
and affordable hardware has fueled the interest of several industries in automating ever more
complex processes with the ultimate goal of minimizing -if not eliminating- the necessity of
human intervention for their proper operation. This is also a trend present in maritime opera-
tions, where autonomous surface vehicles (ASV) are of major interest. In Norway alone, there
are several ASV projects under development, such as the container ship Yara Birkeland from
Kongsberg and Yara, which is scheduled to be operational next year [7, 8], the container ship
ReVolt from DNV-GL [5] and the Telemetron developed by Maritime Robotics. Autonomous
maritime vessels constitute also a field of interested for academic institutions. Here at NTNU,
there are the research projects Autoferry [1], which develops an autonomous electric ferry for
pedestrian and cyclist transport across a canal in Trondheim, and the Autosea project [2], which
conducts research into sensor fusion and collision avoidance methods for autonomous ships.

All autonomous ship projects have common major challenges that arise from the elimination
of the human factor in navigation and guidance. One of these challenges is to use sensor data to
first detect objects in the vicinity of the vessel, and then proceed to track them by continuously
estimating their kinematic quantities, such as position, velocity, heading and turn rate. This is
known as object tracking or target tracking. If the resolution of the sensors on-board is high
enough, several measurements from a tracked object could be available at a given time. Such
situation is referred to as Extended Object Tracking (EOT), and the multiple measurements can
be used to estimate the geometry of the object, also known as the object’s extent.
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Chapter 1. Introduction

Knowledge about the extent should play an important role in identification and collision
avoidance systems. Since even in the particular case of the object being a maritime vessel, there
is a plethora of possible shapes and sizes for its hull, a versatile EOT method that can handle
this diversity will be very appealing for autonomous maritime operations. Gaussian Processes
(GPes) have the potential to provide such a method, and their integration into EOT is the main
focus of this report.

Gaussian Processes originated as a Bayesian regression technique for estimating the val-
ues of an unknown function given some isolated measurements. In our context, the unknown
function represents the contour of the object being tracked. In contrast to many other methods,
Gaussian Processes provide a non-parametric model in the sense that no assumptions are made
on the underlying structure of the unknown function. Furthermore, this model is stochastic, and
can therefore be smoothly merged with probabilistic filters, which are extensively used in EOT.
This enables integration of prior and uncertainty information.

Finally, we would like to mention that EOT can be performed with a variety of high-
resolution sensors, such as radars, lidar sensors, cameras and infrared sensors, which can be
combined in different sensor configurations. Ideally, several sensor of different types should be
fused in order to benefit from the strengths of each sensor and mitigate their individual short-
comings. However, sensor fusion methods (see for example [31]) are out of the scope of this
work, and only lidar measurements will be used in the simulations presented in this report.

1.2 Literature review

In this section, the relevant articles/papers and books for this report are presented and discussed.
We start by reviewing literature about the topics of Gaussian Processes and EOT. Finally, we
discuss some publications that combine both fields.

The theoretical background for Gaussian Processes and their regression technique were de-
veloped by N. Wiener [29] and A.N. Kolmogorov [20] in the 1940s. However, the alleged first
major application can be traced back to the work of Krige [21] in 1951, who developed an inter-
polating technique of geostatistical data since the methods used at the time gave unsatisfactory
results. Therefore Gaussian Process regression is also known as Wiener-Kolmogorov prediction
or Kriging.

While Gaussian Processes are appealing for their non-parametric modeling of functions,
their main drawback is the high computational cost of regression, which usually involves the
inversion of a large matrix. However, due to the continuous growth in processing power, this
drawback is no longer a major restriction, and applications of Gaussian Processes have moved
from spatial statistics to many other fields, where optimization and prediction is crucial. One of
these fields is Machine Learning, which is the main focus application in the standard textbook
”Gaussian Processes for Machine Learning” [23] by Rasmussen and Williams. This book has
served as the foundation of Chapter 4 of this report.

The first contribution in EOT can be traced back to 1988 in the work of Drummond et al.
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1.2 Literature review

in [11]. Many other contributions to the field have been added since. In the recent tutorial
paper [16], Granstrom et al. formulates the EOT problem in a multiple target setting, and give
an overview of the current state-of-the-art research in the field up to the article’s publication in
2017. Here, the two most used EOT approaches are discussed: The random matrix approach
and the Kalman filter approach for star-convex shapes, which are both Bayesian approaches.

In the random matrix approach, the object’s state consists of kinematic variables that de-
scribe the movement of the object, such as position, velocity, heading or turn rate, and of a
matrix that describes the object’s extent. This matrix is modeled as a symmetric and positive
definite matrix, which is 2-by-2 or 3-by-3 depending on the spatial dimensions of the prob-
lem. In other words, the extent is approximated by an ellipse or an ellipsoid, respectively. The
random matrix approach was first proposed by Koch in [19], where a Bayesian approach was
used to estimate the elliptical extent. In this work, there was a restrictive coupling between the
state that describe the kinematics and the matrix that describes the extent, and the sensor noise
was not part to the model. These issues were later addressed by Feldmann et al. in [12]. In
[14], Granström and Orguner made another improvement by modeling the possible rotations
of elliptical extent. In [26], Schuster and Reuter used the general probabilistic data association
(GPDA) filter, which was developed by Schuster et al. in [27], to handle clutter measurements.
In this work, experiments results with lidar and radar measurements were compared. In [15],
Granström et al. used another probabilistic filter to handle clutter measurements: the probabil-
ity hypothesis density (PHD) filter. The developed method was used to estimate the contour
of multiple rectangular and elliptical objects using lidar measurements. Inspired by this, Ruud
combined the sensor model from [15] with the GPDA approach from [27] in his MSc thesis
[24] and related conference paper [25]. The developed method was applied on real lidar data
from a passenger ferry in Trondheim, whose hull shape can be fairly approximated by an ellipse.

The random matrix approach may work very well for tracking objects, whose extent can
be approximated by ellipses or rectangles, such as cars or pedestrians. However, in applica-
tions were this is not a reasonable assumption or a better estimate of the extent is desirable,
star-convex shapes may be considered as an alternative parametrization. In this approach, the
object’s state consists of variables that describe the kinematics of the object, as in the random
matrix approach, together with multiple variables that describe the object’s extent. The latter
variables are related to the existence of a radius function that describes the boundary of the ex-
tent. The existence of this function is guaranteed if the extent is star-convex and compact. Note
that the compactness assumption is not mentioned in the literature since the extent is tacitly
assumed to be closed and bounded.

The two main frameworks for representing the star-convex extent are based on Random Hy-
persurface models and Gaussian Process models. If the Random Hypersurface model is used,
the boundary of the extent is assumed to be given by an implicit equation, and the variables
that describe the extent are the Fourier coefficients of the radius function that parameterizes
the extent’s boundary. The more Fourier coefficients are added to the object’s state, the more
detailed the estimate of the extent can be. In [9], Baum and Hanebeck present an EOT method
using Random Hypersurface models that is suited for radar measurements. On the other hand,
if the Gaussian Process model is used, then the states that describe the extent are just values of
the radius function. Again, the finer this discretization of the boundary is, the more detailed the
estimated extent can be. In [28], Wahlström and Özkan used this approach to develop an EOT
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Chapter 1. Introduction

method for lidar measurements and radar measurements. The study of this method and critical
investigation of its performance for maritime vessels is the main objective of this report.

1.3 Problem description and assumptions
The movement and shape of a single two-dimensional object is to be estimated using the mea-
surements provided by a single lidar sensor. The object’s extent is a star-convex and compact
rigid body, and resembles the hull of a maritime vessel. Both the movement of the object and
the lidar measurements are simulated. Testing all real data falls outside the scope. In the simu-
lations, the position of the lidar sensor does not vary with time. Furthermore, all generated lidar
measurements correspond to a point in the extent. In other words, data association uncertainty
related to misdetections or measurement clutters is not considered in this problem.

In this report, we study the EOT method proposed in [28] to solve this problem. All rel-
evant aspects of this method are introduced and discussed. Furthermore, some suggestions to
this method are proposed in order to contribute to the discussion and to study the potential of
Gaussian Processes for EOT using lidar measurements.

1.4 Outline
The report is organized as follows:

• In Chapter 2, we introduce the world frame and the local body frame for the object, and
define the state of the object. Finally, some models for the extent that resemble a hull
are presented. The mathematical details are added for completion, and may be skipped
without loss of continuity.

• In Chapter 3, we introduce lidar sensors, and discuss how lidar measurements are simu-
lated with special emphasis in the distribution of the measurement error.

• In Chapter 4, Gaussian Processes and their regression technique are introduced. Special
attention is given to Gaussian Processes that model closed curves, closed curves that are
symmetric about a point and closed curves that are symmetric about an axis.

• In Chapter 5, state-space formulations for the EOT problem at hand are derived. Two
situations are discussed. In the first situation, the kinematic variables of the object’s state
are known, and a linear Kalman Filter is used for inference. In the second situation, the
entire state is unknown, and an extended Kalman Filter is used for inference.

• In Chapter 6, the inference methods developed in the previous chapter are tested in dif-
ferent simulations. The obtained results are discussed.

• In Chapter 7, we present the conclusions of this report and recommendations for further
work.

• In Appendix A, a result about multivariate normal distributions used in Chapter 4 is pre-
sented.
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1.4 Outline

• In Appendix B, we present the discretization of a continuous velocity model, the al-
gorithms for the linear and extended Kalman filters, as well as tools for studying filter
consistency.

• In Appendix C, D and E, all the figures with the obtained results for the different simula-
tions from Chapter 6 are presented.
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Chapter 2
Reference frames and the object state

2.1 The world and body frames
All the simulations take place in a fixed world frame, which is denoted by {w}. Since these
simulations occur over a relatively short time-span, and the tracked object does not move rela-
tively far away, nor fast, the world frame can be assumed to be a local North-East-Down (NED)
frame, which is in addition inertial. NED frames are standard local reference frames, which are
for example introduced in [13, ch. 2]. Intuitively, they can be located at any point of the Earth’s
surface, and their 2 first axes correspond to the North and East directions in a projected chart.
The third axis completes the right-handed system, and therefore points ”down”. A local NED
frame is illustrated in Figure 2.1.

Figure 2.1: Local North-East-Down frame (green) at a point on the Earth’s surface. Source: [3].

Since the EOT problem is restricted to the two dimensions of the horizontal surface, only
the North and East coordinates are relevant. Hence, the position of a point in the world frame
is denoted by

rw =
[
N E

]T
, (2.1)

7



Chapter 2. Reference frames and the object state

where N and E are the displacement in meters along the the North and East directions respect
to the origin of the world frame. In other words, N and E correspond to the difference in lon-
gitude and latitude between the point and the origin, respectively.

When studying the movement of a rigid body such as the tracked object, it is advantageous
to define a local frame that is attached to this body and follows its movement. This is known as
the body frame, and is denoted by {b}. Usually, the origin of the body frame is a fixed point in
the rigid body, and the frame axes correspond to existing body symmetries, if any. In the case
of a maritime vessel such as the tracked object, the first body axis is chosen to give the stern to
bow direction.

Since the body frame is attached to the rigid body, the position and orientation of the rigid
body respect to the fixed world frame is completely determined by the body frame. The posi-
tion is given by the origin of the body frame, while the orientation is given by the axes of the
body frame. Furthermore, the orientation of the rigid body can be described by a set of three
angles, known as Euler angles (see [13, ch. 2]). However, in the two-dimensional case, only
one angle is necessary, and in the case of maritime vessels, the heading angle is chosen. The
heading angle ψc is the angle formed between the first axis of the world frame (North direction)
and the first axis of the body frame (stern to bow direction). In other words, the heading angle
corresponds to the direction the bow points in, hence the name.

N̂

x̂

ŷ

c

ψc

N̂

Êo

Figure 2.2: A maritime vessel with heading ψc. The world frame with origin o and axes N̂ (North) and
Ê (East), and the body frame with origin c and axes x̂ and ŷ.

The relation between the world and body frames is illustrated in Figure 2.2. As one can see,
the transformation from the world to the body frame is the composition of a rotation of ψc about
the ”down” axis, followed by a translation from the origin of the world frame, o, to the origin
of the body frame, c. In symbols,

rw = rwc +

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
rb , (2.2)
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2.2 Star-convex extent

where rwc = [Nc, Ec]
T are the coordinates of c in the world frame and rw and rb are the coordi-

nates of an arbitrary point in the world and body frames, respectively.

Therefore, the variables Nc, Ec and ψc describe the position and orientation of the object.
Furthermore, their derivatives

vE = Ė (2.3a)

vN = Ṅ (2.3b)

rc = ψ̇c (2.3c)

describe the linear velocity, [vN , vE]T , and the angular velocity, rc, of the object.

By putting all these variables together, we have a state vector that can be used to model the
motion of the object:

xc =
[
Nc vN Ec vE ψc rc

]T
. (2.4)

Note that this choice of state vector xc allows the direction of the linear velocity [vN , vE]T

and the heading ψc to be different. In other words, xc may be used to model sideslip.

2.2 Star-convex extent
As stated in section 1.3, the object’s extent, which is denoted by E, is assumed to be a compact
(bounded and closed) star-convex subset of R2. Therefore, the extent is completely determined
by its boundary, which is a closed curve.

The star-convexity of E means that there exists a point rw0 ∈ E such that the line segment
from this point to any other point in E is always contained in E. In symbols,

[xw0 ,x
w] = {λxw0 + (1− λ)xw : λ ∈ [0, 1]} ⊂ E (2.5)

for all xw ∈ E. The point given by rw0 is called the center.

By taking the center as the origin of the body frame, i.e. rwc = rw0 , the extent’s boundary can
be described by the following polar parametrization in the body frame:

r(θ) = max
{
r ≥ 0 : rb = [r cos(θ), r sin(θ)]T and rw ∈ E

}
(2.6a)

= max
{
r ≥ 0 : [Nc + r cos(θ + ψc), Ec + r sin(θ + ψc)]

T ∈ E
}
. (2.6b)

The value r(θ) is well defined for all θ since E is compact, and the equivalence between
eq. (2.6a) and eq. (2.6b) follows from eq. (2.2). The polar parametrization r(θ) is called the
radius function, and is illustrated in Figure 2.3. Note also that the election of the center as the
origin of the body frame motivates the use of the subscript c for this origin.

In practice, it is unnecessary -if not impossible- to obtain an analytical expression for
r(θ) since a discretization of this function is sufficient to describe the extent. Hence, let
θt = [θt,n]Ntn=1 be a fine enough fixed discretization of the interval [0, 2π), i.e.

0 = θt,1 < θt,2 < · · · < θt,Nt < 2π

9
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N̂

x̂

ŷ

c

ψc

rwc = rw0N̂

Êo

θ

r(θ)

Figure 2.3: Polar parametrization in the body frame of the extent’s boundary.

and the maximum step-length

∆θt,max = max {θt,2 − θt,1, · · · , θt,Nt − θt,Nt−1, 2π − θt,Nt}

is small enough. Then the extent is described by the values of the radius function r(·) at these
points, i.e. by the vector

xt =
[
r(θt,1) r(θt,2) · · · r(θt,Nt)

]T
. (2.7)

The angles in θt = [θt,n]Ntn=1 are called test angles, and their name is motivated by the appli-
cations of Gaussian Processes to Machine Learning (see [23] or Chapter 4 of this report).

The augmentation of xc (eq. (2.4)) with xt (eq. (2.7)) gives the state of the object

x =
[
xc uc yc vc ψc rc r(θt,1) r(θt,2) · · · r(θt,Nt)

]T
, (2.8)

which describes both the kinematics of the object and the geometry of its extent.

2.3 Hull shape models
The objects that we intend to track, are assumed to resemble the hull of a small ship. This hull
is symmetric about its longitudinal axis, and it has an overall length L and a beamB. The width
of the beam is achieved at a distance D from the bow. Furthermore, the hull ends in a flat stern
of width S. All these specifications are illustrated in Figure 2.4.

Three different methods are considered to find the polar parametrization of the hull with the
center placed at midships, i.e. on the longitudinal axis at a distance of L

2
from the bow. One

method uses spline interpolation for the sides of the hull (starboard and port), the other two
consider the sides as piece-wise parabolas or as piece-wise ellipses. We refer to these methods
as the ”spline” method, the ”parabola” method and the ”ellipse” method, respectively.

10
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S B

D

L

Figure 2.4: Specifications for the hull of the object: Symmetry and parameters L, B, D and S.

x̂

ŷ

0−L
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2
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2
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−L

2
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2

]
[
L
2
−D, B

2

]

[
L
2
, 0
]r1

r2

θ2
r3

θ3
θ

π − θ

Figure 2.5: Radius function for the hull of the object: Interpolation parameters.

For all these methods the points with coordinates in the body frame [0, L
2
], [L

2
−D, B

2
] and

[−L
2
, S
2
], and their respective polar coordinates:

[θ1, r1] =

[
0,
L

2

]
(2.9a)

[θ2, r2] =

atan2

(
B

2
,
L

2
−D

)
,

√(
B

2

)2

+

(
L

2
−D

)2
 (2.9b)

[θ3, r3] =

atan2

(
S

2
,−L

2

)
,

√(
B

2

)2

+

(
L

2

)2
 ; (2.9c)

are of interest for determining the radius function, and are shown in Figure 2.5.

First, the values of the radius function on the interval [0, θ3] are determined. For the ”spline”
method, the knots [θ1, r1], [θ2, r2] and [θ3, r3] are used directly for spline interpolation, which
gives the radius function on [0, θ3]. For the two other methods, cartesian curves for the starboard

11
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side are first derived before finding the radius function.

The cartesian curve for the ”parabola” method is

yp(x) =

{
− B−S

2(L−D)2

(
x+ L

2

)2
+ B−S

L−D

(
x+ L

2

)
+ S

2
, x ∈

[
−L

2
, L
2
−D

)
− B

2D2

(
x− L

2

)2 − B
D

(
x− L

2

)
, x ∈

[
L
2
−D, L

2

]
,

(2.10a)

and the curve for the ”ellipse” method is

ye(x) =


√
− B2−S2

4(L−D)2

(
x+ L

2

)2
+ B2−S2

2(L−D)

(
x+ L

2

)
+ S2

4
, x ∈

[
−L

2
, L
2
−D

)√
− B2

4D2

(
x− L

2

)2 − B2

2D

(
x− L

2

)
, x ∈

[
L
2
−D, L

2

]
,

(2.11a)

The cartesian curves yp and ye are continuous in
[
−L

2
, L
2

]
, differentiable in

(
−L

2
, L
2

)
and

satisfy

0 = yp

(
L

2

)
= ye

(
L

2

)
(2.12a)

S

2
= yp

(
−L

2

)
= ye

(
−L

2

)
(2.12b)

B

2
= yp

(
L

2
−D

)
= ye

(
L

2
−D

)
(2.12c)

0 = y′p

(
L

2
−D

)
= y′e

(
L

2
−D

)
. (2.12d)

Therefore, these curves model the starboard side as specified, and the radius functions for
the ”parabola” and ”ellipse” methods on [0, θ3] are found by taking the polar coordinates of
[x, yp(x)] and [x, ye(x)] for x ∈

[
−L

2
, L
2

]
, respectively.

Next, the values of the radius function on the interval [θ3, π] are determined. This corre-
sponds to the starboard side of the stern. Since the vessel ends in a flat stern as illustrated in
Figure 2.5, this gives the trigonometric identity

r(θ)
L
2

= cos(π − θ) = cos(θ). (2.13)

Hence, the radius function for all the methods is defined on this interval as r(θ) = L
2

sec(θ).
This completes the parametrization on [0, π]. Finally, for θ ∈ [π, 2π], the radius function is
defined as r(θ) = r(2π − θ) in order to ensure longitudinal symmetry.

Figure 2.6 shows the different hull shapes and radius functions obtained from each method.
All methods used the same values for the hull parameters L,B,D and S, which are summarized
in Table 2.1. These values are chosen so that the hull resembles a small ship.

As one can see in Figure 2.6a, the ”spline” method has a tendency to give a hull that is
bent inward at some points, which does not give a realistic shape. Moreover, the cartesian
curve obtained from this method does not necessarily satisfy the specifications. Therefore, the
”spline” method is not preferred. On the other hand, the ”parabola” and ”ellipse” give a realistic
hull shape, which resembles a skiff. The hulls are mainly smooth, with some sharp edges. For
the ”ellipse” method the sharp edges are located at the stern, while the ”parabola” method gives
an additional sharp edge at the bow. Furthermore, note that the ”parabola” and ”ellipse” method
guarantee a convex extent.
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(a) Cartesian curves in the body frame.
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(b) Radial functions.

Figure 2.6: Hull shapes obtained from the ”spline” method (blue), the ”parabola” method (yellow) and
the ”ellipse” method (red) for the hull parameter values in Table 2.1

Parameter Value [m]
L 10
B 5
D 6
S 3

Table 2.1: Hull parameter values.
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Chapter 3
Lidar measurements

3.1 Lidar sensors

A lidar (light detection and ranging) sensor is a high-resolution active electro-optical sensor
that measures the distance to the nearest objects in its surroundings as a function of direction.
This is achieved by sending pulsed laser light in several directions covering a region of space.
These laser beams propagate through the atmosphere until they hit an object within the sensor’s
range. The reflected beams are received back at the sensor, and are used to estimate the distance
between the sensor and the hit object.

The method for estimating the distance, also known as range, depends on the particular type
of lidar sensor. Measuring principles may involve the travel time of the light from and back to
the sensor, or the difference of physical properties between the emitted and received light waves,
such as amplitude or phase changes [18, ch. 9].

(a) Velodyne’s Puck™(VLP-16). (b) Neptec’s Opal™3D Lidar.

Figure 3.1: Examples of lidar sensors.

Lidar sensors may also differ in the way they scan their surroundings. For example, the
Velodyne’s Puck™(VLP-16) [6], which is used as a reference in this report, rotates an array
of lasers that scan the entire vertical section of the covered region at the same time. Other
lidars may consist of a rotating prism or mirror that reflects a single laser beam in different
directions in order to scan the surroundings, such as Neptec’s Opal™3D Lidar [4]. Pictures of
both examples of lidar sensors are shown in Figure 3.1.
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Chapter 3. Lidar measurements

3.2 Lidar measurements used in the simulations
In general, the lidar range measurement are given as a function of direction, which is param-
eterized using azimuth and elevation angles. This results in a three dimensional point cloud
of measurements. However, in our case, only the horizontal dimensions are of interest (see
Section 1.3). Hence, the elevation angle is irrelevant, and the range measurements are only a
function of the azimuth angle, which is the angle between the laser light beam and the North
direction.

Let rm denote the range measurement for a azimuth angle ϕm. It is assumed that the azimuth
angles are known exactly, and that the range measurements can be modelled as

rm = rm,true + wr (3.1a)
wr ∼ N (0, σ2

r) , (3.1b)

where rm,true is the true range value, wr is the range measurement noise and σr > 0 is the range
measurement noise strength. In other words, the range measurements are affected by unbiased
normally distributed noise, whose strength is the same for all azimuth angles.
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(a) Overview.
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 [
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]

(b) Close-up.

Figure 3.2: Example of lidar measurements: laser beams (red), object boundary (black) and points that
correspond to lidar range measurements (blue).

Let rwlidar the position of the lidar sensor in the world frame. Then the range measurement
rm with azimuth angle ϕm corresponds to the point

zwm = rwlidar + rm

[
cos(ϕm)
sin(ϕm)

]
, (3.2)

which is a measurement of the point

zwm,true = rwlidar + rm,true

[
cos(ϕm)
sin(ϕm)

]
. (3.3)
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Therefore, the measurement error of the world frame coordinates is given by

zwm − zwm,true = wr

[
cos(ϕm)
sin(ϕm)

]
, (3.4)

which is distributed as

E
[
zwm − zwm,true

]
= 0 (3.5a)

V
[
zwm − zwm,true

]
= σ2

r

[
cos2(ϕm) cos(ϕm) sin(ϕm)

cos(ϕm) sin(ϕm) sin2(ϕm)

]
(3.5b)

As mentioned in Section 1.3, only one lidar sensor is used in the simulations presented in
this report and it does not move. Hence, it can be placed at the origin of the world frame with-
out loss of generality, i.e. rwlidar = [0, 0]T . Moreover, the lidar measurements are simulated, and
the parameters used for these simulations are summarized in Table 3.1, which are inspired by
the technical specifications of the Velodyne’s Puck (VLP-16) [6]. In the simulations, for each
lidar laser beam that intersects the object, the first intersection point is found, and measurement
noise is added according to Equation (3.5). Figure 3.2 shows an example of simulated lidar
measurements.

Parameter Value
Measurement range 100 m
Horizontal angular resolution 0.2°
Range noise strength 0.1 m

Table 3.1: Lidar sensor values used in the simulations.
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Chapter 4
Gaussian Processes Fundamentals

4.1 Definitions and notations
A collection of stochastic variables {Xi}i∈I is said to be a Gaussian process (GP) with

mean function m : I → R and covariance function k : I × I → R if any finite subset of
different stochastic variables {Xi1 , Xi2 · · · , XiN} has a joint multivariate Gaussian distribution
given by 

Xi1

Xi2
...

XiN

 ∼ N


m(i1)
m(i2)

...
m(iN)

 ,

k(i1, i1) k(i1, i2) · · · k(i1, iN)
k(i2, i2) k(i2, i2) · · · k(i2, iN)

...
... . . . ...

k(iN , i1) k(iN , i2) · · · k(iN , iN)


 . (4.1)

In such cases, we write {Xi}i∈I ∼ GP(m, k).

In other words, a GP is a generalization of a multivariate Gaussian distribution to an arbi-
trary number of stochastic variables, where any finite number of these stochastic variables has
a joint Gaussian distribution that is determined by an overall mean and covariance function.

To work with GPes, we introduce some convenient short-hand notations:

Let {Xi}i∈I ∼ GP(m, k) be a GP, and let I = [i1, i2, · · · , iN ]T ∈ IN and J = [j1, j2, · · · , iM ]T ∈
IM be two vectors of indices. We define the associated mean vector to I, M(I), and the asso-
ciated covariance matrix to I and J, K(I,J), as

M(I) =


m(i1)
m(i2)

...
m(iN)

 (4.2a)

K(I,J) =


k(i1, j1) k(i1, j2) · · · k(i1, jM)
k(i2, j2) k(i2, j2) · · · k(i2, jM)

...
... . . . ...

k(iN , j1) k(iN , j2) · · · k(iN , jM)

 . (4.2b)
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4.1.1 Real processes with squared exponential covariance functions
Since we are interested in estimating the values of an unknown radius function, the most rel-
evant class of GPes in this regard, is the one given by real processes of the form r(θ) ∼
GP(m(θ), k(θ, θ′)), where θ, θ′ ∈ [0, 2π].

A well-used model for real processes is to choose a zero mean function and a squared
exponential covariance function (see [23, ch. 1]), which is defined as

k̃e(θ, θ
′) = σ2

fe
− (θ−θ′)2

2l2 , (4.3)

where the hyperparameters σf > 0 and l > 0 are called the variance of the signal amplitude
and the lengthscale, respectively. The hyperparameter σf models how large the variance and
covariance of the different function values are, while the length-scale l models how far points
have to be so that their function values are uncorrelated.
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Figure 4.1: Five functions drawn from GP(0, k̃e) with σf = 2m and different values for l. The interval
[0, 2π) was regularly discretized using 100 test angles. The shadowed region corresponds to a 99%
confidence interval for each function value.

Figure 4.1 shows what type of functions can be modeled by the GP family GP(0, k̃e).
Here, the interval [0, 2π) was regularly discretized using 100 test angles: θt,n = 2π

Nt
(n − 1),

Nt = 100; and five functions were drawn from the resulting multivariate Gaussian distribution
N (0, K̃e(I, I)), where I = [θt,n]Ntn=1. The hyperparameter value σf = 2 m was chosen and two
different length-scale values l = π

4
and l = π

8
were considered.

Figure 4.1a and Figure 4.1b show the results for l = π
4

and l = π
8
, respectively. Since

k̃e > 0, there is always a non-zero covariance between two different points, and the resulting
functions are therefore smooth. Moreover, it follows from the exponential term in (4.3) that the
larger the length-scale l is, the more the covariance between points increases. Hence, functions
are more likely to be slowly varying for larger values of l. This can be verified by comparing
the functions shown in Figure 4.1a and Figure 4.1b.
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As illustrated in Figure 4.1, the covariance function k̃e models functions have a mean very
close to zero. This effect is undesirable for a radius function, which only takes non-negative val-
ues. Another undesirable property of the functions obtained using k̃e is their overall smoothness
because the unknown radius function may present edges, as is the case of the radius functions
presented in Section 2.3. Therefore, we model the unknown radius function as the sum of a
function from GP(0, k̃e), an unknown constant value and random white noise:

r(θ) = r̃(θ) + r0 + η(θ) (4.4a)

r̃(θ) ∼ GP(0, k̃e(θ, θ
′)) (4.4b)

r0 ∼ N (0, σ2
b ) (4.4c)

w(θ) ∼ GP(0, σ2
nδ(θ, θ

′)) , (4.4d)

where δ(θ, θ′) = 1 if θ = θ′, and δ(θ, θ′) = 0 otherwise. Under the assumption that r̃(θ), r0 and
w are independent of each other, it follows that

r(θ) ∼ GP(0, k̃e(θ, θ
′) + σ2

b + σ2
nδ(θ, θ

′)). (4.5)

Therefore, we define the GP family GP(0, ke(θ, θ
′)), where

ke(θ, θ
′) = k̃e(θ, θ

′) + σ2
b + σ2

nδ(θ, θ
′) (4.6a)

= σ2
fe
− (θ−θ′)2

2l2 + σ2
b + σ2

nδ(θ, θ
′) (4.6b)

is the squared exponential covariance function with a bias and a noise term. The new hyperpa-
rameters σb ≥ 0 and σn ≥ 0 are called the variance of the bias and variance of the white noise,
respectively.
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(a) σn = 0m.
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(b) σn = 1m

Figure 4.2: Five functions drawn from GP(0, ke) with σf = 2m, σb = 2m, l = π
4 and different

values for σn. The interval [0, 2π) was regularly discretized using 100 test angles. The shadowed region
corresponds to a 99% confidence interval for each function value.

The effects that the hyperparameters σb and σn have in the resulting GP are illustrated in
Figure 4.2. Here, the same test angles used to discretize the interval [0, 2π) in the example
shown in Figure 4.1 were used, and five functions were drawn from the resulting multivariate
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Gaussian distribution. The hyperparameter values σf = 2 m, σb = 2 m and l = π
4

were chosen
and two different values for σn, 0 m and 1 m, were considered.

Figure 4.2a and Figure 4.2b illustrate the effect of the hyperparameter σb. The functions
shown in these figures can have very different mean values compared to the functions shown
in Figure 4.1a and Figure 4.1b, whose mean values are very close to zero. On the other hand,
Figure 4.2b illustrates the effect of the hyperparameter σn, which is to add white random noise
to the drawn functions.

The parameter σn plays also another important role from a numerical point of view. As dis-
cussed in Chapter 2, the unknown radius function is represented by its values at a discretization
of [0, 2π), I = [θt]

Nt
t=1. However, if σn = 0, the associated covariance matrix, Ke(I, I), may be

singular or ill-conditioned since its columns are too similar to each other. This is a major prob-
lem for GP regression, which requires the inverse of Ke(I, I), as will be shown in Section 4.2.
The addition of a white random noise term into the covariance function ke is equivalent to reg-
ularize the matrix Ke(I, I) by adding to it the matrix σ2

nINt .

Singular or ill-conditioned covariance matrices K(I, I) are a recurrent issue in GP models,
and addition of a positive multiple of the identity matrix, also known as a ”nugget”, is a well-
used regularization technique [22].

4.1.2 Real processes for periodic and symmetric functions
As shown in the examples in Section 4.1.1, the covariance function ke allows us to model a wide
variety of different radius functions. The cartesian curves associated to these radius functions
may or may not be closed, since the radius curves are not necessarily 2π-periodic. Since the
boundary of the object’s extent is by definition closed (see Section 2.2), it is desirable to add this
condition into the GP model. Furthermore, in some applications, the extent may possess some
kind of symmetry, which is known beforehand or that may be considered a reasonable assump-
tion. For example, if the object’s extent is the hull of a maritime vessel, it can be assumed that
the extent is symmetric about its longitudinal axis. Such knowledge about the symmetries of
the extent may drastically improve the estimation of the extent. Therefore, it is also desirable to
add a priori knowledge about the symmetries of the extent into the GP that models the unknown
radius function.

In this section, the covariance functions k̃e and ke will be modified to model 2π-periodic,
π-periodic and even radius functions. 2π-periodic radius functions correspond to closed carte-
sian curves. If the radius function is in addition π-periodic or even, then the closed curve is
symmetry about the center or symmetry about the x-axis, respectively.

2π-periodic radius functions are modeled by replacing k̃e with

k̃2π(θ, θ′) = σ2
fe
− 2
l2

sin2
(
θ−θ′

2

)
; (4.7)

π-periodic radius functions are modeled by replacing k̃e with

k̃π(θ, θ′) = σ2
fe
− 1

2l2
sin2(θ−θ′) ; (4.8)
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and 2π-periodic even radius functions are modeled by replacing k̃e with

k̃2π,a(θ, θ
′) = σ2

fe
− 1

2l2
(| ssa(θ)|−| ssa(θ′)|)2 , (4.9)

where ssa(·) is the smallest signed angle function, which is defined as

ssa(θ) = π − [(π − θ) (mod 2π)] , (4.10)

i.e. ssa(θ) is the only angle in (−π, π] such that ssa(θ) ≡ θ (mod 2π).

Similarly as done with k̃e, we add bias and noise terms to k̃2π, k̃π and k̃2π,a. This yields the
following covariance functions

k2π(θ, θ′) = σ2
fe
− 2
l2

sin2
(
θ−θ′

2

)
+ σ2

b + σ2
nδ(θ, θ

′) (4.11a)

kπ(θ, θ′) = σ2
fe
− 1

2l2
sin2(θ−θ′) + σ2

b + σ2
nδ(θ, θ

′) (4.11b)

k2π,a(θ, θ
′) = σ2

fe
− 1

2l2
(| ssa(θ)|−| ssa(θ′)|)2 + σ2

b + σ2
nδ(θ, θ

′). (4.11c)

The same observations done in Section 4.1.1 about the effect that the hyperparameters σf ,
σb, σn and l have on the functions modeled by GP(0, ke), also apply for the GPes GP(0, k2π),
GP(0, kπ) and GP(0, k2π,a).

As a consequence of the definition of these covariance functions, we obtain the correlations

ρ2π(θ, θ + 2π) =
k2π(θ, θ + 2π)√

k2π(θ, θ)
√
k2π(θ + 2π, θ + 2π)

=
σ2
f + σ2

b

σ2
f + σ2

b + σ2
n

(4.12a)

ρπ(θ, θ + π) =
kπ(θ, θ + π)√

kπ(θ, θ)
√
kπ(θ + π, θ + π)

=
σ2
f + σ2

b

σ2
f + σ2

b + σ2
n

(4.12b)

ρ2π,a(θ, θ + 2π) =
k2π,a(θ, θ + 2π)√

k2π,a(θ, θ)
√
k2π,a(θ + 2π, θ + 2π)

=
σ2
f + σ2

b

σ2
f + σ2

b + σ2
n

(4.12c)

ρ2π,a(θ,−θ) =
k2π,a(θ,−θ)√

k2π,a(θ, θ)
√
k2π,a(−θ,−θ)

=
σ2
f + σ2

b

σ2
f + σ2

b + σ2
n

. (4.12d)

(4.12e)

Therefore, if there is no white random noise term, i.e. σn = 0, all these correlations are equal
to 1. In other words, if no white random noise is added, GP(0, k2π) models radius functions
that are 2π-periodic, GP(0, kπ) models radius functions that are π-periodic, and GP(0, k2π,a)
models radius functions that are 2π-periodic and even.

On the other hand, if there is a white random noise term, i.e. σn > 0, then these correlations
are less than 1, and the modeled radius functions do not necessarily satisfy the above-mentioned
properties, which is as expected due to the nature of white random noise.
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(a) Radius functions drawn for k = k2π.

-8 -6 -4 -2 0 2 4 6

x [m]

-6

-4

-2

0

2

4

6

y
 [

m
]

(b) Cartesian curves obtained for k = k2π.
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(c) Radius functions drawn for k = kπ.
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(d) Cartesian curves obtained for k = kπ.
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(e) Radius functions drawn for k = k2π,a.
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(f) Cartesian curves obtained for k = k2π,a.

Figure 4.3: Five radius functions drawn from GP(0, k) with (σf , σb, σn, l) = (2m, 2m, 0m, π4 ) for
k = k2π, k = kπ and k = k2π,a, and their associated cartesian curves. The interval [0, 2π) was regularly
discretized using 100 test angles. The shadowed region corresponds to a 99% confidence interval for
each function value.
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4.1 Definitions and notations

Figure 4.3 illustrates the radius functions modeled by the GP families GP(0, k2π), GP(0, kπ)
and GP(0, k2π,a) for σn = 0, as well as their associated cartesian curves. As done in the ex-
amples shown in Figure 4.1 and Figure 4.2, the interval [0, 2π) was regularly discretized using
100 test angles, and five radius functions were drawn from the resulting multivariate Gaus-
sian distribution for each covariance function. The hyperparameters used were (σf , σb, σn, l) =
(2 m, 2 m, 0 m, π

4
).

The cartesian curves generated by the drawn radius functions are continuous and closed
(see Figures 4.3b, 4.3d and 4.3f). The cartesian curves obtained using k2π (Figure 4.3b) do
not posses any particular type of symmetry, while the cartesian curves obtained using kπ (Fig-
ure 4.3d) and k2π,a (Figure 4.3f) are symmetric about the center and the x-axis, respectively.

The scaling factors in the exponents of k̃2π, k̃π and k̃2π,a are chosen such that k2π(θ, θ′),
kπ(θ, θ′) and k2π,a(θ, θ′) are very similar to ke(θ, θ′), when θ′ → θ. This is a consequence of the
limits

lim
θ′→θ

ln(k̃2π(θ, θ′))

ln(k̃e(θ, θ′))
= lim

θ′→θ

− 2
l2

sin2
(
θ−θ′
2

)
− (θ−θ′)2

2l2

= lim
θ′→θ

(
sin
(
θ−θ′
2

)
θ−θ′
2

)2

= 1 (4.13a)

lim
θ′→θ

ln(k̃π(θ, θ′))

ln(k̃e(θ, θ′))
= lim

θ′→θ

− 1
2l2

sin2(θ − θ′)
− (θ−θ′)2

2l2

= lim
θ′→θ

(
sin (θ − θ′)
θ − θ′

)2

= 1 (4.13b)

lim
θ′→θ

ln(k̃2π,a(θ, θ
′))

ln(k̃e(θ, θ′))
= lim

θ′→θ

− 2
l2

(| ssa(θ)| − | ssa(θ′)|)2

− (θ−θ′)2
2l2

(4.13c)

= lim
θ′→θ

(
| ssa(θ)| − | ssa(θ′)|

θ − θ′

)2

= 1 , (4.13d)

where the last limit follows from | ssa(·)| being a saw-tooth function as shown in Figure 4.4.

-4 -3 -2 - 0 2 3 4
0|s

sa
(

)|

Figure 4.4: | ssa(θ)| for θ ∈ [−4π, 4π].

The limits in Equation (4.13) imply that k2π(θ, θ′), kπ(θ, θ′), k2π,a(θ, θ
′) → ke(θ, θ

′) expo-
nentially when θ′ → θ. Therefore, we conclude that radius functions modeled by GPes that use
the covariance function k2π, kπ or k2π are locally similar to radius functions modeled by GPes
that use the covariance function ke.

The covariance functions ke, k2π and kπ can be found in the literature. See for example [23]
and [28]. However, the covariance function k2π,a or similar is not present in the literature to the
best of the authors knowledge, and this covariance function was explicitly developed for this
study in order to model axial symmetry.

25



Chapter 4. Gaussian Processes Fundamentals

4.2 Gaussian process regression
GP regression is a method for estimating the values of an unknown function that is modeled
as a real GP based on noisy measurements of some of the function values. In this section, we
present the theoretical background and important equations for this regression method, as well
as an example that involves some of the covariance functions defined in Section 4.1.

Let f(x) ∼ GP(m(x), k(x, x′)) be a real GP, where x, x′ ∈ I and I ⊂ R is an interval,
and let xt = [xt,1, xt,2, · · · , xt,Nt ]T = [xt]

Nt
t=1 ∈ INt be a vector of different points in I, which

are called test points. The test points are points at which the function values are of special
interest. In the case of the radius function that describes the object’s extent, the test points are
the test angles θt = [θt]

Nt
t=1 defined in Chapter 2, which are used to discretize the radius function.

The measurements y = [y1, y2, · · · , yNi ] = [yn]Nin=1 ∈ RNi of the function values at the
points xi = [xi,1, xi,2, · · · , xi,Ni ] = [xi,n]Nin=1 ∈ INi are modeled as

yn = f(xi,n) + wn , (4.14)

where wn ∼ N (0, σ2
w) is the measurement noise and σw > 0 is the measurement noise strength.

The noise at each measurement is assumed independent of each other, and independent of the
function values.

The points at which the function values are measured, xi = [xi,n]Nin=1 are called input points.
The denominations ”test” and ”input” points have their origin in the Machine Learning field
(see [23, ch. 2]).

The GP model and the independence assumption on the measurement noise yields that[
fi
ft

]
∼ N

([
M(xi)
M(xt)

]
,

[
K(xi,xi) K(xi,xt)
K(xt,xi) K(xt,xt)

])
(4.15a)[

y
ft

]
∼ N

([
M(xi)
M(xt)

]
,

[
K(xi,xi) + σ2

wINi K(xi,xt)
K(xt,xi) K(xt,xt)

])
, (4.15b)

where fi = [f(xi,1), f(xi,2), · · · f(xi,Ni)]
T ∈ RNi and ft = [f(xt,1), f(xt,2), · · · f(xt,Nt)]

T ∈
RNt are the function values at the input and test points, respectively.

By using the result from Appendix A.1, we conclude by that the conditional distributions
ft|y, y|ft and fi|ft are normally distributed with mean vectors and variances given by

E[ft|y] = M(xt) + K(xt,xi)[K(xi,xi) + σ2
wINi ]

−1 (y −M(xi)) (4.16a)
V[ft|y] = K(xt,xt)−K(xt,xi)[K(xi,xi) + σ2

wINi ]
−1K[xi,xt] (4.16b)

E[y|ft] = M(xi) + K(xi,xt)K(xt,xt)
−1 (ft −M(xt)) (4.16c)

V[y|ft] = K(xi,xi) + σ2
wINi −K(xi,xt)K(xt,xt)

−1K[xt,xi] (4.16d)
E[fi|ft] = M(xi) + K(xi,xt)K(xt,xt)

−1 (ft −M(xt)) (4.16e)
V[fi|ft] = K(xi,xi)−K(xi,xt)K(xt,xt)

−1K[xt,xi] (4.16f)

Equations (4.16a) to (4.16b) summarize GP regression: The prior distribution of the func-
tion values at the test points is ft ∼ N (M(xt),K(xt,xt)) due to the GP model assumption,
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4.2 Gaussian process regression

and given the measurements y, the posterior distribution of these function values, ft|y, is nor-
mally distributed with mean vector and covariance matrix given by Equation (4.16a) and Equa-
tion (4.16b), respectively. Furthermore, Equations (4.16c) to (4.16d) provides the likelihood of
the measurements given the function values at the test points, while Equations (4.16e) to (4.16f)
may be used to estimate function values at arbitrary points based on the estimates at the test
points.
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(b) Posterior using k = ke.
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(c) Posterior using k = k2π.
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(d) Posterior using k = kπ.

Figure 4.5: GP regression: True function (yellow), measurements (purple), mean of ft (red) and a 99%
confidence region for ft (shadowed region). Hyperparameter values (σf , σb, σn, l) = (2m, 2m, 0, π4 ).

Figure 4.5 shows an GP regression example. As done in previous examples (see Sec-
tion 4.1), the test points correspond to a regular discretization of the interval [0, 2π) of 100
points. The true function to be estimated is drawn from GP(0, kπ) with hyperparameters
(σf , σb, σn, l) = (2 m, 2 m, 0, π

4
), and 5 measurements are taken with σw = 0.5 m at input

points on [0, 2π] that are equidistant to each other. GP regression is performed using GP(0, ke),
GP(0, k2π) and GP(0, kπ).

Figure 4.5a shows the prior distribution of ft: the mean vector (red) and a 99% confidence
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Chapter 4. Gaussian Processes Fundamentals

interval for each function value (shadowed region) is the same for each considered GP. Fig-
ures 4.5b to 4.5d show the GP regression results using GP(0, ke), GP(0, k2π) and GP(0, kπ),
respectively. In each case, the mean vector of the posterior distribution ft|y is close to the
true function values, and the true function lies inside the 99% confidence region for the esti-
mated function values, which is considerably narrower than the one for the prior distribution.
The results using the covariance function k2π are better than the ones obtained using ke since
GP(0, k2π) correctly assumes that the true function is 2π-periodic, and uses the measurements
to estimate the function values at test points that are 2π units away of the input points. This
explains why the estimate at test points close to 0 and 2π are considerably better. By a similar
argument, we can explain why the estimates using kπ are even better than the ones obtained
using k2π.

Equations (4.16a) to (4.16f) are used extensively in Chapter 5 together with the GPes defined
in section 4.1.2, which have zero mean function, i.e. m(x) = 0. Therefore, by defining the
notations

HGP(x1,x2, σ) = K(x1,x2)[K(x2,x2) + σ2INi ]
−1 (4.17a)

RGP(x1,x2, σ) = K(x1,x1)−K(x1,x2)[K(x2,x2) + σ2INi ]
−1K(x2,x1) , (4.17b)

we can rewrite the conditional distributions for ft|y, y|ft and fi|ft when the mean function is
zero as

ft|y ∼ N (HGP(xt,xi, σw)y,RGP(xt,xi, σw)) (4.18a)

y|ft ∼ N
(
HGP(xi,xt, 0)ft,RGP(xi,xt, 0) + σ2

wINi
)

(4.18b)
fi|ft ∼ N (HGP(xi,xt, 0)ft,RGP(xi,xt, 0)) (4.18c)

4.3 Model selection: GP model and hyperparameter values
Model selection is the problem of choosing a GP model for a particular application, i.e. choos-
ing a mean and covariance function, as well as determining hyperparameter values. In gen-
eral, model selection is far from a trivial task. The main reason for this is that GPes are non-
parametric models. Therefore it may not be obvious which GP model family or parameter
values should be chosen. In addition, some covariance functions may depend on many hyper-
parameters [23, p.105-106]. However, depending on the particular application, the GP model
family or the value of some hyperparameters may be easy to specify.

In the particular case of this study, the GP families GP(0, k2π), GP(0, kπ) and GP(0, k2π,a)
seem to be reasonable choices to model the radius function that parameterizes the boundary of
the object’s extend, based on the discussion in Section 4.1.2. The hyperparameter values for
these GP models are chosen heuristically. The hyperparameters σb and σf are chosen to resem-
ble the mean of the radius function and the difference between the maximum and minimum of
this function, respectively. In particular, σb and σf give overall properties of the radius function.
Since the radius function is unknown, it is not reasonable to assume that these quantities are
known. Therefore, we assume that in the target tracking initialization process, upper bound es-
timates for these quantities are obtained. For the hull parameters in 2.1 the average of the radius
function for the ”spline”, ”parabola” and ”ellipse” methods is between 3.34-3.51 m, while the
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4.3 Model selection: GP model and hyperparameter values

difference between the maximum and minimum radius value is between 2.75-2.95 m. There-
fore, the values σb = 3.5 m and σf = 3 m are chosen. The value of the hyperparameter σn is
set to σn = 0.1 m since arbitrary variations of the radius function of this scale can be assumed
reasonable for the size of the hull. Finally, the lengthscale l is set to π

4
since 4l = π and radius

values for opposite directions can be assumed uncorrelated.

Hyperparameter Value
σf 3.0 m
σb 3.5 m
σn 0.1 m
l π

4

Table 4.1: Hyperparamaters values for the GPes GP(0, k2π), GP(0, kπ) and GP(0, k2π,a).

The chosen hyperparameter values are summarized in table 4.1, and in Chapter 7, it is
discussed how the model selection could be improved.
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Chapter 5
State-space models and Kalman filters

5.1 Particular case: Known pose

We consider first the case where the pose of the object is known, i.e. the position of the center
rwc = [Nc, Ec]

T and heading ψc are known. In particular, the linear velocity [vN , vE] = [Ṅc, Ėc]
and the angular velocity rc = ψ̇c are also available. In other words, the states that describe the
kinematics of the object are all known, and only the states that describe the object’s extent have
to be estimated. Therefore, the state vector for this model is the value of the unknown radius
function at the test angles:

x = xt = [r(θt)]
Nt
t=1 =

[
r(θ1) r(θ2) · · · r(θNt)

]T
. (5.1)

Since the object’s extent is assumed to be a rigid body (see Section 1.3), the state values do
not change with time, i.e.

xk = xk−1 (5.2)

In particular, the process model is not subjected to process noise.

We will now show that the knowledge ofNc, Ec and ψc allows us to derive a linear measure-
ment model. As discussed in Section 3.2, a lidar range measurement rm for an azimuth angle
ϕm corresponds to a point with coordinates in the world frame given by

zwm =

[
rm cos(ϕm)
rm sin(ϕm)

]
, (5.3)

where we have used that the lidar sensor is placed at the origin of the world frame.

The cartesian coordinates of the measurement, zwm, can be related to a radius function mea-
surement yi at an input angle θi using the transformation between the body and world coordi-
nates (eq. (2.2)), which yields

zwm = rwc +

[
cos(ψc) − sin(ψc)
sin(ψc) cos(ψc)

] [
yi cos(θi)
yi sin(θi)

]
= rwc + yi

[
cos(θi + ψc)
sin(θi + ψc)

]
, (5.4)
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ŷ

c
ψc

rwcN̂

Êo
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Figure 5.1: Relation between lidar measurements and radius function measurements.

where rwc = [Nc, Ec]
T are the coordinates of the center in the world frame. Hence,

rm

[
cos(ϕm)
sin(ϕm)

]
=

[
Nc

Ec

]
+ yi

[
cos(θi + ψc)
sin(θi + ψc)

]
(5.5a)

Therefore, we have the following transformations between the lidar measurement (rm, ϕm)
and the radius function measurements (yi, θi){

yi =
∣∣[rm cos(ϕm)−Nc, rm sin(ϕm)− Ec]T

∣∣
θi = ∠

(
[rm cos(ϕm)−Nc, rm sin(ϕm)− Ec]T

)
− ψc

(5.6a){
rm =

∣∣[Nc + yi cos(θi + ψc), Ec + yi sin(θi + ψc)]
T
∣∣

ϕm = ∠
(
[Nc + yi cos(θi + ψc), Ec + yi sin(θi + ψc)]

T
)
,

(5.6b)

where | · | and ∠(·) are the norm and angle functions, which are defined as

|v| =
√
v21 + v22 (5.7a)

∠(v) = atan2(v2, v1) =



arctan
(
v2
v1

)
, v1 > 0

arctan
(
v2
v1

)
+ π , v1 < 0 , v2 ≥ 0

arctan
(
v2
v1

)
− π , v1 < 0 , v2 < 0

+π
2
, v1 = 0 , v2 > 0

−π
2
, v1 = 0 , v2 < 0

(5.7b)

for v = [v1, v2]
T ∈ R2 − {0}.

The transformations 5.6a and 5.6b are well-defined as long as zwm 6= rwc and zwm 6= 0, re-
spectively. Under the reasonable assumptions that the center lies inside the object’s extent and
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5.1 Particular case: Known pose

that the object’s extent never reaches the lidar sensor position, the lidar measurements cannot
correspond to the center or the origin of the world frame. Therefore, these transformations are
well-defined. The relation between (rm, ϕm), zwm and (yi, θi) is illustrated in Figure 5.1.

The transformations in 5.6a and 5.6b give a one-to-one relation between the lidar measure-
ment (rm, ϕm) and the radius function measurements (yi, θi), where the angles ϕm and θi are
unique up to modulo 2π, which does not suppose any inconvenient since these angles are only
used as arguments in trigonometric functions. Hence, for a vector rk = [rk,1, rk,2, · · · , rk,Nk,m ]T

of lidar range measurements at time k for azimuth angles ϕk = [ϕk,1, ϕk,2, · · · , ϕk,Nk,m ]T , the
corresponding radius function measurements yk = [yk,1, yk,2, · · · , yk,Nk,m ]T and input angles
θi,k = [θk,1, θk,2, · · · , θk,Nk,m ]T can be found, and viceversa.

Since the radius function is described by a GP model, the likelihood of the measurements
yk = [yk,m]

Nk,m
m=1 given the values of the radius function at the test angle xt = [r(θt,n)]Ntn=1 is

given by

yk|xt ∼ N
(
HGP(θi,k,θt, 0)xt,RGP(θi,k,θt, 0) + σ2

rINk,m
)

(5.8)

according to eq. (4.18b), where σr is the range measurement noise strength of the lidar sensor.

Hence, we have the following linear state-space model

xk = xk−1 (5.9a)

yk = HGP(θi,k,θt, 0)xk + vk , vk ∼ N
(
0,RGP(θi,k,θt, 0) + σ2

rINk,m
)
, (5.9b)

where x0 ∼ N (0,K(θt,θt)) since the radius function is modeled by GP(0, k) with k = k2π, kπ
or k2π,a.

Note that the size of the measurement matrix and the measurement noise covariance matrix
can change depending on the number of lidar range measurements available at a time point.
Moreover, the matrices in the state-space model are independent of the time step ∆tk = tk −
tk−1.

Algorithm 1 The Kalman filter for known pose
1: x̂0 ← 0 . Initial state estimate
2: P0 ← K(θt,θt) . Initial estimate covariance
3: for k = 1, 2, · · · do
4: Get (rk,ϕk) . Get lidar range measurements
5: Get (yk,θi,k) from (rk,ϕk) . Get radius function measurements
6: Hk ← HGP(θi,k,θt, 0) . Measurement matrix
7: Rk ← RGP(θi,k,θt, 0) + σ2

rINk,m . Measurement noise covariance
8: νk ← zk −Hkx̂k−1 . The innovation
9: Sk ← HkPk−1H

T
k + Rk . The innovation covariance

10: Kk ← Pk−1H
T
kS−1k . The Kalman gain

11: x̂k ← x̂k−1 + Kkνk . The posterior state estimate
12: Pk ← (I−KkHk) Pk−1 . The posterior covariance
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Chapter 5. State-space models and Kalman filters

Since the state-space model (5.9) is linear, a Kalman filter (see Appendix B.2) is used to
estimate the state x = [r(θt,n)]Ntn=1. The algorithm for the resulting filter is summarized in Al-
gorithm 1. The initial state estimate and its covariance matrix are x̂0 = 0 and P0 = K(θt,θt),
respectively, due to the distribution x0 ∼ N (0,K(θt,θt)). Since the transition matrix is the
identity and there is no process noise, the predicted state estimate is equal to the previous state
estimate, i.e. x̂k|k−1 = x̂k−1, and Pk|k−1 = Pk−1. This simplifies the algorithm for the filter,
which is reduced to an iterative regression method.

The state-space model (5.9) and the associated filter (Algorithm 1) can easily be modified to
the case where the states Nc, Ec and ψc are estimated using an external method. This approach
could be used in a sensor fusion setting, and is discussed in more detail together with other
possibilities in Chapter 7.

5.2 General case
We consider now the general case where the whole state of the object

x =
[
Nc vN Ec vE ψc rc r(θ1) r(θ2) · · · r(θNt)

]T (5.10)

is estimated based on the lidar measurements. To achieve this, a non-linear state-space is de-
rived, where the measurement model is based on an implicit equation, and an extended Kalman
filter (EKF) is used for inference (see Appendix B.3).

Two different approaches will be used to derive an explicit equation for the measurement
model. The first one, which is based in the work of Wahlström and Özkan in [28], neglects the
implicit dependency on the measurements of one part of the implicit equation, while the second
one, which is proposed in this report, uses implicit derivation to find the measurement matrix
and the measurement noise covariance matrix for the EKF.

5.2.1 Process model
The states that describe the kinematic properties of the object are

xc =
[
Nc vN Ec vE ψc rc

]T
, (5.11)

and its dynamics are modeled as three decoupled one-dimensional constant velocity models
(see Appendix B.1): one for the movement in the North direction, one for the movement in the
East direction and one for the rotation of the object. Moreover, we assume a constant time step
T . Hence, the model for xc is

xc,k = Fcxc,k−1 + wc,k , wc,k ∼ N (0,Qc) , (5.12)

where

Fc = I3 ⊗
[
1 T
0 1

]
(5.13a)

Qc = diag(σ2
N , σ

2
E, σ

2
ψ)⊗

[
T 3

3
T 2

2
T 2

2
T

]
(5.13b)
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5.2 General case

and σN , σE and σψ are the respective random noise strength for each of the decoupled constant
velocity models. In particular, the course angle, which corresponds to the direction of linear
velocity vector [vN , vE]T is independent of the heading angle ψc. In other words, this model
takes sideslip into account.

For the distribution of the initial state, xc,0, we use the model described in Appendix B.1 for
each of the three decoupled constant velocity models. Therefore xc,0 ∼ N (x̂c,0,Pc,0), where

x̂c,0 =
[
N̂c,0 v̂N,0 Êc,0 v̂E,0 ψ̂c,0 r̂c,0

]T
(5.14a)

Pc,0 = diag
(
σ2
N̂
, σ2

Ê
, σ2

ψ̂

)
⊗
[

1 1
T

1
T

2
T 2

]
(5.14b)

and σN̂ , σÊ and σψ̂ are the standard deviations for the initial estimate of Nc, Ec and ψc, respec-
tively.

As discussed in 5.1, the state that describes the object’s extent:

xt =
[
r(θ1) r(θ2) · · · r(θNt)

]T
= [r(θt)]

Nt
t=1 (5.15)

is constant in time, and is modeled as a GP of the form GP(0, k(θ, θ′)). Hence,

xt,k = xt,k−1 (5.16a)
xt,0 = N (0,K(θt,θt)) (5.16b)

Therefore, the process model for the whole state x = [xTc ,x
T
t ]T is

xk = Fxk−1 + wk (5.17a)

x0 ∼ N
([

x̂Tc,0,0
T
]T
, diag(Pc,0,K(θt,θt))

)
, (5.17b)

where F = diag (Fc, INt) and wk is white random noise with covariance Q = diag (Qc,0Nt).

5.2.2 Measurement model

The implicit equation for the measurement model is based on the relation between the cartesian
coordinates of the lidar measurements and their corresponding radius function values. As dis-
cussed in Section 5.1, the world coordinates of a lidar range measurement rm for an azimuth
angle ϕm is

zwm = rm

[
cos(ϕm)
sin(ϕm)

]
, (5.18)

and under the assumption that there is no measurement noise, these coordinates correspond to
a radius function value ri = r(θi) for an input angle θi as given by

zwm = rwc + ri

[
cos(θi + ψc)
sin(θi + ψc)

]
, (5.19)
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where rwc = [Nc, Ec]
T are the coordinates of the center in the world frame and ψc is the heading

angle (see eq. (2.2)). This relation is illustrated in Figure 5.2. It follows from Equation (5.19)
that

|zwm − rwc | = ri = r(θi) (5.20a)
∠ (zwm − rwc ) = θi + ψc , (5.20b)

which implies that

|zwm − rwc | = r (∠ (zwm − rwc )− ψc) (5.21a)
zwm − rwc = e(zwm − rwc )r (∠(zwm − rwc )− ψc) , (5.21b)

where e(x) = x
|x| , x ∈ R2, is the unit vector function.

N̂

x̂

ŷ

c
ψc

rwcN̂

Êo

rm
θm

yi

θi

zwm

Figure 5.2: Relation between lidar measurements and radius function measurements.

Since the radius function is modeled as a GP, the identity 5.21b can be rewritten by using
4.18b as

zwm = rwc + e(zwm − rwc ) [HGP(∠(zwm − rwc )− ψc,θt,0)xt + vm] , (5.22)

where vm ∼ N (0,RGP(∠(zwm − rwc )− ψc,θt,0)).

Equation (5.22) is the foundation of the measurement model. Given lidar range measure-
ments with coordinates zwk,1, z

w
k,2, · · · , zwk,Nm for a time point tk, let the vector zk be the concate-

nation of these coordinates, i.e.

zk =
[
zwk,1

T zwk,2
T · · · zwk,Nm

T
]T
. (5.23)
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We define the functionsHk,m andHk as

Hk,m(x, zwk,m,vk,m) = rwc + e(zwk,m − rwc )
[
HGP(∠(zwk,m − rwc )− ψc,θt,0)xt + vk,m

]
(5.24a)

Hk(x, zk,vk) =


Hk,1(x, zk,1,vk,1)
Hk,2(x, zk,2,vk,2)

...
Hk,Nm(x, zk,Nm ,vk,Nm)

 , (5.24b)

where vk = [vTk,1,v
T
k,2, · · · ,vTk,Nm ]T . Moreover, we define the matrix RGP,k as

RGP,k = diag (RGP(θi,k,1,θt,0),RGP(θi,k,2,θt,0), · · · ,RGP(θi,k,Nm ,θt,0)) , (5.25)

where θi,k,m = ∠(zwk,m−rwc )−ψc. Note that the input angles θi,k,m and the matrix RGP,k depend
on the state and the measurements.

By the definition ofHk,m,Hk and RGP,k, Equation (5.22) can be rewritten as

zk = Hk(x, zk,vk) , (5.26)

where vk ∼ N (0,RGP,k).

Equation (5.26) is the implicit equation for the measurement model. As done in Section 5.1,
we assume that the center lies inside the object. Therefore, the lidar measurements never cor-
respond to the center, and the function Hk is well-defined and differentiable. Furthermore, we
assume that there always exists an unique solution zk = hk(x,vk) for the implicit equation
5.26, i.e.

hk(x,vk) = Hk(x,hk(x,vk),vk) , (5.27)

and that the function hk is differentiable. In particular, we have that

zwk,m = hk,m(x,vk,m) = Hk,m(x,hk,m(x,vk,m),vk,m) , (5.28)

where

hk =


hk,1
hk,2

...
hk,Nm

 . (5.29)

Although the process model (see eq. (5.17)) is linear, the solution zk = hk(x,vk) of the
implicit equation 5.26 is in general non-linear. Therefore, an EKF is used for inference. In
particular, the Jacobian of hk with respect to the state x, which gives the measurement matrix
is of interest, as well as the measurement covariance matrix.

These matrices are calculated using two different approaches. The first one, neglects that
the right-hand side of 5.26 depends on zk. Hence, hk = Hk, and the partial derivatives of
hk are calculated by differentiating Hk. This approach is used in [28], and is called ”explicit
differentiation” in this report. This is in contrast to the second approach, which uses implicit
differentiation to calculate the partial derivatives of hk.
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Chapter 5. State-space models and Kalman filters

Explicit differentiation

As discussed above, under the assumption that the dependency of the right-hand side of 5.26 on
zk can be neglected, it follows that hk,m = Hk,m and the measurement model with noise is then
given by

zwk,m = hk,m(x,vk,m) = Hk,m(x,hk,m(x,vk,m),vk) (5.30a)

= rwc + e(zwk,m − rwc ) [H(θi,k,m,θt,0)xt + vk,m] + wk,m (5.30b)

= rwc + e(zwk,m − rwc )H(θi,k,m,θt,0)xt + e(zwk,m − rwc )vk,m + wk,m , (5.30c)

where vk,m ∼ N (0,RGP(θi,k,m,θt,0)) and wk,m ∼ N (0,Rk,m). The noise wk,m corresponds
to the lidar measurement error given by Equation (3.5), i.e.

Rk,m =

(
0, σ2

r

[
cos2(θk,m) cos(θk,m) sin(θk,m)

cos(θk,m) sin(θk,m) sin2(θk,m)

])
. (5.31)

The measurement matrix at time tk, HE,k, is obtained by the differentiation of the first two
terms in by Equation (5.30c), which correspond to hk(x,0). Hence,

HE,k =
∂hk
∂x

(x̂k|k−1,0) =


∂hk,1
∂x

(x̂k|k−1,0)
∂hk,2
∂x

(x̂k|k−1,0)
...

∂hk,Nm
∂x

(x̂k|k−1,0)

 (5.32a)

=



∂Hk,1
∂Nc

(x,0)
0
0

∂Hk,1
∂Ec

(x,0)
0
0

∂Hk,1
∂ψc

(x,0)
0
0

∂Hk,1
∂xt

(x,0)

∂Hk,2
∂Nc

(x,0)
0
0

∂Hk,2
∂Ec

(x,0)
0
0

∂Hk,2
∂ψc

(x,0)
0
0

∂Hk,2
∂xt

(x,0)

...
...

...
...

...
...

...
∂Hk,Nm
∂Nc

(x,0)
0
0

∂Hk,Nm
∂Ec

(x,0)
0
0

∂Hk,Nm
∂ψc

(x,0)
0
0

∂Hk,Nm
∂xt

(x,0)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=x̂k|k−1

,

(5.32b)
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where x̂k|k−1 is the predicted state estimate at time tk (see Appendix B.2) and

∂Hk,m

∂rwc
(x,0) = I2 −

∂e

∂x
(zwk,m − rwc )HGP(θi,k,m,θt,0)xt

− e(zwk,m − rwc )
∂∠
∂x

(zwk,m − rwc )
∂HGP
∂θ

(θi,k,m,θt,0)xt (5.33a)

∂Hk,m

∂ψc
(x,0) = −e(zwk,m − rwc )

∂HGP
∂θ

(θi,k,m,θt,0)xt (5.33b)

∂Hk,m

∂xt
(x,0) = e(zwk,m − rwc )HGP(θi,k,m,θt,0) (5.33c)

∂e

∂x
(x) =

1

|x|
I2 −

xxT

|x|3
(5.33d)

∂∠
∂x

(x) =
1

|x|2
[−x2, x1]T (5.33e)

∂HGP
∂θ

(θ,θt,0) =
[
∂k(θ,θt,1)

∂θ

∂k(θ,θt,2)

∂θ
· · · ∂k(θ,θt,Nt )

∂θ

]
K(θt,θt)

−1 (5.33f)

∂k

∂θ
(θ, θ′) =


−σ2

f

l2
e
− 2
l2

sin2
(
θ−θ′

2

)
sin(θ − θ′) , if k = k2π

− σ2
f

2l2
e−

1
2l2

sin2(θ−θ′) sin(2[θ − θ′]) , if k = kπ

−σ2
f

l2
e−

1
2l2

[| ssa(θ)|−| ssa(θ′)|]2 [| ssa(θ)| − | ssa(θ′)|] sign(ssa(θ)) , if k = k2π,a

.

(5.33g)

Note that Equation (5.33a) gives the first and third columns of the measurement matrix Hk

since rwc = [Nc, Ec]
T . Furthermore, the covariance functions k2π, kπ and k2π,a are not differen-

tiable everywhere due to the random noise term, which gives a discontinuity on the line θ = θ′.
Moreover, in the case of k2π,a, the function | ssa(θ) is not differentiable at entire multiples of π
(see Figure 4.4). However, since the singular points of these covariance functions are a line in
addition to a discrete set of points of the (θ, θ′) plane, we consider the event of an input angle
and a test angle to constitute one of these singular points as highly unlikely. Therefore, Equa-
tion (5.33g) is used despite k2π, kπ and k2π,a not being differentiable everywhere.

The measurement covariance matrix is derived from the two last terms in Equation (5.30c).
Hence, this matrix is

RE,k = diag(RE,k,1,RE,k,2, · · · ,RE,k,Nm) , (5.34)

where

RE,k,m = e(zwk,m − rwc )RGP(θi,k,m,θt,0)e(zwk,m − rwc )T + Rk,m (5.35a)

=

[
cos(θi,k,m + ψc)
sin(θi,k,m + ψc)

]
RGP(θi,k,m,θt,0)

[
cos(θi,k,m + ψc)
sin(θi,k,m + ψc)

]T
+ Rk,m. (5.35b)

Implicit differentiation

Based on the assumption that both Hk,m and hk,m are differentiable, the differentiation of the
implicit equation hk,m(x,vk,m) = Hk,m(x,hk,m(x,vk,m),vk,m) (eq. (5.28)) with respect to x
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gives

∂hk,m
∂x

(x,vk,m) =
∂Hk,m

∂x
(x,hk,m(x,vk,m),vk,m)

+
∂Hk,m

∂zwk,m
(x,hk,m(x,vk,m),vk,m)

∂hk,m
∂x

(x,vk,m)

(5.36a)[
I2 −

∂Hk,m

∂zwm
(x, zwm,vk,m)

]
∂hk,m
∂x

(x) =
∂Hk,m

∂x
(x,hk,m(x,vk,m),vk,m) (5.36b)

Under the assumption that the inverse of I2 − ∂Hk,m
∂zwm

(x, zwm,vk,m) always exists, then the
Jacobian of hk,m with respect to x is given by

∂hk,m
∂x

(x,vk,m) =

[
I2 −

∂Hk,m

∂zwm
(x, zwm,vk,m)

]−1
∂Hk,m

∂x
(x,hk,m(x,vk,m),vk,m) , (5.37)

which is the implicit derivation rule with respect to x for zwk,m −Hm,k(x, z
w
k,m,vk,m) = 0.

Comparison of the partial derivatives ofHk,m with respect to zwk,m and rwc = [Nc, Ec]
T :

∂Hk,m

∂zwm
(x, zwm) =

∂e

∂x
(zwk,m − rwc )H(θi,k,m,θt,0)xt

+ e(zwk,m − rwc )
∂∠
∂x

(zwk,m − rwc )
∂H
∂θ

(θi,k,m,θt,0)xt

+ e(zwk,m − rwc )
∂∠
∂x

(zwk,m − rwc )vk,m (5.38a)

∂Hk,m

∂rwc
(x, zwm) = I2 −

∂e

∂x
(zwk,m − rwc )H(θi,k,m,θt,0)xt

− e(zwk,m − rwc )
∂∠
∂x

(zwk,m − rwc )
∂H
∂θ

(θi,k,m,θt,0)xt

− e(zwk,m − rwc )
∂∠
∂x

(zwk,m − rwc )vk,m (5.38b)

= I2 −
∂Hk,m

∂zwm
(x, zwm) , (5.38c)

yields that

∂zwk,m
∂rwc

=
∂hk,m
∂rwc

(x,vk,m) = I2. (5.39)

Equation (5.39) makes sense because a translation of the world coordinates of the center by
δrwc implies an equal translation of the world coordinates of the measurements. This relation is
illustrated in Figure 5.3, and can also be verified by studying Equation (5.22), which depends
on the difference zwk,m − rwc . Note that this relation is not modelled by Equation (5.33a), which
is in general different from the identity matrix.

Similarly to Equation (5.32), the measurement matrix at time tk, HI,k, is given by the par-
tial derivatives of hk(x,0). As a consequence of Equation (5.38) and Equation (5.39), this
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rwc

rwc + δrwc

δrwc

zw1

zw1 + δrwc
zw2

zw2 + δrwc

zw3

zw3 + δrwc

Figure 5.3: Translation of the world coordinates of the center, rwc , by δrwc , and the corresponding trans-
lation of three measurements: zw1 , zw2 and zw3 .

measurement matrix is given by

HI,k =
∂hk
∂x

(x̂k|k−1,0) =


∂hk,1
∂x

(x̂k|k−1,0)
∂hk,2
∂x

(x̂k|k−1,0)
...

∂hk,Nm
∂x

(x̂k|k−1,0)

 (5.40a)

=



1 0 0 0
0 0 1 0

∂hk,1
∂ψc

(x,0)
0
0

∂hk,1
∂xt

(x,0)

1 0 0 0
0 0 1 0

∂hk,2
∂ψc

(x,0)
0
0

∂hk,2
∂xt

(x,0)

...
...

...
...

...
...

...
1 0 0 0
0 0 1 0

∂hk,Nm
∂ψc

(x,0)
0
0

∂hk,Nm
∂xt

(x,0)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=x̂k|k−1

, (5.40b)

where x̂k|k−1 is the predicted state estimate at time tk (see Appendix B.2) and

∂hk,m
∂ψ

(x) = −
[
∂Hk,m

∂rwc
(x, zwk,m)

]−1
e(zwk,m − rwc )

∂HGP
∂θ

(θi,k,m,θt,0)xt (5.41a)

∂hk,m
∂xt

(x) =

[
∂Hk,m

∂rwc
(x, zwk,m)

]−1
e(zwk,m − rwc )HGP(θi,k,m,θt,0). (5.41b)

Similarly to Equation (5.37), we have that the partial derivative of hk,m respect to the noise
vk,m is

∂hk,m
∂vk,m

(x,vk,m) =

[
I2 −

∂Hk,m

∂zwm
(x, zwm,vk,m)

]−1
∂Hk,m

∂vk,m

(x,hk,m(x,vk,m),vk,m) (5.42a)

=

[
∂Hk,m

∂rwc
(x,hk,m(x,vk,m))

]−1
e(zwk,m − rwc ). (5.42b)
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Therefore, the measurement covariance matrix is modeled as

RI,k = diag(RI,k,1,RI,k,2, · · · ,RI,k,NM ) , (5.43)

where

RI,k,m =

[
∂Hm

∂rwc
(x, zwm)

]−1
e(zwk,m − rwc )RGP(θi,k,m,θt,0)e(zwk,m − rwc )T

[
∂Hm

∂rwc
(x, zwm)

]−T
+ Rk,m (5.44a)

=

[
∂Hm

∂rwc
(x, zwm)

]−1 [
cos(θi,k,m + ψc)
sin(θi,k,m + ψc)

]
RGP(θi,k,m,θt,0)

[
cos(θi,k,m + ψc)
sin(θi,k,m + ψc)

]T [
∂Hm

∂rwc
(x, zwm)

]−T
+ Rk,m , (5.44b)

and Rk,m is the covariance matrix of the lidar measurement error given by Equation (3.5).

In other words, the covariance matrix RI,k,m corresponds to the superposition of the effects
of vk,m ∈ N (0,RGP(θi,k,m,θt,0)) in the implicit equation (5.22) and the lidar measurement
error wk,m ∈ N (0,Rk,m).

5.2.3 Predicted measurements
An important step of the EKF is to predict measurements based on the predicted state estimate
xk|k−1 in order to correct the state estimate (see Appendix B.3).

In our case, a first approach would be to use the lidar rays that correspond to the measure-
ments to generate the predicted measurements ẑk. This approach has two major challenges.
The first one is to solve the implicit equation 5.28 for zwm for each lidar ray, which may be
achieved by using root-finding algorithms since a ray is a one dimensional object. However, for
a particular lidar ray and predicted state xk|k−1, this equation may or may not have a solution.
The non-guaranteed existence of a predicted measurement, constitutes the second challenge:
measurement association. For an arbitrary lidar ray, they might exist a measurement, but not a
predicted measurement, and vice versa. Therefore it is not straightforward how these unmatched
measurements or predicted measurements should be handled. Unmatched measurements could
arise when the true state and the state estimate are very different. For example, during initial-
ization of the EKF.

Due to the challenges of using lidar rays to predict measurements, and motivated by the
results obtained using GP regression (see Section 4.2), the predicted measurements are gener-
ated by using the input angles defined by the measurements zk and the predicted state estimate
xk|k−1 together with GP regression.

Let the components of the predicted state xk|k−1 be

xk|k−1 =
[
N̂c,k|k−1 v̂N,k|k−1 Êc,k|k−1 v̂E,k|k−1 ψ̂c,k|k−1 r̂c,k|k−1 x̂Tt,k|k−1

]T
. (5.45)

For each measurement zwm, the associated input angle is given by

θ̂i,k,m = ∠(zwm − r̂wc )− ψ̂c,k|k−1 , (5.46)
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where r̂wc,k|k−1 = [N̂c,k|k−1, Êc,k|k−1]
T (see Figure 5.2).

GP regression is then used to calculate the radius function value for the input angle θ̂i,k,m
based on the predicted estimate of the object’s state x̂Tt,k|k−1 according to Equation (4.18c),
which gives

r̂i,k,m = HGP(θ̂i,k,m, θt,0)x̂t,k|k−1. (5.47)

Finally, the predicted measurement is calculated by transforming the radius function value
to its corresponding coordinates in the world frame

ẑwm = r̂wc,k|k−1 + e(zwm − r̂wc,k|k−1)r̂i,k,m (5.48a)

= r̂wc,k|k−1 + e(zwm − r̂wc,k|k−1)HGP(θ̂i,k,m, θt,0)x̂t,k|k−1. (5.48b)

5.2.4 Algorithms for the extended Kalman filters
Based on the process model (see Section 5.2.1), the measurement models (see Section 5.2.2) and
the method for calculating predicted measurements (see Section 5.2.3), the algorithms for the
EKF using explicit and implicit differentiation are summarized in Algorithm 2 and Algorithm 3,
respectively.

Algorithm 2 The EKF for the general case using explicit differenatiation
1: Set x̂0 and P0 . Initialization (eq. (5.17b))
2: for k = 1, 2, · · · do
3: x̂k|k−1 ← Fx̂k−1 . The predicted state estimate (eq. (5.17a))
4: Pk|k−1 ← FPk−1F

T + Q . The predicted covariance (eq. (5.17))
5: Get ẑk from zk and x̂k|k−1 . The predicted measurements (eq. (5.46)-eq. (5.48))
6: νk ← zk − ẑk . The innovation
7: H← HE,k . The measurement matrix (eq. (5.32)-eq. (5.33))
8: R← RE,k . The measurement covariance matrix (eq. (5.34)-eq. (5.35))
9: Sk ← HPk|k−1H

T + R . The innovation covariance
10: Kk ← Pk|k−1H

TS−1k . The Kalman gain
11: x̂k ← x̂k|k−1 + Kkνk . The posterior state estimate
12: Pk ← (I−KkH) Pk|k−1 . The posterior covariance
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Algorithm 3 The EKF for the general case using implicit differentiation
1: Set x̂0 and P0 . Initialization (eq. (5.17b))
2: for k = 1, 2, · · · do
3: x̂k|k−1 ← Fx̂k−1 . The predicted state estimate (eq. (5.17a))
4: Pk|k−1 ← FPk−1F

T + Q . The predicted covariance (eq. (5.17))
5: Get ẑk from zk and x̂k|k−1 . The predicted measurements (eq. (5.46)-eq. (5.48))
6: νk ← zk − ẑk . The innovation
7: H← HI,k . The measurement matrix (eq. (5.33), eq. (5.40)-eq. (5.41))
8: R← RI,k . The measurement covariance matrix (eq. (5.43)-eq. (5.44))
9: Sk ← HPk|k−1H

T + R . The innovation covariance
10: Kk ← Pk|k−1H

TS−1k . The Kalman gain
11: x̂k ← x̂k|k−1 + Kkνk . The posterior state estimate
12: Pk ← (I−KkH) Pk|k−1 . The posterior covariance
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Chapter 6
Experiments and results

Common to all experiments are the following:

• The object’s extend correspond to the hull given by the ”parabola” method and the pa-
rameters in Table 2.1 (see Section 2.3).

• The radius function that correspond to the object’s extend is modeled as a GP with hyper-
pameters given by Table 4.1.

• The test angles used to discretize the radius function associated to the hull correspond to
a regular discretization of the interval [0, 2π) of 100 test angles (see Section 2.2 and see
Section 4.1).

• The only lidar sensor is located at the origin of the NED frame and its parameters are
summarized in Table 3.1.

• The time step is T = 1 s. In particular, the time step is constant

• The norms RMSE and ANEES are used to study the consistency of the filters (see Ap-
pendix B.4).

6.1 Inference using the KF for known pose: Experiment ”Static
ship”

In this first experiment, we assume that the object does not move and that its position and ori-
entation are known, and we use the KF developed in Section 5.1 to estimate the object’s extend.

More precisely, the object is assumed to be located at 50 m to the northeast of the lidar sen-
sor, and 8 different heading angles ranging from 0 to 315° are considered. For all considered
heading angles, each of the GP models GP(0, k2π), GP(0, kπ) and GP(0, k2π,a) is used to esti-
mate the object’s extend according to the KF summarized in Algorithm 1.

For each combination of heading angle and GP model, a Montecarlo simulation consisting
of 100 simulations for 25 s was performed. The figures for all the results can be found in Ap-
pendix C. In Figures 8.1 to 8.3, the final estimated hull for the GP models GP(0, k2π), GP(0, kπ)
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and GP(0, k2π,a) are shown. Furthermore, the RMSE and ANEES results for the Montecarlo
simulations are shown in Figure 8.4 and in Figure 8.5 for each GP model, while in Figure 8.6
only the ANEES results for the GPes GP(0, k2π) and GP(0, k2π,a) are shown.

Figure 6.1 collects the results for a heading angle of 90°, which constitutes a representative
example for all the obtained results.
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(a) Final estimated hull using
GP GP(0, k2π): Actual hull
(black), estimated hull (blue)
and last set of lidar measure-
ments (red). The shadowed re-
gion corresponds to a 99% con-
fidence region for the estimate.
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(b) Final estimated hull us-
ing GP GP(0, kπ): Actual hull
(black), estimated hull (blue)
and last set of lidar measure-
ments (red). The shadowed re-
gion corresponds to a 99% con-
fidence region for the estimate.
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(c) Final estimated hull using
GP GP(0, k2π,a): Actual hull
(black), estimated hull(blue)
and last set of lidar measure-
ments (red). The shadowed re-
gion corresponds to a 99% con-
fidence region for the estimate.
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(d) RMSE for the GPes
GP(0, k2π) (black),
GP(0, k2π,a) (blue) and
GP(0, k2π,a) (red).
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(e) ANEES for the GPes
GP(0, k2π) (black),
GP(0, k2π,a) (blue) and
GP(0, kπ) (red). The shad-
owed region (strip between
the black and red lines) cor-
responds to a 95% confidence
interval for the ANEES.
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(f) ANEES for the GPes
GP(0, k2π) (black) and
GP(0, k2π,a) (red). The shad-
owed region corresponds to a
95% confidence interval for
the ANEES.

Figure 6.1: Results for heading angle ψc = 90°.

As illustrated in the RMSE plot (Figure 6.1d), the estimates for each GP model converge
relatively fast to a final estimate. In the case of GP(0, k2π), this estimate is only accurate on
the parts of the hull that are illuminated by the lidar sensor (Figure 6.1a) since this GP model
does not assume any kind of symmetry that can improve the estimate at regions that are not
scanned by the sensor. Therefore, this GP model has the largest RMSE values and the largest
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confidence region for the part of the hull that is not visible for the lidar sensor. On the other
hand, the estimate of GP(0, kπ) (Figure 6.1b) has a lower RMSE value and a relatively thin
confidence region. However, large parts of the actual hull lie outside this confidence region.
This is because the covariance function kπ forces the estimate to be symmetric about the center,
while the actual hull does not posses this kind of symmetry. Another consequence of this incor-
rect symmetry assumption is that the values of the covariance matrix for the estimate given by
the filter decrease over time. However, the estimate error remains constant. This inconsistency
causes the ANEES values for GP(0, kπ) to diverge, as we can see in Figure 6.1e. In contrast to
GP(0, kπ), the model given by GP(0, k2π,a) correctly assumes that the hull is symmetric about
its longitudinal axis. Therefore the RMSE values for GP(0, k2π,a) are the lowest, and its hull
estimate is quite accurate (Figure 6.1c)

Figure 8.6c shows the ANEES values for GP(0, k2π) and GP(0, k2π,a). Since for each sim-
ulation, the initial state vector is always the state that gives the actual hull, and the initial state
estimate is always the zero vector, the simulations in the Montecarlo simulation are not indepen-
dent from each other. Therefore, it cannot be expected that the ANEES values for GP(0, k2π)
and GP(0, k2π,a) lie inside the confidence interval for the ANEES. Nevertheless, we can con-
clude that for the given set of hyperparameter values, the estimate obtained from GP(0, k2π) is
more overconfident than the estimate obtained from GP(0, k2π,a).

Based on the obtained results and the discussion above, we conclude that the GP model
GP(0, kπ) should not be used to estimate the hull of a maritime vessel, which is in most cases
not symmetric about a point. Furthermore, the GP models GP(0, k2π) and GP(0, k2π,a) give
reasonable results, and it is highly recommended to use GP(0, k2π,a) if the object’s extend is
known to be symmetric about an axis.

6.2 Inference using the EKFs

In the next two experiments, the position and orientation of the object is unknown. Therefore
the EKFs developed in Section 6.1 are used to estimate the movement of the object and and
extent of the object.

Common to all simulations in these experiments is that only the GP model GP(0, k2π,a)
is used to model the object’s extent beacuse of its performance in the 6.1. Furthermore, the
values of the process noise strengths σN , σE and σψ (see Section 5.2.1), are chosen all equal
to 0.05. This is motivated by the results in [30], where such a noise strength corresponds to a
vessel with little maneuverability. Moreover, the parameter values σN̂ , σÊ and σψ̂, which are
the standard deviations for the initial estimate ofNc, Ec and ψc, respectively (see Section 5.2.1),
are chosen as σN̂ = σÊ = 1 m and σψ̂ = 10°. These parameter values are relatively low for an
initial estimate if one compares them with GNSS accuracy, for example. The election of these
low values is a consequence of the limited robustness of the EKFs, which will be shown and
discussed later in the experiments.
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6.2.1 Experiment ”Random walk”

In this experiment, a ”random walk” based on the process model given by Equation (5.17) is
simulated. The main drawback of a direct simulation of this process model is that it may not
give a realistic movement of a ship since it considers the heading angle and the linear velocity
as decoupled, which is not the case in a moving ship. Therefore, in the simulations, the heading
angle is taken as the direction of the linear velocity vector. In symbols, ψc = ∠([vN , vE]T ).

A Montecarlo simulation consisting of 100 simulations with a duration of 60 s is performed
to study the performance of the EKFs. In each simulation, the object starts at the NED coordi-
nates [20,−80] moving in the East direction with a velocity of 2.57 m s−1, which corresponds
to 5 knots.

The figures for all the results can be found in Appendix D. Figure 8.7 show the trajectory of
the last Montecarlo simulation. As one can see, the movement of the vessel is slowly varying.
This is as expected due to the election of a low process noise strength. Furthermore, Figure 8.8
shows snapshots of the movement of the vessel and the estimation process for different time
points. The performance of the EKF that uses explicit differentiation and the EKF that uses
implicit differentiation are apparently similar, and their heading estimate appears to slowly di-
verge after a while.

This observation is supported by the results shown in Figure 8.9. Here, the estimates for the
states Nc and Ec are fairly accurate. However, the estimates for the other kinematic states are
not very good, specially the estimates for the heading angle.

The bad performance of the EKFs for this particular simulation is not an exception, but
an example of a general issue with these estimation methods as shown by the RMSE values
(Figure 8.10) and ANEES values (Figures 8.11 to 8.13) for the Montecarlo simulation. The
RMSE values for the EKF with explicit differentiation start to diverge after some time, while
the RMSE values for the EKF with implicit differentiation stay at a constant level, except for the
heading RMSE value, which also diverges. Furthermore, the ANEES values for both methods
are very high. Although, the ANEES values for the EKF with implicit differentiation are much
lower that the ones for the EKF with explicit differentiation, these ANEES values are still very
far away from the confidence interval for the ANEES.

6.2.2 Experiment ”Turning maneuver”

In this last experiment, we consider a vessel that moves in a straight line and then makes a
circular turn, while keeping a constant velocity. The motivation for this experiment is two-fold.
On one side, the real trajectory of objects is usually very regular, and does not correspond to
a ”random walk”. On the other side, we would like to study how the EKFs perform when the
movement of the object does not correspond to the process model, as it is the case here since
the transition from a straight line to a circle implies a step in the angular rate.

In this experiment, the vessel starts at the NED coordinates [−40, 70] moving in the East
direction with a velocity of 2.57 m s−1. After having traveled 25 meters, it turns to the starboard
side and describes a circular turn with a radius of 60 meters. Finally, it continues moving west.
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The trajectory of the vessel is shown in Figure 8.14.

Figure 8.15 shows snapshots of the movement of the vessel and the estimation process for
different time points, and Figure 8.16 shows the estimated kinematic states for both EKFs. As
one can see in these figures, the estimates of the states Nc, Ec, vN and vE are fairly accurate.
However, the estimates of the heading angle and the yaw rate are not that good, and the head-
ing angle estimates severely lag the actual heading angle. This causes the extent estimates to
become distorted as the simulation continues, as one can see in Figure 8.15.

6.2.3 Comments on accuracy and robustness of the EKFs
As seen in the two last experiments, the accuracy of the EKFs developed in section 5.2 are
limited. This is also the case for the robustness of these methods. Several simulations with
velocities or process noise strengths not much higher than the values used in the presented ex-
periments, have ended in failure due to a total divergence of the estimates of the EKFs. This
has also been the case when initial state estimates that are more different than the actual state
have been used.

See chapter 7 for a discussion about the poor performance of the EKFs.
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Chapter 7
Conclusions and further work

Theoretical and experimental results support the use of the GP families GP(0, k2π), GP(0, kπ)
and GP(0, k2π,a) for modeling of compact and star-convex extents, where GP(0, kπ) and GP(0, k2π,a)
should be reserved to model extents that are symmetric about the center and extents that are
symmetric about the body x-axis, respectively.

However, in the simulations, the selection of the hyperparameters values was performed
heuristically and under the assumption that some knowledge about the extent is obtained during
the target tracking initialization step. Further work could involve the use of well-established
model selection techniques, such as leave-one-out cross-validation or log marginal likelihood
maximization (see [23, ch. 5]), to relate the hyperparameters with parameters that describe the
size and shape of the object’s extent. By considering different extents, rule-of-thumbs could be
developed that give reasonable hyperparameter values based on the information used to detect
the object for the first time.

Regarding the estimation methods developed, the KF for the particular case where the pose
of the object is known, performs significantly better than the EKFs for the general case. The
main reasons for the poor performance of EKFs come from the measurement model used and
the assumption that there is no uncertainty in the input angles when performing GP regres-
sion. In this measurement model, the covariance matrix depends indirectly from the state vector
through the input angles, which gives an unusual measurement model that does not correspond
to the standard state-space formulation. Furthermore, the input angles used to predict the mea-
surements can be considerably different to the input angles for the actual measurements if the
heading angle estimate is inaccurate or if the measurements are affected by strong noise. There-
fore, further work could involve the development of a measurement model that takes uncertainty
in the input angles into account.

Another line of work is to exploit the good performance of the KF for the particular case
where the pose of the object is known, by combining it with a method that estimates the ob-
ject’s pose based on other measurements. This new estimation method could be just a series
connection of the two abovementioned methods, or it could be a more advanced method, where
the original methods are intertwined in a sensor fusion setting.
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Chapter 8
Appendices

A Results about multivariate normal distributions

A.1 The conditional distribution

Let x and y be two stochastic variables that have a joint multivariate normal distribution, i.e.[
x
y

]
∼ N

([
µx

µx

]
,

[
Σxx Σxy

Σyx Σyy ,

])
(8.1)

where Σyx = Σxy
T . Then the conditional distribution of y given x is

y|x ∼ N
(
µy|x,Σy|x

)
, (8.2)

where

µy|x = µy + ΣyxΣxx
−1 [x− µx] (8.3a)

Σy|x = Σyy −ΣyxΣxx
−1Σxy. (8.3b)

Proof: The bilinear form in the exponent of the joint probability density function p(x,y)
can be decomposed as

[
xT − µTx yT − µTy

] [Σxx Σxy

Σyx Σyy ,

]−1 [
x− µx

y − µy

]
(8.4a)

= [y − µy|x]TΣ−1y|x[y − µy|x] + [x− µx]TΣ−1xx [x− µx]. (8.4b)
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Hence, for a fixed vector x, the conditional probability density function p(y|x) is

p(y|x) =
p(x,y)∫
p(x,y) dy

(8.5a)

=
exp

(
−1

2
[y − µy|x]TΣ−1y|x[y − µy|x]

)
exp

(
−1

2
[x− µx]TΣ−1xx [x− µx]

)
∫

exp
(
−1

2
y − µy|x]TΣ−1y|x[y − µy|x]

)
exp

(
−1

2
[x− µx]TΣ−1xx [x− µx]

)
dy

(8.5b)

=
exp

(
−1

2
[y − µy|x]TΣ−1y|x[y − µy|x]

)
exp

(
−1

2
[x− µx]TΣ−1xx [x− µx]

)
(2π)

n
2

∣∣Σy|x
∣∣ 12 exp

(
−1

2
[x− µx]TΣ−1xx [x− µx]

) (8.5c)

=
exp

(
−1

2
[y − µy|x]TΣ−1y|x[y − µy|x]

)
(2π)

n
2

∣∣Σy|x
∣∣ 12 ∼ N

(
µy|x,Σy|x

)
. � (8.5d)
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B Discrete Kalman Filters

B.1 Discretization of the one-dimensional constant velocity model
The constant velocity model is a well-used kinematic model that models the acceleration of
an object as white Gaussian random noise. Therefore, the velocity of the object is constant in
average with variations that depend on the noise strength.

In the one-dimensional case, the state vector is x(t) = [x(t), v(t)]T , where x(t) and v(t) are
the position and velocity of the object, respectively. Hence, the continuous state-space model is
given by

ẋ(t) = Ax(t) + Gw(t) , (8.6)

where

A =

[
0 1
0 0

]
(8.7a)

G =

[
0
1

]
(8.7b)

and w(t) is white Gaussian random noise of strength σw, i.e.

w(t) ∼ N
(
0, σ2

wδ(t− τ)
)
, (8.8)

where δ(τ) is the Dirac-delta.

The solution of the differential equation in (8.6) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Gw(τ) dτ. (8.9)

If the solution is discretized with a constant time-step T , i.e. the solution is sampled at time
points tk given by tk = t0 + Tk, k ∈ N ∪ {0}, then the exact values at these time points are
given by

x(tk) = eATx(tk−1) +

∫ tk

tk−1

eA(tk−τ)Gw(τ) dτ. (8.10)

By denoting xk = x(tk) and

wk =

∫ tk

tk−1

eA(tk−τ)Gw(τ) dτ , (8.11)

we can rewrite the exact discretization as

xk = eATxk−1 + wk. (8.12)

Since An = 0 for n ≥ 2, it follows that

eAT = I + AT +
∞∑
n=2

AnT n

n!
= I + AT =

[
1 T
0 1

]
. (8.13)
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Moreover, wk is a stochastic variables that is normally distributed with

E[wk] =

∫ tk

tk−1

eA(tk−τ)GE[w(τ)] dτ = 0 (8.14a)

V[wk] =

∫ tk

tk−1

eA(tk−τ)GE[w(τ)w(τ)T ]GT eA(tk−τ)T dτ (8.14b)

=

∫ tk

tk−1

[
1 tk − τ
0 1

] [
0
1

]
σ2
w

[
0 1

] [ 1 0
tk − τ 1

]
dτ (8.14c)

= σ2
w

∫ tk

tk−1

[
(tk − τ)2 tk − τ
tk − τ 1

]
dτ = σ2

w

[
T 3

3
T 2

2
T 2

2
T

]
(8.14d)

Therefore, the discrete one-dimensional constant velocity model can be stated as

xk =

[
1 T
0 1

]
xk−1 + wk , wk ∼ N

(
0, σ2

w

[
T 3

3
T 2

2
T 2

2
T

])
, (8.15a)

where the initial state x0 = x(t0) is assumed to be distributed as N (x̂0,P0) for some initial
state estimate x̂0 and a covariance matrix P0.

Initial state distribution using finite differences

Let us assume that as part of the detection process, measurements of the object position are
available for the time points t−1 and t0. Let us denote these estimates by x̂0 and x̂−1, respec-
tively, and assume that the position measurement noise has zero mean and variance σ2

x, and that
measurements at different time points are uncorrelated.

An estimate of the velocity at t0, v̂0, can be obtained by using the finite difference

v̂0 =
x̂0 − x̂−1

T
(8.16)

If the time step T is small enough such that the finite difference is a good approximation
of the velocity at t0, it follows from this assumption and the assumptions on the measurement
noise that

E[x0] = x̂0 (8.17a)

E[v0] =
x̂0 − x̂−1

T
= v̂0 (8.17b)

E[(x0 − x̂0)2] = σ2
x (8.17c)

E[(x0 − x̂0)(v0 − v̂0)] =
1

T
E[(x0 − x̂0)2]−

1

T
E[(x0 − x̂0)(x−1)− x̂−1)] =

σ2
x

T
(8.17d)

E[(v0 − v̂0)2] =
1

T 2
E[(x0 − x̂0)2] +

1

T 2
E[(x−1 − x̂−1)2] =

2σ2
x

T 2
. (8.17e)

The expected values, covariances and variances of (8.17) motivate the following model for
the initial state distribution

x0 ∼ N
([
x̂0
v̂0

]
, σ2

x

[
1 1

T
1
T

2
T 2

])
. (8.18)
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B.2 The Kalman Filter (KF)
The Kalman filter is an optimal state estimator for linear systems that are subjected to white
Gaussian process and measurement noise. It is optimal with respect to minimum estimation
error covariance.

Consider a discrete linear state-space model of the form

xk = Fxk−1 + Guk + wk , wk ∼ N (0,Q) (8.19a)
zk = Hxk + vk , vk ∼ N (0,R) , (8.19b)

where xk is the state vector of the process, uk is the input vector and zk is the measurement
vector. The measurements and the process are subjected to white Gaussian random noise vk
and wk, respectively. Moreover, the measurement and process noise are assumed uncorrelated
from the state and input vectors.

In other words, the state dynamics are given by a Markov model, and both the Markov
model and the measurement likelihood are linear and Gaussian:

xk|xk−1,uk ∼ N (Fxk−1 + Guk,Q) (8.20a)
zk|xk ∼ N (Hxk,R) . (8.20b)

The Kalman filter provides an estimate of the state vector for each time k, x̂k. This is
achieved by using the input and the measurements at each time k together with the linear model
(8.19). One of the advantages of the Kalman filter is that its theoretical description and its
practical implementation are very similar. The pseudocode for a general Kalman filter is sum-
marized in Algorithm 4.

Algorithm 4 The Kalman filter
1: Set x̂0 and P0 . Initialization
2: for k = 1, 2, · · · do
3: x̂k|k−1 ← Fx̂k−1 + Guk . The predicted state estimate
4: Pk|k−1 ← FPk−1F

T + Q . The predicted covariance
5: νk ← zk −Hx̂k|k−1 . The innovation
6: Sk ← HPk|k−1H

T + R . The innovation covariance
7: Kk ← Pk|k−1H

TS−1k . The Kalman gain
8: x̂k ← x̂k|k−1 + Kkνk . The posterior state estimate
9: Pk ← (I−KkH) Pk|k−1 . The posterior covariance

The algorithm is initialized by setting the initial estimate for the state, x̂0, and by setting
the covariance matrix for the estimation error, P0. For each time k, the filter starts by making
a prediction of the current state using the process model (8.19a), the previous state estimate,
x̂k−1, and the current input, uk. This gives the predicted state estimate, x̂k|k−1, which is used to
generate predicted measurements, Hx̂k|k−1, as given (8.19b). The difference between the actual
and the predicted measurements, νk, which is known as innovation, is used to correct the state
estimate. The correction is performed by first calculating the Kalman gain, which is the optimal
observer gain with respect to state estimation error covariance, and by adding to the predicted
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state estimate the product of the Kalman gain and the innovation. This gives the posterior state
estimate for time k, x̂k. For each time k, the covariance matrices for the predicted state estimate,
the innovation and the posterior state estimate are updated.

Under the following assumptions:

• The process noise and measurement noise are uncorrelated, i.e.

E[vTi wj] = 0; (8.21a)
• The process noise and measurement noise at different times are uncorrelated, i.e.

E[vTi vj] = 0 ,E[wT
i wj] = 0 , i 6= j; (8.21b)

• The system (8.19) is observable; (8.21c)
• The initial state, x0, is Gaussian with x0 ∼ N (x̂0,P0); (8.21d)

we have that xk ∼ N (x̂k,Pk). In particular, the state estimate x̂k is unbiased. Furthermore, the
estimate is optimal with respect to uncertainty in the sense that the estimate covariance matrix
is minimal. In addition, the Kalman filter is globally exponentaly stable.

For the details of the Kalman filter, see the original article by Kalman [17] or the undergrad-
uate book [10, ch. 5].
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B.3 The Extended Kalman Filter (EKF)
The extended Kalman filter is a modification of the classical Kalman filter for non-linear sys-
tems, which is based on linearization about the estimated state.

Consider the non-linear state-space model

xk = f (xk−1,uk) + wk , wk ∼ N (0,Q) (8.22a)
zk = h (xk) + vk , vk ∼ N (0,R) , (8.22b)

where f and g are continuously differentiable. This model is a generalization of the linear model
(8.19). However, since the Kalman filter (Algorithm 4) depends directly on the transition ma-
trix, F, and the measurement matrix, H, this state estimator cannot be applied directly to (8.22).

The extended Kalman filter uses the same scheme as the Kalman filter, where the transi-
tion and measurement matrix are generated by linearization of the non-linear model (8.22). For
each time k, the transition matrix is the Jacobian of f at (x̂k−1,uk), which corresponds to the
linearization of the process model 8.22a at the previous state estimate, while the measurement
matrix is the Jacobian of h at x̂k|k−1, which corresponds to the linearization of the measurement
model 8.22b at the predicted state estimate.

The pseudocode for a general extended Kalman filter is summarized in Algorithm 5.

Algorithm 5 The extended Kalman filter
1: Set x̂0 and P0 . Initialization
2: for k = 1, 2, · · · do
3: x̂k|k−1 ← f (x̂k−1,uk) . The predicted state estimate
4: F← ∂f

∂x
(x̂k−1,uk) . The prediction Jacobian

5: Pk|k−1 ← FPk−1F
T + Q . The predicted covariance

6: νk ← zk − h
(
x̂k|k−1

)
. The innovation

7: H← ∂h
∂x

(x̂k|k−1) . The measurement Jacobian
8: Sk ← HPk|k−1H

T + R . The innovation covariance
9: Kk ← Pk|k−1H

TS−1k . The Kalman gain
10: x̂k ← x̂k|k−1 + Kkνk . The posterior state estimate
11: Pk ← (I−KkH) Pk|k−1 . The posterior covariance

Under the same assumptions as with the Kalman filter (8.21), only local exponential con-
vergence of the state estimate to the actual state can be guaranteed. In other words, convergence
can not be expected if the initial estimate is too diferent from the initial state. In addition, the
extended Kalman filter is in general sub-optimal with respect to the estimate error covariance,
i.e. the state estimate does not necessarily have the minimum covariance.

For the details of the extended Kalman filter, see [10, ch. 7].
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B.4 Filter consistency
A systematic way of studying the performance of a KF or EKF is to measure the error between
the actual state and the estimated state by means of a norm. Due to the stochastic nature of the
state-space formulations of the KF and EKF, one gets a better picture of the filter performance
if this norm takes the average over the results obtained from a Montecarlo simulation, which is
a large set of independent simulations of the process.

One of the most well-used norms is the Root-Mean-Square-Error (RMSE), which is given
by

RMSEj,k =

√√√√ 1

Nsim

Nsim∑
n=1

(x̂n,j,k − xn,j,k)2 , (8.23)

where Nsim is the number of simulations of the Montecarlo simulation, n corresponds to a par-
ticular simulation, k corresponds to a time point and j to a particular state. Therefore, for a
fixed j, RMSEj,k gives how the RMSE for the particular state develops over time.

Another well-used norm is the average normalized estimation error squared (ANEES),
which is defined as

ANEESk =
1

Nsim

Nsim∑
n=1

(x̂n,k − xn,k)
TP−1n,k(x̂n,k − xn,k) , (8.24)

which can be reduced to a particular state by only taking the corresponding state component
and diagonal entry in the covariance matrix, as given by

ANEESj,k =
1

Nsim

Nsim∑
n=1

(x̂n,j,k − xn,j,k)
TPn,k[j, j]

−1(x̂n,j,k − xn,j,k). (8.25)

Under the Kalman filter assumption (8.21), we have that xk ∼ N (x̂k,Pk). Hence, ANEES
is a Gamma distribution with scale parameter 2

Nsim
and shape parameter NsimN

2
, where N is the

number of states considered.

Because of this distribution, the experimental values obtained for ANEES are compared to
a confidence interval for its distribution. If the experimental values lie inside these confidence
interval, one has then show that the filter is consistent. If the values lie above the confidence
interval, the estimate is overconfident, and if the values lie below the confidence interval, the
estimate is underconfident.
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C Results for experiment ”Static ship”
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(h) ψc = 315°.

Figure 8.1: Final estimated hull using GP GP(0, k2π) after 25 iterations: Actual hull (black), estimated
hull (blue) and last set of lidar measurements (red) are shown for different heading angles ψc. The
shadowed region corresponds to a 99% confidence region for the estimate.

66



30 32 34 36 38 40 42

E [m]

30

32

34

36

38

40

42

N
 [

m
]

(a) ψc = 0°.

30 32 34 36 38 40 42

E [m]

30

32

34

36

38

40

42

N
 [

m
]

(b) ψc = 45°.

30 32 34 36 38 40 42

E [m]

30

32

34

36

38

40

42

N
 [

m
]

(c) ψc = 90°.

30 32 34 36 38 40 42

E [m]

30

32

34

36

38

40

42

N
 [

m
]

(d) ψc = 135°.

30 32 34 36 38 40 42

E [m]

30

32

34

36

38

40

42

N
 [

m
]

(e) ψc = 180°.

30 32 34 36 38 40 42

E [m]

30

32

34

36

38

40

42

N
 [

m
]

(f) ψc = 225°.

30 32 34 36 38 40 42

E [m]

30

32

34

36

38

40

42

N
 [

m
]

(g) ψc = 270°.

30 32 34 36 38 40 42

E [m]

30

32

34

36

38

40

42

N
 [

m
]

(h) ψc = 315°.

Figure 8.2: Final estimated hull using GP GP(0, kπ) after 25 iterations: Actual hull (black), estimated
hull (blue) and last set of lidar measurements (red) are shown for different heading angles ψc. The
shadowed region corresponds to a 99% confidence region for the estimate.
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Figure 8.3: Final estimated hull using GP GP(0, k2π,a) after 25 iterations: Actual hull (black), estimated
hull (blue) and last set of lidar measurements (red) are shown for different heading angles ψc. The
shadowed region corresponds to a 99% confidence region for the estimate.
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Figure 8.4: RMSE for the GPes GP(0, k2π) (black), GP(0, kπ,a) (blue) and GP(0, k2π,a) (red). Results
for 100 simulations.
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Figure 8.5: ANEES for the GPes GP(0, k2π) (black), GP(0, kπ,a) (blue) and GP(0, k2π,a) (red). The
shadowed region (strip between the black and red lines) corresponds to a 95% confidence interval for the
ANEES. Results for 100 simulations.

70



5 10 15 20 25

time [s]

0

50

100

150

200

A
N

E
E

S

(a) ψc = 0°.

5 10 15 20 25

time [s]

0

50

100

150

200

A
N

E
E

S

(b) ψc = 45°.

5 10 15 20 25

time [s]

0

50

100

150

200

A
N

E
E

S

(c) ψc = 90°.

5 10 15 20 25

time [s]

0

50

100

150

200

A
N

E
E

S

(d) ψc = 135°.

5 10 15 20 25

time [s]

0

50

100

150

200

A
N

E
E

S

(e) ψc = 180°.

5 10 15 20 25

time [s]

0

50

100

150

200

A
N

E
E

S

(f) ψc = 225°.

5 10 15 20 25

time [s]

0

50

100

150

200

A
N

E
E

S

(g) ψc = 270°.

5 10 15 20 25

time [s]

0

50

100

150

200

A
N

E
E

S

(h) ψc = 315°.

Figure 8.6: ANEES for the GPes GP(0, k2π) (black) and GP(0, k2π,a) (red). The shadowed region
corresponds to a 95% confidence interval for the ANEES. Results for 100 simulations.
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D Results for experiment ”Random walk”
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Figure 8.7: Trajectory of a random walk: The position of the hull for each time point (different colors)
and the position of lidar sensor (red circle).
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Figure 8.8: Snapshots for different time points of the lidar measurements (red), the true hull position
(black) and the estimated hull position using the measurement model with explicit differentiation (blue)
and with implicit differentiation (green). The solid blue and green lines correspond to the current es-
timate, while the dashed lines correspond to the estimate for the previous time point. The estimated
positions of the center are shown as isolated blue and green circles, while the blue and green circles
correspond to predict measurements.
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Figure 8.9: True state values (black) and estimated values using the measurement model with explicit
differentiation (blue) and with implicit differentiation (green).
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Figure 8.10: RMSE of different states: For the measurement model with explicit differentiation (blue)
and with implicit differentiation (green).
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Figure 8.11: ANEES of different states: For the measurement model with explicit differentiation (blue)
and with implicit differentiation (green).
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(a) North coordinate of the center, Nc.
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Figure 8.12: ANEES of different states only for the measurement model with implicit differentiation
(green). A 95% confidence region for the ANEES is also shown, but is only visible for vN , VE and rc.
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Figure 8.13: ANEES of the whole state vector xc: For the measurement model with explicit differenti-
ation (blue) and with implicit differentiation (green).
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E Results for experiment ”Turning ship”
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Figure 8.14: Trajectory of the turn: The position of the hull for each time point (different colors) and
the position of lidar sensor (red circle).
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Figure 8.15: Snapshots for different time points of the lidar measurements (red), the true hull position
(black) and the estimated hull position using the measurement model with explicit differentiation (blue)
and with implicit differentiation (green). The solid blue and green lines correspond to the current es-
timate, while the dashed lines correspond to the estimate for the previous time point. The estimated
positions of the center are shown as isolated blue and green circles, while the blue and green circles
correspond to predict measurements.
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(a) North coordinate of the center, Nc.
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Figure 8.16: True state values (black) and estimated values using the measurement model with explicit
differentiation (blue) and with implicit differentiation (green).

81


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background and motivation
	Literature review
	Problem description and assumptions
	Outline

	Reference frames and the object state
	The world and body frames
	Star-convex extent
	Hull shape models

	Lidar measurements
	Lidar sensors
	Lidar measurements used in the simulations

	Gaussian Processes Fundamentals
	Definitions and notations
	Real processes with squared exponential covariance functions
	Real processes for periodic and symmetric functions

	Gaussian process regression
	Model selection: GP model and hyperparameter values

	State-space models and Kalman filters
	Particular case: Known pose
	General case
	Process model
	Measurement model
	Predicted measurements
	Algorithms for the extended Kalman filters


	Experiments and results
	Inference using the KF for known pose: Experiment "Static ship"
	Inference using the EKFs
	Experiment "Random walk"
	Experiment "Turning maneuver"
	Comments on accuracy and robustness of the EKFs


	Conclusions and further work
	Bibliography
	Appendices
	Results about multivariate normal distributions
	The conditional distribution

	Discrete Kalman Filters
	Discretization of the one-dimensional constant velocity model
	The Kalman Filter (KF)
	The Extended Kalman Filter (EKF)
	Filter consistency

	Results for experiment "Static ship"
	Results for experiment "Random walk"
	Results for experiment "Turning ship"




