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Abstract
A method for calculating the heading of a surface vehicle relative to a camera is
presented, and applied to 2D images taken from a simulated 3D environment. The SLIC
superpixel algorithm combined with a convolutional neural network and principal
component analysis appeared to be the most robust approach, while the Harris corner
detector and Hough line transform appeared less robust. The superpixel algortihm was
used to oversegment the image into a desired number of segments. A YOLO classifier
convolutional neural network was used to classify whether a superpixel was part of a
boat, resulting in a binary image of those superpixels classified as boat parts. Principal
component analysis was then used to obtain a line through the resulting binary object, on
which triangulation was performed to finally obtain the desired yaw-angle.
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Chapter 1
Introduction

1.1 Motivation

Making use of a 2D image from a camera sensor to predict the heading of another surface
vehicle by using an artificial neural network is a novel application of computer vision (CV)
pose estimation which we have not been able to find previously discussed in the literature.
This approach can augment the situational awareness and be useful for vessels in general,
but particularly for autonomous vehicles since they are often already equipped with cam-
eras, and the weight and cost of other sensors can be a big consideration.

Knowing the course of other vessels in maritime transport is important for enabling safe
and optimal traffic interaction. Given that another vessel is observed and is moving with a
small crab angle (Fossen, 2013), the heading of that moving vessel can then be used as a
good estimate for its course. Knowing the course of other vessels can then be used to aid
in optimal path planning, for instance for collision avoidance or interception (i.e. replen-
ishment at sea).

Conceptually, the heading of a target vessel can be calculated by the CV system by first
visually finding the bearing (horizontal angle) of the target vessel relative to the observer
vessel. Absolute bearing of the target vessel (relative to true north), which is equivalent
to the heading of the target, can then be calculated if the absolute bearing of the observer
vessel is also known.

Traditionally, mariners have estimated the heading of other vessels by visual observa-
tion, sometimes aided with devices such as magnifying binoculars. Marine VHF radio is
another valuable tool which has enabled communication of actual or intended course be-
tween vessels. VHF was first installed on vessels starting around the 1900s, and became
widespread starting in the 1920s (Korcz, 2018). Marine radars emerged on commercial
vessels from around the 1950s, and today radar is perhaps the most important method for
estimating heading of other vessels, often supplemented with information from an auto-
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Chapter 1. Introduction

matic identification system (AIS). However, these methods are sometimes not suitable or
can fail for various reasons, and adding computer vision for detecting heading can increase
robustness and lead to less human error.

One recent example from March 2019 that suggests how useful estimates of heading could
have been is when a Tesla crashed with a semitrailer (Lambert, 2019). The semitrailer
turned left into another lane and neither the autopilot nor the driver was able to respond in
time. Information about the semitrailer’s heading could, if not already implemented, have
been extremely valuable in this case. The reason is that the control system for the Tesla
then could have detected that the vehicles were on a collision path, and therefore could
have tried to avoid or minimize the consequences.

Some advantages of generating images in a simulated (synthetic) 3D environment, as done
in this project using a game engine, is the ability to check the accuracy of the predictions
and easier sampling of data.

1.2 Literature review

Another advantage of using synthetic data found in the literature is the ability of using
the resulting training weights of the neural network on real world sampled images in later
works, which would be an example of transfer learning. For an overview on transfer learn-
ing, see (Pa and Yang, 2010). Transfer learning was a central topic in the master theses of
(Hølland, 2019) and (Grini, 2019).

According to the author of the You Only Look Once (YOLO) method (Redmon, 2018),
the YOLO v3 has produced very competitive scores when compared to a selection of other
well-known object detection methods through tests on the well known Common Objects
in Context (COCO) data and label set (Lin et al., 2014). The master thesis of (Grini, 2019)
found that in his project with his images of vessels, the YOLO v3 produced better results
over the Single Shot MultiBox Detector (SSD).

1.3 Problem description

The goal of this specialization project is to estimate the yaw angle of a surface vehicle
based on a 2D (digital camera) image. The task was simplified by only considering one
specific surface vehicle, nice weather conditions and no background other than ocean and
sky. Also, 2D images were obtained by using synthetic camera data from the Autoferry
simulator developed by (Hem et al., 2019).

We will only consider images in a single frame; thus we will not look at target tracking
from frame to frame, similar to what has been done in the theses written by (Helgesen,
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1.4 Report outline

2019) and (Grini, 2019). The method discussed in this thesis could be extended to contin-
ued tracking across several frames. Extended object tracking (EOT) has been discussed in
the theses of (Ruud, 2018) and (Lopez, 2019), which can be used as a foundation for such
future work.

YOLO v3 (Redmon and Farhadi, 2018) was chosen as a deep learning method for object
detection based on the literature review.

1.4 Report outline
• In chapter 2 theoretical background is explained with theory on different feature

extraction methods, camera geometry, artificial neural networks and an axis conven-
tion for surface vehicles.

• In chapter 3, the Unity game engine is presented and the simulated Autoferry envi-
ronment will be used to obtain 2D images.

• In chapter 4, three different methods are discussed for estimating a line that can later
be used to calculate target heading. Partial implementations are presented for two of
the three methods, while a full implementation is carried out for the third method.

• In chapter 5, results of all three methods are compared. Afterwards, final results of
the chosen method are discussed.

• In chapter 6 a conclusion and suggestions for further work are presented.

3
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Chapter 2
Theory

The underlying theory for the three alternative approaches will be introduced in this sec-
tion. For an overview on how these are connected, see figure 2.1. An axis convention for
ships will also be introduced.

2.1 Feature Extraction
Feature extraction is a technique that can be used on images to find characteristics and
attributes in the image. If these traits are used to describe the image, the dimensionality
will be reduced, which can greatly speed up the processing of the image. The features
are intended to be non-redundant and to provide some useful information about the image.
Examples of methods for feature extraction are presented in this section. The features
extracted are corners, lines and superpixels.

2.1.1 Harris Corner Detector
The Harris corner detector is used for, as the name indicates, detecting corners in an image.
Corners are identified by a large change of intensity in all directions. The Harris corner
detector uses this principle and it is described mathematically in the following way:

Σx,y w(x, y) [I(x+ u, y + v)− I(x, y)]2 (2.1)

Where w(x, y) is the window function at the point (x, y), I(x, y) represents the intensity
at the point (x, y) and u and v are displacements in the x and y direction respectively.
Equation (2.1) needs to be maximized in order to find corners. In particular we need to
look at the following part of equation (2.1) as it is the term that determines the maximum:

[I(x+ u, y + v)− I(x, y)]2 (2.2)

5



Chapter 2. Theory

Figure 2.1: Overview of the three different approaches considered.

By performing Taylor expansion, cancelling terms and then expanding the remaining ex-
pression, the result is:

[
u v

]
M

[
u
v

]
(2.3)

where
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2.1 Feature Extraction

M = Σx,yw(x, y)

[
Ixx Ixy
Ixy Iyy

]
(2.4)

A value R is then calculated to determine if the window contains a corner.

R = det(M)− k(trace(M))2 (2.5)

where k is an empirical constant in the interval [0.04, 0.06] (Szeliski, 2005). The value R
is large for a corner, a threshold can therefore be set to decide how easily points will be
detected as corners .

2.1.2 Hough Line Transform
The Hough line transform can be used to detect lines in an image. This section briefly
describes how this method works.

The Hough line transform uses polar coordinates (r, θ) to represent a line. For a given
point (x, y) in the image, the result will be a sinusoidal curve given by the formula r =
x cos θ + y sin θ. The greater amount of curves that intersect in a specific point (r, θ),
the more likely it is that (r, θ) represents a line in the image. In figure 2.2 five sinusoidal
curves intersects in the point when r = −0.027 and θ = 2.36, these values for r and θ
represents a line in the xy-plane. Two versions are the standard Hough transform and the
probabilistic Hough line transform (OpenCV, n.d.b). The standard Hough transform uses
all edge points in the image when drawing sinusoidal curves, while the probabilistic Hough
line transform only uses a subset of randomly selected edge points. A parameter for this
algorithm is the minimum number of points required to form a line. Another parameter is
the maximum gap between two points on the same line. These parameters are thresholds
and determine how easily lines are detected.

0 0.5 1 1.5 2 2.5 3 3.5

theta

-6

-4

-2

0

2

4

6

8

r

X: 2.36

Y: -0.02691

Figure 2.2: Mathematical principle behind the Hough line transform.The intersection point in the
rθ-plane represents a line in the xy-plane.
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Chapter 2. Theory

2.1.3 SLIC Algorithm for Superpixel Generation

Superpixels are pixels grouped together based on having similar properties. Simple linear
iterative clustering (SLIC) is an algorithm that groups pixels based on pixel color and pixel
closeness. The clustering is done in the 5D space [L, a, b, x, y]. The first three elements
represent color, L ranges from dark to light, a from green to red and b from blue to yellow.
The last two elements are the pixel coordinates x and y. Equations for the Euclidean norm
for the Lab color space dlab and the Euclidean norm for the x, y pixel coordinates dxy are
listed below. Also, an equation for the distance measurement used in the SLIC 5D space
Ds is listed, where dxy is normalized to account for different image sizes.

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (2.6)

dxy =
√

(xk − xi)2 + (yk − yi)2 (2.7)

Ds = dlab +
m

S
dxy (2.8)

where m is the compactness, higher m will weigh pixel closeness more compared to pixel
color and therefore result in more compact clusters. The value for m is in the interval
[1,20]. S =

√
N/K where N is the number pixels in the image and K is the number of

superpixels (Achanta et al., 2010).

2.1.4 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method that can be used to find the
direction with the highest variation in the dataset. The procedure computes the eigenvec-
tors, which are the principal components, and eigenvalues which determines the size of
the principal components. This section will show how to calculate the eigenvalues and
eigenvectors in the 2D case. First, the mean in both dimension x and y are calculated:[

µx
µy

]
=

1

n

[
Σni=1xi
Σni=1yi

]
(2.9)

Next the covariance matrix is calculated:

C =
1

n− 1
(
[
x y

]
− h

[
µx µy

]
)∗ · (

[
x y

]
− h

[
µx µy

]
) (2.10)

where * is the conjugate transpose operator (OpenCV, n.d.c), h is a vector of ones of size
n× 1, x and y are the dataset and are also both of size n× 1.

Then the eigenvectors will be the columns of V and eigenvalues will be on the diagonal to
the matrix D in the following expression:

V −1CV = D (2.11)
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2.2 Reconstruction of Camera Coordinates from Image Coordinates

Figure 2.3: Principal Component Analysis example (Nicoguaro, 2016).

2.2 Reconstruction of Camera Coordinates from Image
Coordinates

To reconstruct camera coordinates xc =

xcyc
zc

 from image coordinates u =

[
u
v

]
the

following formula can be used (Haavardsholm, 2019):

xc = π−1
p (u, z;K) = z


u− cu
fu

v − cv
fv
1

 (2.12)

where π−1
p is the backprojection function, z is the depth and K, shown in equation (2.13),

is the intrinsic camera matrix.

K =

fu sθ cu
0 fv cv
0 0 1

 (2.13)

cu and cv represents the principal point in pixel coordinates. fu and fv can be computed
by fu = f · su and fv = f · sv . f is the focal length (metric unit), su and sv are the
horizontal and vertical scaling factors that describes pixel density in pixels per metric unit.
sθ is the skew factor and assumed to be zero (Haavardsholm, 2019).

In figure 2.4 a camera coordinate system is shown with origin in Fc, x-axis pointing right,
y-axis pointing down and z-axis pointing forward. This convention is the one used in
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Chapter 2. Theory

this report. Also in this figure a pair of corresponding image coordinates and camera
coordinates can be seen, the red line illustrates this projection.

Figure 2.4: Camera coordinates (Haavardsholm, 2019).

2.3 Artificial Neural Networks (ANN)
Artificial Neural Networks is a type of machine learning that resembles the learning pro-
cess in the human brain. Neurons are structured in layers and connected to form a network.
The connections between two neurons are called weights. Inside each neuron, to calculate
its output, an activation function is applied to the sum of inputs multiplied by weights. The
activation function used is typically the sigmoid function. A simple neural network with
one hidden layer is shown in figure 2.5.

Figure 2.5: A simple Neural Network (Glosser.ca, 2013)

To train a neural network, a dataset and corresponding labels are needed. An example
would be to train a neural network to be able to classify whether there is a dog or a cat
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2.3 Artificial Neural Networks (ANN)

in an image. For this task dog and cat images would be needed as well as labels for each
image containing information about whether there is a dog or a cat in the image. The in-
formation in the labels are what you desire the network to be able to output by itself after
training is completed. So in this example the network is desired to output whether there is
a cat or a dog in an image. The network also outputs a probability for each class.

The network learns by computing the error, in other words the difference between the
networks output and the label. Then updating the weights such that the error decreases.
This method is called backpropagation. If the network has trained successfully, the final
weights can be used to classify whether there is a cat or a dog in a new image. The example
above is classification. If in addition the network is trained to tell where in the image the
object is, that would be called localization if one object was present or object detection if
multiple objects were present. Figure 2.6 illustrates the difference.

Figure 2.6: Classification vs Detection vs Segmentation (Li et al., 2016).

2.3.1 Convolutional Neural Networks (CNN)
CNNs have proven very effective in for example image classification and localization
(Ujjwal, 2016). CNNs are neural networks that have alternating layers of convolutional
layers and pooling layers. Convolutional layers slides a kernel over the image and com-
putes the dot product. This operation is shown in figure 2.7. Different kernels (filters) will
detect different features in an image. The values used in the filters will be adjusted during
training. The more number of filters we have, the more image features get extracted and
the better our network becomes at recognizing patterns in unseen images (Ujjwal, 2016).

Figure 2.7: Convolution on an image I with a kernel K (Jiang, 2018).

Two alternative methods for pooling are max pooling and average pooling as shown in

11



Chapter 2. Theory

figure 2.8. Max pooling extracts the maximum value whereas average pooling extracts the
average value. In practice max pooling has been shown to work better (Ujjwal, 2016). The
pooling layer reduces the number of parameters and computations needed in the network,
and in this way overfitting is also prevented. Overfitting is when the network is performing
very well on the training data, but does not generalize well.

Figure 2.8: Max Pooling and Average Pooling (Anderson, 2015).

2.4 Axis Convention for Surface Vehicles
This specialization project is about pose estimation, in particular the yaw angle of a surface
vehicle. The yaw angle is defined as the counter- clockwise rotation about the axis pointing
upwards from the center of gravity, shown in figure 2.9.

Figure 2.9: Axis convention for surface vehicles (Pocket Mariner, 2016).
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Chapter 3
Unity Game Engine and Autoferry
Environment

Unity is a game engine which can be used on several platforms. Both 2D, 3D, virtual re-
ality and augmented reality games and simulations are possible in the Unity game engine.
The Autoferry game was developed in the Autoferry village in the NTNU course Experts
in teamwork (EiT). The Unity game engine was used to develop the Autoferry game. The
game is situated in Trondheim harbour, and a screenshot from the game can be seen in
figure 3.1.

Figure 3.1: Screenshot taken in the Autoferry game.

In this specialization project, the goal is to estimate the yaw angle between the camera and
the ferry. This angle is available in Unity, and has been marked with a red circle in figure
3.2. This makes it easy to check the accuracy of the estimated yaw angles. Measurements
and corresponding error calculations are presented in section 5.4. In the Unity settings,
as shown in figure 3.2, it is also possible to set camera parameters like focal length and
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Chapter 3. Unity Game Engine and Autoferry Environment

sensor size (in X and Y direction). These were kept constant during the whole project, at
50 mm, 36 mm and 24 mm, respectively. Another advantage is how easy one can control
the game environment, like the ferry, background, waves, camera pose, etc. Additionally,
numerous pictures can quickly be taken in desired conditions in a simulated environment.
Another advantage is that certain proofs of concept can be demonstrated before testing in
the real world. One disadvantage is that, even though the game strives to be realistic, it can
be difficult to make synthetic camera data realistic enough to an extent such that it can be
used as a replacement for data sampled in the real world. However, synthetic data can be
used as a supplement to for example existing real data sampled in the Trondheim harbour
by using transfer learning.

Figure 3.2: Camera settings in Unity/Autoferry.

The axis convention for Unity 3D is shown in figure 3.3. As shown in the figure, the Y
axis is in the upwards direction, so the angle of interest, that is the yaw angle, will be a
rotation around the Y axis, as highlighted in figure 3.2.

14



Figure 3.3: Axis convention in Unity (Unity, 2017).
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Chapter 4
Implementation

To reach the goal of this project, of estimating the yaw angle from an image, three different
approaches were considered. Harris corner detector and Hough line transform were two
methods partially implemented in this project. The third method was superpixels com-
bined with a CNN and PCA, and this approach was fully implemented. The theory behind
these methods was described in sections 2.1.1, 2.1.2, 2.1.3 and 2.1.4. The implementation
of these three methods is presented in sections 4.1, 4.2 and 4.3. Independent of which
approach used among these three, the result would be a line assumed to be on the water
surface. The triangulation method presented in section 4.4 can then be applied to the result
from either of these three mentioned methods to give an estimate of the yaw angle of the
surface vehicle.

4.1 Harris Corner Detector
The Harris corner detector was implemented by using the Open Source Computer Vision
(OpenCV) library in C++ by following the tutorial in (OpenCV, n.d.a). In this program
one could easily adjust the threshold while the program was running and see the resulting
corners detected at that threshold. A bounding box around the object of interest is useful
to minimize non-relevant corners, i.e. from waves, etc. One approach can be to use a
neural network trained on detecting surface vehicles to construct such a bounding box on
each image before using the Harris corner detector. However, bounding boxes were made
manually in this project in order to save development time. The two lowermost corners
could then be chosen and assumed to be on a line at the water surface. The triangulation
method in section 4.4 can then be applied.

4.2 Hough Line Transform
The Hough line transform was also implemented by using the Open Source Computer
Vision (OpenCV) library in C++. The tutorial found in (OpenCV, n.d.b) was used to
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Chapter 4. Implementation

perform the Hough line transform. The process is similar to the one for Harris corner
detector; a neural network could have been used for object detection, but bounding boxes
were here cut manually instead. By applying the Hough line transform, the lowermost
line can be found. This line can then be used to calculate the yaw angle, as described
with the triangulation method in section 4.4. Both the standard Hough line transform
and the probabilistic Hough line transform was implemented. No threshold was set for
the standard version. For the probabilistic version 50 points was the minimum amount
required to form a line and 10 was the maximum gap possible between two points on the
same line.

4.3 Superpixels and PCA

4.3.1 Superpixels

The tutorial found in (Rosebrock, 2014) was used for superpixel segmentation and access-
ing individual superpixels written in Python. The output of running the tutorial would
be a pop-up window displaying an image the same size as the original where everything
would be black except the superpixel, like the upper left image in figure 4.1. There would
be such a pop-up image for every individual superpixel. This code was modified to find
the bounding box of the superpixel and crop the image to only contain this bounding box,
four examples are shown in figure 4.2. The code was also modified to save the cropped
image of each individual superpixel instead of displaying it. While generating this dataset
of superpixels, the compactness was mostly set to the default m = 10 and the number of
superpixels was mostly set to K = 300. Some images were however segmented using
different parameter values. For example, smaller images were segmented with a lower K
value to keep the superpixels more similar in size.

Only images from the Autoferry game were used when creating the superpixel-dataset.
The images only contained the ferry in the foreground, as well as ocean and sky in the
background. No images containing buildings, land or other objects were used in the
dataset. Furthermore, the pictures were taken under good weather conditions and in calm
ocean in the simulated environment.

4.3.2 Labelling of Superpixels

To label the dataset of superpixel-images now created, a simple labelling tool was made
as shown in figure 4.1. The labelling tool would display images of the superpixel on black
background as well as the original image with all superpixel-segments. The labelling tool
would then prompt the user to input ”0” if the superpixel was part of the background, ”1” if
it was a part of the surface vehicle and ”2” to skip labelling. This process would continue
through all superpixels in one image. To speed up the process one could input an image
of only surface vehicle superpixels or only background superpixels then labelling would
be done automatically. The result would be a new text file with the same name as the
corresponding superpixel-image file containing ”0” if the picture is part of the background
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or ”1” if the picture is part of the surface vehicle.

Figure 4.1: Simple labelling tool for superpixels.

To fix labels for the YOLO detector, a program was made for appending ”0.5 0.5 1.0
1.0” to all the label files in order to convert the labels to the YOLO detector format
< class >< x − center >< y − center >< width >< height >. The four ap-
pended values tells YOLO that the object is the whole image, because all four values are
floating point values between 0 and 1. A YOLO classifier was also trained, then the image
filenames needed to be changed to contain the labels. The image filenames were then on
the format < uniquenumber > < classname > for example 39 boat.png.

As indicated earlier, two classes were used, one for surface vehicles and one for back-
ground. Background was defined to be every pixel that is not part of the surface vehicle.
Approximately 3300 superpixel images were sampled and labelled of the surface vehicle
class, and approximately 5100 superpixel images of the background class. The convention
used when labelling was that superpixels containing both two classes were skipped and
that one should label a superpixel as the foremost object. Figure 4.3 is divided into super-
pixels and the numbers 1 to 4 illustrates some edge cases. The superpixel marked in the
example as number 1 (the rightmost box) would be skipped during labelling as it contains
both the ferry and background. The superpixel marked as number 2 (the box in low left)
would be labelled background since the ocean is the foremost object. An example of the
opposite case can be seen with the superpixel marked as number 3 (top left) where the boat
is the foremost object, and the superpixel would be labelled boat. The superpixel marked
as number 4 (middle) is an example of where it is possible to see ocean through openings
in the boat, and this superpixel would be labelled as background.

4.3.3 Training of CNN for Segmentation
Two CNNs were trained, one for object detection and one for classification, the difference
can be seen in figure 2.6. The YOLO detector was used for object detection, whereas the
YOLO classifier was used for classification. Implementation details for these two CNNs
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Figure 4.2: Examples of superpixels used to train the CNN.

Figure 4.3: Labelling convention, here illustrated with four numbered boxes.

are presented in this subsection.

Preparation for training

The Darknet fork found in (AlexeyAB, 2019) was used as the neural network framework,
and YOLO version 3 was used for classification of whether a superpixel was a surface
vehicle or not. Information about the computer and software used are specified in tables
4.1 and 4.2. Specifications used were based on the requirements also found in (AlexeyAB,
2019). Darknet was compiled with GPU and cuDNN for accelerating the training of the
neural network.

Custom objects were used in this project and therefore some changes in configuration files
were needed. For the YOLO detector, a detailed explanation can be found under ”How to
train (to detect your custom objects)” in (AlexeyAB, 2019). The only difference was that
subdivision size was set to 64 instead of 8, due to an out of memory error. For the YOLO
classifier a guide can be found in (Redmon, 2013–2016a), but in the last convolutional
layer only two filters should be used since we only have two classes. Additional changes
were also made to use the dataset with superpixels instead of the example dataset.
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CPU Intel Core i7-6700 3.4GHz
GPU GeForce GTX 1080 Ti

Operating System Linux Ubuntu 16.04

Table 4.1: Hardware specifications.

CMake 3.15.5
CUDA 10.0

OpenCV 4.1.2
cuDNN for CUDA 10.0 7.6.3

GCC 5.4.0

Table 4.2: Software specifications.

Furthermore the dataset of superpixel-images were split randomly into two sets, one con-
taining approximately 80 % of the pictures and another the remaining 20 %. A program
was made to generate one text file with image paths to each of the training images, as well
as another text file with image paths to each of the validation images. The set containing
80 % of the images was used for training the neural network, whereas the set contain-
ing 20 % of the images was used for validating the results by testing the performance of
weights on unseen images. The network was trained using pretrained weights downloaded
from (Redmon, 2013–2016b).

Training

The training of the neural network was completed on a Linux computer with specifications
as in table 4.1 and table 4.2. A computer with GPU was necessary for the training of the
YOLO detector to complete within reasonable time. First training was tried on a Windows
computer with only CPU, estimated time for training was then 30 days, whereas it com-
pleted in approximately 5 hours with GPU. The YOLO detector was trained on different
dataset sizes, the largest at 8400 images. The Yolo classifier was trained on a dataset of
3200 images.

After Training

For the YOLO detector the weigths after every 1000th iteration were compared and the
one with best results on the validation sets were used further. For the YOLO classifier the
weigths after 2000, 3000, 4000 and 5000 had very similar results on the validation tests,
therefore the weights after 5000 iterations were used.

4.3.4 Principal Component Analysis
Before performing PCA, the CNN was used together with the chosen weights to detect
which superpixel-images were part of the surface vehicle and which were not. This re-
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sulted in a binary image were the neural network’s predictions of the boat was white and
the background was black. This binary image could then undergo PCA, the program was
written in C++ based on the OpenCV tutorial found in (OpenCV, n.d.c).

4.4 Yaw Angle Calculation
Each of the three methods presented in this report will, if successful, result in a line indi-
cating the yaw angle of the vehicle. The calculation presented in this chapter is based on
assuming that this line is on the water surface.

If two points (u1, v1) and (u2, v2) in the image are on the line indicating the yaw angle
of the vehicle, it is assumed that the corresponding camera coordinates (x1, y1, z1) and
(x2, y2, z2) will be on the water surface. The y-axis in the camera coordinate system is
pointing downwards as seen in figure 2.4. The y camera coordinates y1 and y2 can then be
approximated to be equal to the height of the camera above water.

yi = h i ∈ 1, 2 (4.1)

where h is the height of the camera above water. Inserting the second component in the
equation for camera coordinates, equation 2.12, into equation 4.1 results in :

zi
vi − cv
fv

= h i ∈ 1, 2 (4.2)

zi = h
fv

vi − cv
i ∈ 1, 2 (4.3)

Then z1 and z2 can be found from equation 4.3 since the camera height, the focal length,
the pixel coordinate and the principal point is known. The next step will then be to find x1
and x2, these coordinates can be found directly from the first component in equation 2.12,
repeated here in the following equation:

xi = zi
ui − cu
fu

i ∈ 1, 2 (4.4)

Finally the yaw angle ψ can be estimated by the following expressions:

ψ1 = arctan
z2 − z1
x2 − x1

(4.5)

ψ2 = ψ1 + 180° (4.6)

This method gives two alternatives for the yaw angle. The difference between the angles
will be 180°. Further analyses would be needed to narrow it down to one solution. Note
that tilting the camera is not accounted for in this calculation, so keeping the camera hor-
izontal is required. The camera is allowed to be rotated around the vertical axis as the
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calculation provides the relative angle between the ferry and the camera. Rotation ma-
trices can be added to the calculation to find the world coordinates, as well as allow all
camera rotations. Note also that images cannot be cropped as the calculation depends on
image size and image coordinates.

23



Chapter 4. Implementation

24



Chapter 5
Results and Discussion

5.1 Comparison of Harris Corner Detector, Hough Line
Transform and Superpixels

To compare the three approaches presented in this report, all three methods are tested on
the same image. The results of the comparisons can be seen in figure 5.1, figure 5.2 and
figure 5.3.

For the Harris corner approach in figure 5.1, the original image is on the left, the middle
image has the threshold for corner detection set to 121 out of 255 while the right image has
lowered the threshold to 95, and therefore far more corners are detected. The image with
the highest threshold would perform better for our purpose when drawing a line between
the two lowermost corners requiring some minimum distance between these two corners.
The right image would however get a large error by using this approach. The right image
was produced by lowering the threshold such that an erroneous corner would appear as
one of the two lowermost points. Even though the corner detection works quite nicely in
these conditions, it is suspected to be a more difficult problem in more realistic conditions.
Different light conditions or objects in the water could make an erroneous corner, like the
lowest one on the right image, appear at higher threshold. The fact that one erroneous
corner could make the solution very wrong makes the Harris corner approach less robust
for our purpose.

Resulting images from the Hough line tranform approach is shown in figure 5.2. On the
left, the same original image as used for the Harris corner detector can be seen. In the
middle, it can be seen that the standard Hough line transform detects a lot of lines in the
water, and the only possible candidate would be the line on the boat railing. However it
can cause some error since we have assumed this line to be on the water surface. The
probabilistic Hough line transform, shown in the right image, has more lines on the boat.
It can be seen that also for the probabilistic Hough line transform there is potential for
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Figure 5.1: Original image, Harris corner detector with thresh 121/255, Harris corner detector with
thresh 95/255.

error. The lowermost line is based on reflections in the water and will by eye inspection
clearly provide a wrong angle. The two lines above on the boat would have provided better
results. However, like for the Harris Corner we can see that the Hough line approach is
sensitive to one wrong line, and the Hough line transform is therefore not as robust as we
would like it to be either.

Figure 5.2: Original image, standard Hough line transform with no threshold, probabilistic Hough
line transform.

The third approach is using a CNN trained on superpixel-images to perform segmentation,
then applying PCA to the resulting binary image. Results for this approach, using the same
original image as the Harris corner detector and Hough line transform, can be seen in figure
5.3. The PCA gives only one line to consider. The line could be reasonable, but this can
be difficult to conclude just by eye inspection. Calculations and further conclusions about
accuracy of this method can be found in section 5.4.
It was quite early in the process concluded that Harris Corner Detector and Hough line
transform would be less robust compared to the Superpixel and PCA approach in realistic
conditions. This was due to how the Harris corner detector and the Hough line trans-
form would be affected in different light conditions, reflections, weather conditions and
if other objects hid part of the object of interest. The superpixel and PCA approach was
believed to be robust against a few erroneous superpixel classifications. The superpixel
and PCA method was therefore focused on and accuracy calculations were performed for
this approach as can be seen in section 5.4.
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Figure 5.3: Original image, Superpixels, PCA on the segmented image.

5.2 Yolo Detector vs Yolo Classifier
At first, a lot of effort was made to get good segmentation results by using the YOLO
detector. The YOLO detector was chosen due to more available information online and a
belief that it might be performing just as well with classification, but providing additional
data. The information from the detector about where in the image each class was located
was believed to be useful if there was a superpixel with both classes. Then this information
could be used for further processing of this superpixel. To make the YOLO detector, a
large network with 75 convolutional layers was used, and weights obtained after different
iterations were tested. Because non-satisfactory results were obtained, the dataset was
increased two times and the neural network retrained, to check if this would provide better
results. One of the better results of the YOLO detector is shown in figure 5.4, as seen a lot
of wrong classifications are still present.

Figure 5.4: Segmentation result by using the YOLO detector.

Figure 5.5: Segmentation result by using the YOLO classifier.

Results after segmenting the ferry with a YOLO classifier CNN can be seen in figure 5.5.
Segmentation results by using the YOLO classifier can also be seen in the third image
in each sub-figure in figures 5.6 and 5.7, where the original image is in the first image
in each sub-figure. Results from the YOLO classifier can also be seen in 5.11 and 5.12.

27



Chapter 5. Results and Discussion

As seen, the YOLO classifier performs significantly better than the YOLO detector, and
only classifies a few superpixels wrong. The YOLO classifier worked with less testing of
different weights, smaller dataset and also a smaller network. The YOLO classifier only
had 4 convolutional layers and 2 max pooling layers.

It is interesting how much better the small classifier network performed compared to the
much larger detector network, as a deeper network needs to know the problem better in
order to give good results. However as the need in this project only was classification, it
can in hindsight seem like the classifier should have been an obvious choice.

5.3 Superpixel, CNN segmentation and PCA results

In this section results for the SLIC superpixel algorithm, segmentation by using the YOLO
classifier CNN and PCA will be presented. Image examples of the ferry with 0° to 160°
between boat and camera are presented, at 20° intervals. Due to symmetry of the ferry,
results for angles between 180° to 360° will not be presented. When the front of the boat
and camera points in the same direction like in 5.6a the angle is 0°. A positive clockwise
rotation is used when defining an angle for the ferry images, see also corresponding cap-
tion to the sub-figures for the true angle.

The SLIC superpixel algorithm performs well in most parts of the image and the super-
pixels mostly contain either only ferry-pixels or only background-pixels. The difficult
parts are often the openings in the ferry and the reflection of the ferry in the ocean. Often
the railing on the ferry and the navigation light mast are inside a superpixel with back-
ground. The same is the case for reflections of the ferry and the ferry itself. These pixels
were skipped during labelling so the network has not been learned what to do in these
situations. A solution could be to divide a superpixel into several superpixels for the su-
perpixels where the network outputs lower probability for the classification. The YOLO
classifier CNN results are presented as the third image in each sub-figure, as mentioned
earlier the majority of superpixel-classifications are correct.

In the fourth image in each sub-figure the binary version of the third image has undergone
PCA. Without further inspection we can see that the largest principal component from the
PCA in 5.6b will clearly deviate from the true value of 20°. This is believed to be due
to the square appearance when the ferry is at this angle, and in addition there are some
erroneous classifications in the back of the boat. A longer boat would possibly have given
better result at this angle. Another alternative could have been to change the camera pose,
the camera could be tilted down and/or moved to a higher position. The principal compo-
nents for 20° to 160° appear to be better, however further calculations are required, these
can be found in section 5.4
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(a) Boat with 0° yaw angle between camera and ferry.

(b) Boat with 20° yaw angle between camera and ferry.

(c) Boat with 40° yaw angle between camera and ferry.

(d) Boat with 60° yaw angle between camera and ferry.

Figure 5.6: Comparison of bounding box of ferry, superpixels, segmented ferry and PCA for differ-
ent angles.

5.4 Accuracy for Estimation of Yaw Angle
In this section accuracy is presented and discussed. The method consists of several steps
and each step contributes with some error. The steps in this method are, as mentioned be-
fore, segmenting an image in superpixels, classifying which are part of the boat by using a
YOLO classifier, letting the image undergo PCA and using the longest resulting principal
component to calculate the yaw angle.

5.4.1 Accuracy Calculation
The calculations based on each sub-figure in 5.6 and 5.7 are presented in table 5.1. As seen
from the table, errors are in the range 1.2° to 158.1°. The average error is 25°, the median
error is 7.3° and the standard deviation is 50.3°. More estimations are however needed to
make the statics more reliable, as these calculations are only based on nine samples.
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(a) Boat with 80° yaw angle between camera and ferry.

(b) Boat with 100° yaw angle between camera and ferry.

(c) Boat with 120° yaw angle between camera and ferry.

(d) Boat with 140° yaw angle between camera and ferry.

(e) Boat with 160° yaw angle between camera and ferry.

Figure 5.7: Comparison of bounding box of ferry, superpixels, segmented ferry and PCA for differ-
ent yaw angles.

The two values that stand out in a negative way are the ones where the true angle are 20°
and 160°, particularly 160°. The explanation for these poor results can be seen by con-
sidering the principle components. This can be seen in the right image in figure 5.6b and
figure 5.7e, but also in figure 5.8 where the images are enlarged to easier see the details.
When calculating the yaw angle the largest principal component (longest line) is used. As
we can see the green lines are much better candidates, however since the blue lines are
longer, those are used and we get large errors. Using the green line for calculation of the
yaw angle gave a result of 23.8° when the true angle was 20°, in other words only an error
of 3.8°. For the sample when the true angle was 160° using the smaller principal compo-
nent (green line) gave an estimated angle of 146.6 ° and therefore an error of 13.4 °.
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True angle Estimated angle Error
0° 1.2° 1.2°

20° -0.5° 20.5°
40° 33.8° 6.2°
60° 52.7° 7.3°
80° 77.7° 2.3°

100° 111.4° 11.4°
120° 114.0° 6.0 °
140° 129.5° 10.5°
160° 1.9° 158.1°

Table 5.1: True vs Estimated Yaw Angle.

Figure 5.8: Enlarged result of PCA for 20° angle on the left image and for 160° angle on the right
image.

5.4.2 Effect of PCA on Differently Segmented Images

In figure 5.9 the result of applying PCA on three differently segmented images can be
seen. All images are based on the left image in figure 5.7b. Figure 5.9a was segmented by
the YOLO classifier CNN, same result as shown in the third image in figure 5.7b. Figure
5.9b was segmented manually to contain all the ferry pixels. In figure 5.9c the navigation
light mast was removed. This comparison illustrates how different segmentation would
affect the accuracy. Figure 5.9a has a difference between true and estimated yaw angle of
11.4° as mentioned in table 5.1. The estimated yaw angle of figure 5.9b was 95.4° which
resulted in an error of 4.6°. The estimated yaw angle of figure 5.9c was 95.8° which re-
sulted in an error of 4.2°. Even though it is not desired for the CNN to classify such that the
segmentation becomes like in figure 5.9b or figure 5.9c as they do contain background pix-
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els, something more similar would be desired. However, as mentioned the openings in the
ferry makes it harder for the CNN to perform the classification. Quite a few superpixels are
wrongly classified at the lower left and upper right of the ferry. If those superpixels where
added, the longest principal component (in this figure the green line) would be pointing
a bit more upwards and moved closer to 100° instead of the current 110°. Note that the
manually segmented images on the other hand here predicts lower angles than the true one.

The principal components in figure 5.9b are almost equally long, by measurement the
green line is only a bit longer. This can cause large errors if the boat is believed to point
in the direction of the longest principal component. This is as mentioned what happened
when the true angle was 20 deg and 160 deg, this resulted in large errors as seen in table
5.1. In 5.9c the effect of removing the navigation light mast is shown to reduce one of
the principal component and increases the other one. This result gives an indication that
this method may perform better at oil tankers and similar and possibly worse on sail boats
and similar if not countermeasures are taken. The ferry used for analysis is not that long
relative to the mast, and may appear square around 0° and 180°.

5.4.3 Effect of Tilted Camera
Training images were taken with a tilted camera, however the images in figure 5.6 and fig-
ure 5.7 were taken without tilting the camera. An example of the difference between tilted
and not tilted camera can be seen in figure 5.10. The images both have 0° between the
ferry and the camera, however the ferries look quite different. When the camera is tilted
the ferry appears longer whereas when the camera is not tilted the ferry appears more
square which could be a challenge when performing PCA in regards to which principal
component becomes longest. When the camera is tilted more wooden floor is visible. It is
most likely easier for the CNN to distinguish this wooden brown from the ocean compared
to the task of distinguishing the grey-white outside of the boat to the ocean. Also the light
conditions are different in the two images which may be due to images taken in different
locations in the simulated environment or due to the camera being tilted.

Images with tilted camera are shown in figure 5.11 and figure 5.12. The images are taken
at the same angles between the ferry and the camera as for figure 5.6 and figure 5.7. By
inspecting the difference, the images taken with tilted camera have better segmentation
results in general. It would be interesting to figure out whether training with non-tilted
camera images would have given improved results or if tilting the camera makes it easier
for the CNN to perform segmentation. The difference in result may also be due to some
other reason like image quality, location in environment or light conditions.
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(a) Ferry segmented by YOLO classifier CNN with PCA applied

(b) Ferry segmented manually with PCA applied

(c) Ferry segmented manually with navigation light mast removed with PCA applied

Figure 5.9
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Figure 5.10: Image taken with camera kept horizontal on the left and image taken with tilted camera
on the right.

(a) Boat with 0° yaw angle between camera and ferry.

(b) Boat with 20° yaw angle between camera and ferry.

(c) Boat with 40° yaw angle between camera and ferry.

(d) Boat with 60° yaw angle between camera and ferry.

Figure 5.11: Segmentation results when images were taken with a tilted camera.
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(a) Boat with 80° yaw angle between camera and ferry.

(b) Boat with 100° yaw angle between camera and ferry.

(c) Boat with 120° yaw angle between camera and ferry.

(d) Boat with 140° yaw angle between camera and ferry.

(e) Boat with 160° yaw angle between camera and ferry.

Figure 5.12: Segmentation results when images were taken with a tilted camera.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion
In this project, three methods for estimating the yaw angle was compared. The method
indicated to be the most robust was performing segmentation with the use of superpixels
and a CNN, after which PCA and triangulation was applied. The classification process
seemed to be the cause of some errors. Another cause of errors was that the PCA had
some difficulties for angles around 0° and 180° presumably as the 2D projection of the
ferry then appeared more square. Tilting the camera gave better segmentation results and
longer boats with less mast performed better under PCA.

Even though some significant errors are present, the method is promising and exciting.
There are a lot of further work that can be done to improve the result. Some suggestions
for further work are presented in 6.2.

6.2 Future Work
The following tasks are suggested for future work:

The YOLO classifier CNN for superpixel-images could be explored more. A larger dataset
could be used to train the CNN and more layers could have been added to form a deeper
network.

The dataset could be expanded to add different types of surface vehicles and the images
could be taken under different weather and light conditions. Also images with buildings
and land in the background could be added.

A class could be added for buildings when labelling and training the network. It has been
shown in a master thesis that training on a building class can have significant positive ef-
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fects (Grini, 2019). It would be interesting to figure out how good a classifier is able to
distinguish between boat and building superpixels, or whether it becomes too difficult if
many different buildings and boats are used.

Real images could be added to the dataset and transfer learning could be used to train a
CNN, then the results could be tested in a real environment instead of simulated.

For the cases when the neural network has low probabilities on classifications, possibly in
cases were a superpixel contains several classes, further analysis could be done to distin-
guish the classes. This could result in better segmentation result.

The calculation of the yaw angle could be used as an input to a CNN together with the
original image. This CNN could be used to decide which of the two alternative angles
are correct, or even possibly correct the calculation in cases like the one we had in figure
5.7e. The results of this grey box neural network could be compared to a black box neural
network.
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Tech. Rep. 149300, EPFL.

AlexeyAB, 2019. Yolo-v3 and yolo-v2 for windows and linux. https://github.
com/AlexeyAB/darknet, accessed: 2019-11-10.

Anderson, P., 2015. https://panderson.me/images/Caffe.pdf, accessed:
2019-10-06.

Fossen, T. I., 2013. Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley.

Glosser.ca, 2013. https://commons.wikimedia.org/wiki/File:Colored_
neural_network.svg, accessed: 2019-12-03.

Grini, S., 2019. Systematic training and testing of detection methods for vessels in camera
images. Master’s thesis, NTNU, accessed: 2019-08-28.

Haavardsholm, T., 2019. A handbook in visual slam. Lecture notes in course on Visual
SLAM at NTNU.

Helgesen, O. K., 2019. Sensor fusion for autonomous ferry. Master’s thesis, NTNU, ac-
cessed: 2019-08-30.

Hem, A. G., Leineb, D., Opheim, H. V., Vasstein, K., Skarshaug, T., 2019. Digital tvillin-
gInstitution: NTNU, accessed: 2020-01-04.

Hølland, E. H., 2019. Detection of ships in infrared images. Master’s thesis, NTNU, ac-
cessed: 2019-10-15.

Jiang, Z., 2018. https://conference.ippp.dur.ac.uk/event/660/
contributions/4058/attachments/3402/3717/CNN_04_04_
ZihaoJiang.pdf, accessed: 2019-11-20.

Korcz, K., 2018. Maritime radio systems for distress alerting. Journal of KONES 25 (1),
233–240.

39

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://panderson.me/images/Caffe.pdf
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://conference.ippp.dur.ac.uk/event/660/contributions/4058/attachments/3402/3717/CNN_04_04_ZihaoJiang.pdf
https://conference.ippp.dur.ac.uk/event/660/contributions/4058/attachments/3402/3717/CNN_04_04_ZihaoJiang.pdf
https://conference.ippp.dur.ac.uk/event/660/contributions/4058/attachments/3402/3717/CNN_04_04_ZihaoJiang.pdf


Lambert, F., 2019. Tesla autopilot fatal crash with truck is under investiga-
tion, preliminary report released. https://electrek.co/2019/05/16/
tesla-autopilot-fatal-crash-truck-investigation-preliminary-report/,
accessed: 2019-11-02.

Li, F., Karpathy, A., Johnson, J., 2016. http://cs231n.stanford.edu/slides/
2016/winter1516_lecture8.pdf, accessed: 2019-11-21.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollr, P., Zitnick,
C. L., 2014. Microsoft coco: Common objects in context. In: European Conference on
Computer Vision (ECCV). Zürich, oral.
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