
Stereo vision using local methods
for autonomous ferry

TTK4550 - Engineering Cybernetics, Specialization Project, 10th of January 2020

Trine Ødegård Olsen

Abstract

Sensors in autonomous vehicles are essential for situation awareness. By perceiving obsta-
cles and other vehicles, fusion of sensors can track and predict motion to avoid collisions.
Range information can be achieved with active sensors like LiDAR or RADAR, or passive
sensors like cameras in a stereo configuration. Cameras have an increasing pixel reso-
lution and possible long-range detection, which are indispensable for advanced collision
avoidance and driver assistance systems.

This thesis explores how stereo cameras combined with computer vision can calculate
range information and create a 3D-map of the environment. Theory on stereo vision and
associated algorithms are given. An experiment was conducted with a fixed scene and
ground truth measured by a LiDAR calibrated with the stereo cameras. Nine local stereo
algorithms, both correlation- and featured-based, were implemented to create depth-maps;
SAD, SSD, NCC, RT, CT, HCD, SIFT, SURF, and ORB. They were all tested against
the ground truth, giving an average error on 3 centimeters. Five of the algorithms were
discarded, while four algorithms remained with the potential to be implemented on the
autonomous ferry prototype ”MilliAmpere”. Overall, CT yields the best result considering
both accuracy and computation cost.

i

Preface

The thesis is part of the specialization project in the fifth year of the author’s Master’s de-
gree in Cybernetics and Robotics at the Norwegian University of Science and Technology
(NTNU). The overall goal is to specialize in selected areas based on scientific methods,
collect supplementary information based on literature search and other sources. Com-
bining the latter with own knowledge into a project report to extend knowledge into the
chosen subject area.

The project was proposed by my supervisor Edmund F. Brekke and co-supervisors An-
nette Stahl and Øystein Kaarstad Helgesen, each of them working under the Department of
Engineering Cybernetics. It is part of the Autoferry research project, whose aim is to de-
velop cutting-edge technology for autonomous all-electric passenger ferry for urban water
transport. This report specializes in computer vision, more precisely in depth estimation
using binocular stereo cameras.

The first part of the thesis is written in collaboration with Lina Theimann, who writes
about LiDAR and Stereo calibration; Comparison of depth information from stereo camera
and LiDAR. Together, implementing, calibrating, and creating the stereo vision setup. This
includes Chapter 2, Section 4.1 and 4.3. Together we would like to thank our supervisors
for their help and knowledge throughout the project. We thank Glenn Angel and all the
technical staff at ITK for their help with the stereo setup. We would also like to thank
Stefano Brevik Bertelli for always being helpful in times of need, and Egil Eide for taking
the time to show us the ferry MilliAmpere.

ii

Table of Contents

Abstract i

Preface ii

Table of Contents v

Abbreviations vi

1 Background 1
1.1 Problem description . 1
1.2 Literature review . 2
1.3 Report outline . 3

2 Theory 5
2.1 Pinhole model . 5

2.1.1 Camera parameters . 6
2.1.2 Calibration . 10

2.2 Stereo Camera . 10
2.2.1 Stereo geometry . 11
2.2.2 Stereo setup . 12
2.2.3 Correspondence problem . 13

3 Stereo matching 17
3.1 Correlation based methods . 18

3.1.1 Sum of Absolute Differences . 19
3.1.2 Sum of Squared Differences . 19
3.1.3 Normalized Cross Correlation 20
3.1.4 Rank Transform . 20
3.1.5 Census Transform . 21

3.2 Feature based methods . 22
3.2.1 Harris Corner Detector . 22

iii

3.2.2 SIFT . 23
3.2.3 SURF . 25
3.2.4 ORB . 26
3.2.5 Descriptor Matching . 27

3.3 Comparison . 28

4 Implementation 29
4.1 Hardware . 29

4.1.1 Camera . 29
4.1.2 Synchronized Capture . 31
4.1.3 Stereo setup . 32

4.2 Software . 33
4.2.1 ROS . 33
4.2.2 OpenCV . 34
4.2.3 MATLAB . 34

4.3 Calibration . 34
4.3.1 Prepare calibration . 34
4.3.2 Evaluation . 36
4.3.3 Calibration parameters . 39
4.3.4 Calibration on long distance . 41

4.4 Implementing stereo matching algorithms 41
4.4.1 Correlation based methods . 42
4.4.2 Feature based methods . 43

5 Experiment 45
5.1 Ground Truth . 46
5.2 Correlation based methods . 47

5.2.1 Sum of Absolute Differences . 48
5.2.2 Sum of Squared Differences . 50
5.2.3 Normalized Cross Correlation 51
5.2.4 Rank Transform . 52
5.2.5 Census Transform . 54

5.3 Feature based methods . 55
5.3.1 Harris Corner Detector . 55
5.3.2 SIFT . 58
5.3.3 SURF . 62
5.3.4 ORB . 62

6 Discussion 67
6.1 Stereo Setup . 67
6.2 Calibration . 68
6.3 Stereo matching algorithms . 68

6.3.1 Correlation based methods . 69
6.3.2 Feature based methods . 71

7 Conclusion and Future work 75

iv

Bibliography 77

v

Abbreviations

SAD = Sum Absolute Difference
SSD = Sum of Squared Difference
NCC = Normalized Cross Correlation
RT = Rank Transform
CT = Census Transform
HCD = Harris Corner Detector
SIFT = Scale Invariant Feature Transform
SURF = Speeded Up Robust Feature
ORB = Oriented FAST and Rotation Aware BRIEF
BF = Brute-Force
FLANN = Fast Library for Approximate Nearest Neighbors
FOV = Field Of View

vi

Chapter 1
Background

The project is motivated by Gizmodo’s article ”Elon Musk Was Right: Cheap Cameras
Could Replace LiDAR on Self-Driving Cars, Researchers Find” [21]. At Tesla’s Auton-
omy Day 2019, Elon Musk stated that stereo vision is the new LiDAR, and subsequently,
stereo vision is becoming an extending research area for autonomous vehicles.

“LiDAR is a fool’s errand. Anyone relying on LiDAR is doomed. Doomed!
They are expensive sensors that are unnecessary”

—Elon Musk, Tesla’s Autonomy Day 2019

Today, most major developers and startups of autonomous cars use LiDARs in combi-
nation with cameras and radar. Musk and Tesla, on the other hand, is unique in the sense
that they only use cameras and radar. Light Detection and Ranging (LiDAR) is an active
remote sensing system, giving an exact image of the world. With distance accuracy of
around one centimeter on long distances, it acquires reliable depth information on objects
on sufficient size and range. It is trivial to isolate objects, works independent of ambi-
ent light, and is robust against interference [43]. Hence, is there any support in Musk’s
statement, can cameras substitute the advantages of using LiDARs?

1.1 Problem description
The primary goal of the specialization project is to explore how stereo vision can improve
visual vessel detection. Compared to LiDARs, passive optical recognition like cameras
is in the low-price range. Combined with their increasing pixel resolution and possible
long-range detection, they are indispensable for advanced driver assistance systems [43].
The object is to prepare a stereo vision setup for visual vessel detection, and look into how
the resulting 3D world map differs with various algorithms. Overall, the goal is to achieve
an understanding of the setup and calibration needed, and to end up with one or several
algorithms which are applicable for stereo vision on the autonomous ferry prototype ”Mil-
liampere”. The tasks include

1

Chapter 1. Background

• Familiarize with necessary literature

• Binocular stereo setup. Physically fixing cameras and optics relative to each other

• Get the cameras up and running with driver, and ROS

• Performing stereo camera calibration

• Perform rectification and undistort the images

• Familiarize with algorithms for creating disparity map

– Correlation based matching

– Feature based matching

• Creating a Ground Truth environment by constructing a measured 3D scene

• Testing the algorithms on the scene as a Ground Truth

1.2 Literature review
Detection of the world is an essential task in autonomous vehicles. A key ingredient
for vision-based 3D object detection is a reliable depth estimation approach. Today 3D
approaches based on a cheap camera or stereo cameras have resulted in drastically lower
accuracy compared to solutions based on LiDAR. An expanding number of researchers
are trying to reduce this gap.

Wang, Chao, Garg, et al. [47] presented in June 2019 an article that supports Musk’s
view on stereo vision. The article is one among others, bridging the gap between image-
and LiDAR-based 3D object detection. They improved the accuracy of visualizing sur-
roundings by stereo cameras, putting their approach on par with LiDAR solutions. By
changing the representation of 3D information from cameras, the image-based perfor-
mance on 30meters was improved from state-of-the-art 22 percent accuracy to 74 percent.

Related papers delve into sensor fusion and how a fusion of LiDAR and stereo vision
can complement the sensors’ weaknesses. LiDARs are expensive, range limited, and is
for example, not able to detect traffic lights. Computer vision contrarily is not robust
considering reliability, variations in light, and the high CPU usage [43]. In January 2019,
Sadakuni et al. published the article ”Construction of Highly Accurate Depth Estimation
Dataset Using High Density 3D LiDAR and Stereo Camera” [41]. By sensor fusion, they
integrate point clouds based on the relative positioning of the two sensors to compensate
for the LiDAR’s short ranging distance and to get depth information corresponding to
each pixel of the stereo image. Both LiDAR and stereo vision have an extensive amount
of research, and the choice of using either LiDAR, cameras, or both is more a question
about which technology one can reliably bet will be best in the future [43].

Computer vision as a research area is more than 50 years old, and today improving
depth estimates for stereo cameras is a flourishing topic with numerous publications. Ar-
ticles used throughout the project like [24], [16], [36], [48], [44], [42] and [3] are only a
narrow representation of relevant publications in the stereo matching problem. However,

2

1.3 Report outline

the majority of articles looking into the correlation problem tend to focus on controlled en-
vironments detecting objects on a distance around one to two meters. Hence, long-distance
object depth estimate with binocular cameras is something that needs to be further exam-
ined. This report will look into the stereo setup required and algorithms for estimating
depth on long distanced objects in challenging areas.

Literature that examines various algorithms was used as a base for solving the cor-
respondence problem. This includes [12], [33], [18] and [14], all the latter subordinated
either stereo matching techniques or stereo vision disparity map. They examine different
algorithms for various application areas. In general, the methods can be classified into
local and global approaches, where global methods achieve more accurate disparity maps,
while the local methods are more efficient. The experiment is meant to be implemented
on an autonomous ferry, having higher real-time demands than accuracy. Taking the four
latter papers into account, it appears that local methods have the most suitable approaches
for creating a disparity map in use on the ferry, achieving lower computational complexity.
Local methods are usually divided into two categories, namely Correlation based methods,
and Feature based methods. For the project, the most promising algorithms were chosen,
expanded with some acknowledged ones, to end up with nine different algorithms to be
analyzed.

• Correlation Based Methods

– Sum of Absolute Differences [44]

– Sum of Squared Differences [27]

– Normalized Cross Correlation [42]

– Rank Transform [48]

– Census Transform [11]

• Feature Based Methods

– Harris Corner Detector [9]

– Scale Invariant Feature Transform [23]

– Speeded Up Robust Feature [2]

– Oriented FAST and Rotation Aware BRIEF [38]

The most promising ones before implementation would be the Sum of Absolute Differ-
ences, Census Transform, and Oriented FAST and Rotation Aware BRIEF. SAD is known
to yield good results compared to its simplicity. CT for its performance under challenging
lighting conditions and ORB because it is known to be robust, accurate, and real-time.

1.3 Report outline
This report is divided into seven chapters. Following the background, the theory of camera
and stereo vision is presented in Chapter 2, subsequently the foundation of the algorithms
used in Chapter 3. Chapter 4 looks into the hardware and software used, and some theory

3

Chapter 1. Background

and result of the chosen setup and calibration. In Chapter 5, the experiment performed is
presented and discussed, while Chapter 6 summarizes the result. The final chapter state a
conclusion and suggest further work.

4

Chapter 2
Theory

The chapter aims to provide the theoretical principles and theory used throughout the re-
port. The focus is on the geometric camera model, epipolar geometry, calibration, and the
creation of a disparity map. A disparity map is an image indirectly containing the distance
to the surface of objects from a given viewpoint. The theory is mainly based on [7], [10]
and [40].

2.1 Pinhole model
The pinhole model is the most commonly used geometric camera model. The mathemati-
cal model describes the correspondence between real-world 3D points and their projection
onto the image plane. In an ideal pinhole camera, the camera aperture is described as a
point; no lenses used to focus.

Figure 2.1: Pinhole camera model

Figure 2.1 displays the camera body as a rectangular box. The camera film, or image
plane which captures the light emitted through the pinhole, is placed in the rear inside of

5

Chapter 2. Theory

the camera body. The pinhole let light rays from only one direction through at a time.
This filter out the light rays coming from the wrong direction, and the light rays will move
through the hole in a straight line. So light from the bottom of the object will end up at
the top of the image plane, and likewise, light from the top of the scene will end up at
the bottom. In the images captured, everything will be in focus. Hence, to avoid blur in
the image, it is necessary to have prolonged exposure time or absence of moving objects.
In practice, cameras are equipped with a lens to produce useful images. The pinhole is
mathematically convenient, and the geometry of the model is an adequate approximation
of the imaging process.

2.1.1 Camera parameters
The camera parameters are what describe the relationship between the camera coordinate
system and real-world coordinates. They can be divided into two groups; intrinsic and
extrinsic parameters. The intrinsic parameters represent the focal length and the optical
center of a camera, described as a mapping between camera coordinates and pixel coor-
dinates in the image plane. The extrinsic matrix represent the position and orientation of
the camera in real-world coordinates, and it is described as a mapping between the cam-
era coordinates and the real-world coordinates. The image plane is parallel to the camera

Figure 2.2: Intrinsic and extrinsic geometry

plane at a fixed distance from the pinhole. This distance is called the focal length, f . The
geometry is shown in Figure 2.2.

When representing geometric transformations, it is useful to think in terms of projec-
tive geometry. Homogeneous coordinates in the projective space is an alternative way to
describe Cartesian coordinates in Euclidean space. The homogeneous coordinates allow
affine transformations and projective transformations to be represented by a matrix easily.
As well, they represent points at infinity using finite coordinates. Mapping a Cartesian
vector to a homogeneous space and homogeneous to Cartesian is given by (2.1) and (2.2)
respectively.

x =

xy
z

 −→ x̃ =

x
y
z
1

 (2.1)

6

2.1 Pinhole model

x̃ =

x
y
z
w

 −→ x =

x/wy/w
z/w

 (2.2)

Intrinsic parameters

The intrinsic parameters describe the transformation between camera coordinates and pixel
coordinates in the image frame. The world coordinates are assumed given in the camera
coordinate frame, where the origin is in the optical center. Considering the reference
frames showed in Figure 2.2, the mapping between the Euclidean 3D space, (X,Y, Z), to
Euclidean 2D space (u, v) is expressed as follows

u = f
X

Z
v = f

Y

Z

The corresponding mapping in homogeneous coordinates is thus given by

fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0

X
Y
Z
1

The homogeneous mapping does not take into consideration that the origin of the image
plane may not coincide with the principal point, the point where the gray line in Figure 2.2
meets the image plane. To compensate, the mapping is adjusted to

u = f
X

Z
+ px v = f

Y

Z
+ py

and equivalent to homogeneous coordinates:

fX + Zpx
fY + Zpy

Z

 =

f 0 px 0
0 f py 0
0 0 1 0

X
Y
Z
1

The point (px, py)T are the coordinate of the principal point and

K =

f 0 px
0 f py
0 0 1

 (2.3)

is the camera calibration matrix or intrinsic camera matrix.
The pinhole model assumes pixels to be square, which may not be the case for other

camera models like e.g., CCD cameras. In CCD cameras, there is the possibility of having
non-square pixels. This may cause an unequal scale factor in each direction if image
coordinates are measured in pixels. To account for this, mx and my are defined as number
of pixels per unit distance in image coordinates, in x and y directions respectively.[13]

7

Chapter 2. Theory

The adapted intrinsic camera matrix is given by

K =

αx s x0
0 αy y0
0 0 1

 αx = mxf
αy = myf
x0 = mxpx
y0 = mypy

(2.4)

where (αx, αy) represents the focal length in pixel units, and (x0, y0) represents the prin-
cipal point in pixel units. The number s is called the skew parameter. It is non-zero
in cameras where the image axes are not perpendicular, usually not the case for today’s
cameras.

Extrinsic parameters

Via translation and rotation, the camera frame and the world reference frame are related.
With two coordinate frames, Fa andFb with different positions and orientations, the trans-
formation between the two frames can be described by the homogeneous transformation
matrix Tab.

Tab =

[
Rab taab
0> 1

]
where xa = Tabx

b,

The matrix Rab is the orientation of Fb relative to Fa, and taab the translation vector given
in the coordinate frame of Fa.

When describing the intrinsic parameters, the world coordinates were assumed to be
given in the camera frame. To describe the extrinsic parameters, the scene points are
expressed in the world coordinate frame, the one to the far right in Figure 2.2. A point in
the world frame can be expressed in the camera frame by

xc = Rxw + t, (2.5)

whereR and t is thus the extrinsic parameters of the camera.
Combining the intrinsic parameters K with the extrinsic [R, t]T gives the camera ma-

trix. It relates world coordinates with pixel coordinates, and can be written as follows.

P =

[
R
t

]
K (2.6)

Distortion

Distortion makes straight lines in a scene appear bent in the image. The optical distortion
is derived in the lens and occurs when lens elements are used to reduce aberrations. An
ideal pinhole camera does not have a lens, and thus the camera matrix does not account
for lens distortion.

There are different kinds of distortion; tangential distortion and radial distortion. The
latter is the most important to take into account with nowadays lenses. It occurs when
light rays are bent more near the edges of the lens than in the center. Smaller lenses have
greater distortion. Figure 2.3 shows how different types of radial distortion looks like in

8

2.1 Pinhole model

(a) Negative radial distortion (b) No distortion (c) Positive radial distortion

Figure 2.3: Radial distortion

an image. Let (x, y) be the ideal points, the radial distortion (xd, yd) can be modeled as
follows

xd = x+ x
[
k1(x2 + y2) + k2(x2 + y2)2 + k3(x2 + y2)3 + . . .

]
yd = y + y

[
k1(x2 + y2) + k2(x2 + y2)2 + k3(x2 + y2)3 + · · ·

]
Where k1, k2, k3, ... are the radial distortion coefficients of the lens. [49]

Figure 2.4: Left: No tangential distortion. Right: Tangential distortion

Tangential distortion occurs when the lens and the image plane are not parallel, as
shown in Figure 2.4. When modeling tangential distortion (xd, yd), the undistorted pixel
locations (x, y) are normalized and thus dimensionless. Expressing the model with the
tangential distortion coefficients of the lens, p1 and p2;

xd = x+
[
2p1xy + p2(x2 + y2 + 2x2)

]
yd = y +

[
p1(x2 + y2 + 2y2) + 2p2xy

] (2.7)

9

Chapter 2. Theory

2.1.2 Calibration

Camera calibration is the process where intrinsic and extrinsic parameters are estimated.
The intrinsic and extrinsic parameters are what relate the world points to the camera co-
ordinate system. The parameters can be used to correct for lens distortion, get the size of
an object in the real world, or determine where in the scene the camera is located. There
exist different techniques, where the two main ones are:

• Photogrammetric calibration: The calibration is performed by using an object
with known 3D world points. The correspondences between the real world points
and the corresponding 2D image points can be found by having multiple images of
a known calibration pattern. The most commonly used pattern is the checkerboard,
where the number of squares and their size is known.

• Self-calibration: No calibration object used, and therefore the camera is moved in
a static scene. The correspondence between three images is used to estimate the
intrinsic and extrinsic parameters.

Both methods have advantages.

Zhangs method

Zhangs method is a calibration technique developed by Zhengyou Zhang at Microsoft
Research [49]. This method lies between the two main techniques described above, ex-
ploiting the advantages of both methods. The only requirement is that the camera has to
observe a planar pattern, typically a checkerboard, in at least two different orientations.
The algorithm then detects feature points in the images. Since the plane z = 0 is given by
the pattern itself, only 2D metric information is used. The linear transformation between
planes is computed, and by using singular value decomposition, an initial estimation of the
intrinsic parameters are computed. Furthermore, the parameters are refined by applying
the Levenberg-Marquardt algorithm to the algebraic error. The same approach is used to
make an estimate of the extrinsic parameters. When estimating the lens distortion, the tan-
gential distortion is ignored. An estimate of the radial distortion parameters is calculated
by comparing the real pixel values and the ideal ones given by the pinhole model.

2.2 Stereo Camera

Stereo vision is a computer vision technique used to perceive depth in a scene by com-
bining two or more sensors. With the second camera of known relative position, the 3D
position of points projected on the camera plane can be estimated through triangulation.
Working with binocular cameras requires an understanding of the calculations and setup,
which influence the 3D points probability distribution. As well, the application area and
the choice of algorithms used for computing and solving the correspondence problem will
affect the resulting depth-map and the associated point cloud.

10

2.2 Stereo Camera

x1
x2

x3

OL OR

xw

Baseline, b

Left camera view Right camera view

eL

xL xR

eR

Figure 2.5: Epipolar geometry of two cameras

2.2.1 Stereo geometry
Observing the same world point xw from two relative views gives a strong geometric
constraint on the observed point called the epipolar constraint. By using the geometric
pinhole model, the depth is calculated by triangulation. Figure 2.5 gives an illustration of
the epipolar geometry between two cameras. The image planes are illustrated in blue, and
the point xw is the world coordinate desired to reconstruct depth.

The green triangular in Figure 2.5 connects the two optical centers and the point xw; it
is called the epipolar plane. The baseline, fixed-length depending on the stereo setup, is the
line connecting the two optical centers, OL and OR. The epipolar plane intersects through
the two blue image planes forming the red epipolar line in each plane. The epipolar line in
the left camera view intersects the epipole eL and the pixel value xL = (uL, vL).

The epipolar constraint uses the epipolar line to find pixel correspondences. It can be
stated:

“A point in one image generates a line in the other on which its corresponding
point must lie. The search for correspondences is thus reduced from a region
to a line”

—Bob Fisher, University of Edinburgh

The constraint arises by the reason that when two cameras capture the same world object,
the pixel points, the world point, and the optical centers are all coplanar. The depth is thus
directly proportional to the distance between the two pixels capturing the world object and
the baseline.

The algebraic mapping between a pixel in one image and the epipolar line in the second
image is described by a matrix called the fundamental matrix. See Chapter 8 in [13] for a

11

Chapter 2. Theory

further mathematical explanation. The theory is illustrated in Figure 2.5, where the pixel
xL in the left view is mapped to all the pixels on the epipolar line of the right camera.
In practice, every pixel on the epipolar line in the right camera view capturing the world
points xw, x1, x2, or x3 can correspond to the one pixel xL in the left view. The problem
of selecting the correct matching pixel in the right view is termed the correspondence
problem and is further explained in Section 2.2.3.

2.2.2 Stereo setup

The field of view, blind-spot, and uncertainty all depends on the stereo mounting. The
choice of baseline and camera vergence angles set constraints on the scene used.

Large Baseline

Width of a pixel

Small Baseline

All of these
points project
to the same

pair of pixels

Figure 2.6: Illustrating uncertainty depending on the baseline

Representing the 3D world with a discrete camera plane consisting of pixels gives rise
to uncertainty in the depth estimate. In Figure 2.6 the uncertainty with different baselines
is demonstrated. In general, the uncertainty will decrease with expanding baseline. In
addition to the baseline, the vergence angle of the cameras will affect the shape of the
uncertainty region. Changing the angle between the cameras will result in a similar effect,
as illustrated in Figure 2.6, akin parallel rays give less precisely localization of 3D points.
The accuracy of reconstructed 3D points is thus dependent on both the baseline and the
angle, where the width of the probability distribution will decrease with increasing baseline
and vergence angle.

Even though the accuracy may increase with increasing baseline and vergence angle,
the search problem becomes more difficult, and the field of view shrinks. The field of view
of the system is directly linked to the distance between the two cameras, baseline, and the
angle the cameras are adjusted towards each other [25]. Depth estimation is possible only
for the overlapping field of view between the two camera views, and in practice, minimum
2
3 of each image should overlap. Three different setups are demonstrated in Figure 2.7,
where the overlapping field of view is illustrated in green. The overlapping field of view
will diminish with a more substantial baseline. Additionally, the blind spot will expand. A
solution for lessening the blind spot is demonstrated in the rightmost figure titled Angled.
When the cameras are angled towards each other, the field of view on short distance is
increased and withal decreasing the blind spot.

12

2.2 Stereo Camera

Large baseline Small baseline Angled

Figure 2.7: Illustrating field of view in stereo setup

Another benefit of angled cameras is that the vergence angle determines a particular
fixation point in the scene. When the fixation point is near a target object, it can help
separate the target objects from distracting surroundings. The working distance, i.e., how
far the setup is from a given object or fixation point, can be calculated depending on the
camera optics.

FOVh = horizontal field of view

h = horizontal sensor size

WD =
f ∗ FOVh

h
, WD = working distance

f = focal length

The baseline is directly proportional to the horizontal distance from the mounting to the
object. Thus stereo systems with smaller baseline achieve better results when detecting
objects on average distances, whereas broader baseline is preferred with greater distances.
As a general rule, the fraction 1

30 can be used to estimate the dimension of the baseline [5].
For a working distance on 30 meters, the baseline should be around one meter, depending
on the cameras’ angling.

Eventually, the setup is a matter of the distance one wants to detect, the width and
blind spots, which are all correlated. The factors all define what level of depth-accuracy
the system will achieve. Further, the camera specifications will affect the result, e.g., focal
length, and if the objects to be detected are small, consider cameras with higher resolution.

2.2.3 Correspondence problem
Depth is inversely proportional to the disparity between pixels in stereo captured images,
implying that calculating depth is a single trivial equation. However, in order to do the
calculation, one must first determine for each pixel in one image which pixel in the second
originated from the same 3D world point. This issue is known as the correspondence
problem and is a central part of binocular vision.

Before stereo matching and solving the correspondence problem, the images should
be undistorted and rectified to ease the computation of finding corresponding pixels. The
pipeline for retrieving depth from stereo vision can be illustrated in a flowchart;

13

Chapter 2. Theory

Stereo
Setup Calibrate

Undistort
& rectify

Stereo
Matching

Disparity
Map

Point
cloud

When the rigid body transformation between the two cameras is known from the calibra-
tion, it can be used to undistort and rectify the images. Rectification is the process of
transforming the two images onto a common image plane, aligning the epipolar lines. It
ensures that the corresponding pixels in the image pair are on the same row. The concept

Figure 2.8: Ideal Stereo Geometry

is shown in Figure 2.8. By defining new camera matrices (2.6), the rotation matrices is set
to the identity matrix and the translation only along the x-axis, the correspondence prob-
lem is mapped to ideal stereo geometry. The ideal stereo geometry is a special case of the
epipolar geometry where the epipoles are at infinity, meaning xL

∞ = xR. The cameras
will thus have identical orientation and baseline along the x-axis with distance bx. Which

14

2.2 Stereo Camera

gives the following pixel correspondence;

xL = xR +

 f∗bx
d
0
0

This means that the epipolar lines become horizontal. Looking for corresponding pixels in
the two images boils down to a one-dimensional search.

The matching of corresponding pixels can be performed by various stereo matching
algorithms. A selection of the various methods is explained in Chapter 3. They are all local
methods, matching conjugate points directly based on intensity or indirectly by feature
extraction and matching.

When the corresponding pixels are matched and the disparities achieved, they can be
displayed in a disparity map. Disparity map, also commonly named range- or depth-map,
is a representation of the displacement between conjugate pixels in the stereo pair image.
It represents the motion between the two views, where small disparities are shown as

Figure 2.9: Example of scene with corresponding grey-scale disparity map and Point cloud

darker pixels, therefore less motion and longer distance. An example of a disparity map is
illustrated in Figure 2.9.

Once the disparity map is extracted, the 3D world position of a given object only
depends on straightforward mathematics. The triangulation between pixels in the left-
(uL, vL) and right-image (uR, vR) is given in the consecutive equations. The position is
given in the cameras coordinate frame, where bx is the baseline of the stereo camera, f ,
the focal length, and d corresponds to the disparity between the two images.

Z =
f ∗ bx
d

X =
uL − uR

f
Z (2.8)

Y =
vL − vR

f
Z

The 3D world coordinates calculated can further be plotted together, creating a point cloud
[39]. Point clouds are a means of collating a large number of single spatial measurements

15

Chapter 2. Theory

into a dataset that can then represent a whole. One can say that the point cloud displays
the back-projection of the stereo image pair; an example is displayed in Figure 2.9.

Pre- and post-processing

In general, the less noisy the disparity map, the better results of triangulation can be
achieved [26]. Stereo matching algorithms tend to create noise in the disparity map under
challenging scenes. Depending on the algorithm, a challenging area can be regions with
depth discontinuities, texture-less areas, and half-occlusions. There is possible to filter
the images before processing a disparity map or filter the disparity map afterward to re-
move noise. Traditionally, pre-processing involves contrast enhancement, noise removal,
and deblurring to improve the image quality, which helps in future processing [17]. This
may include filters like median filtering, Wiener filter, and Histogram Equalization. After
creating the disparity map, the map can be further post-processed to achieve a less noisy
result. This may be smoothing-based or segmentation based approaches. Examples can be
Hough Transform, the Weighted Least Squares filter, a left-right consistency check, or a
cross-check-test. [26]

16

Chapter 3
Stereo matching

Stereo matching is the task of establishing correspondences between two images of the
same scene. The distance between matching points is used to create a disparity map.
Disparity maps are used in various applications with a broad range of input data, and the
depth estimated from the disparity can vary remarkably depending upon the properties
of the data [33]. Thus a broad range of algorithms has been developed for acquisition
corresponding points and subsequent for matching the points to estimate depth. In general,
the methods can be classified into local and global approaches. The local methods consider
pixels in a local neighborhood, while the global methods use the information presented in
the entire image. Global algorithms are primarily based on the optimization of a well-
behaved-energy function created form the hole image [22]. Because the energy function is
defined on all the pixels of the image, global methods are less sensitive to local ambiguities
than local methods [22]. In short, the global methods may achieve more accurate disparity
maps, while the local methods yield less computational cost. As the goal of this thesis is
to develop a system that can be implemented in real-time, the focus will be on the local
methods to achieve lower computational complexity.

There are several steps before outputting a disparity map. The steps may differ, but
usually, disparity map methods are implemented using a multistage technique, as shown
in Figure 3.1. The input images are obtained from stereo vision cameras. The image

Input
Images

Matching
cost

computation

Cost
aggregation

Disparity
selection

Disparity
refinement

Disparity
Map

Figure 3.1: Framework for Disparity map

pair will go through all the four steps sequentially before the output should desire to be a
noiseless disparity map. The disparity map can be either dense or sparse. Dense methods
attempt to reconstruct and use a 3D map for all the pixels in the images, while sparse
methods reconstruct and use only a selected set of independent points in the scene [10].

17

Chapter 3. Stereo matching

The two last steps in the flowchart, disparity selection, and disparity refinement are not the
focus area for this thesis, and thus only briefly discussed.

Local methods broadly prioritize the matching cost computation and cost aggregation.
The matching cost is usually optimized by selecting for each pixel the disparity with the
smallest value, a winner-take-all strategy, instead of the energy function used in global
methods. The methods are known to provide reasonable results with less computational
cost than global methods. Local methods are statistical methods, which can be subdivided
into two broad categories, namely correlation-based methods and feature-based methods.
Different algorithms in both of the two categories are explained in the following two sec-
tions.

3.1 Correlation based methods

Correlation based methods are one of the earliest and simplest approaches in stereo match-
ing. While new matching techniques have been proposed in recent years, correlation-based
on rectified images still has an advantage due to computational cost and fewer memory re-
quirements. The emphasis is on exploiting the neighborhood of a pixel to find a suitable
match on the same horizontal axis in the second image. The neighborhood is a predefined
block, or a matrix, therefore often termed block matching or area-based methods.

The neighborhood in the template image is matched with the neighborhood around
pixels on the same horizontal axis of the second image. Commonly the matching cost
aggregation is achieved by summing or averaging the matching cost in the surrounding
window centered by the current pixel. In Figure 3.2, the small reference matrix in the left

Figure 3.2: Block matching between two rectified images. The reference block in the left image is
matched with different blocks on the same horizontal line in the right image.

18

3.1 Correlation based methods

template image is tried matched to a matrix on the same horizontal line in the right image.
When searching the right image, the first block which is tried matched is located at the
same coordinates as the reference matrix; this is the rightmost matrix in the right image.
By moving the block to the left, the correct matching block is detected. The correct block
is defined as the one with the most similarity. The main difference between the correlation
based methods is the technique used to measure the similarity of image locations. The
mathematical equations are stated with the following nomenclature.

IL − Left image from the stereo setup
IR − Right image from the stereo setup
Wm −Matching window
d− Disparity measured in pixels

I(u, v)− Image pixel intensity at location u,v

3.1.1 Sum of Absolute Differences

Starting with Sum of Absolute Difference (SAD), which is the most common matching
criteria in stereo matching algorithms [44]. It is known for its simplicity and low execution
time. The SAD equation,

CSAD(d) =
∑

(u,v)∈Wm

|IL(u, v)− IR(u− d, v)|

calculates the absolute differences between two selected windows or matrices. The value is
used as an estimate of how similar blocks are; small values indicate similar blocks. Thaer
and Hussein [44] tested the algorithm with Ground Truth to calculate the percentage error.
With real and rectified stereo image pairs, the algorithm moves the reference window pixel
by pixel over the target windows horizontally aligned with the baseline and give varying
results depending on the window size. As stated in [44], error percentage and execution
time correlates. In general, smaller window sizes, like 3x3 matrices, gives a high error
percentage and short execution time. Moreover, a window size of, e.g., 27x27pixels takes
44 times as long to compute [44]. The choice of window size is thereby a compromise
between the accuracy of the result and the execution time. Choosing the right window
size depends on the scene, the computational constraints, and the size of the objects to be
detected. In Chapter 4, the result with various window sizes is displayed.

3.1.2 Sum of Squared Differences

Sum of Squared Differences, abbreviated SSD, is one of the most naive block-matching
algorithms. The algorithm is directly using the equation of sum of squared error, stated in
digital form;

CSSD(d) =
∑

(u,v)∈Wm

[IL(u, v)− IR(u− d, v)]2

19

Chapter 3. Stereo matching

The formula matches the intensity difference, pixel by pixel, between the two images.
Calculating SSD over a range of displacements followed by identifying the minimum SSD
value will, in theory, correspond to the best alignment offset. [27]

SSD subtracts pixel values in the two images and is used due to its simplicity and
relatively low computational cost. In general, SSD minimization is robust against slight
deformations but fails in the presence of stronger ones. Considering the algorithm only
measures the deviation of data points away from the mean value, it failure occurs when
the window contains two depth estimates for the same are, i.e. a depth discontinuity. In
the indicated scenario, it is impossible to find a unique correspondence leading to the
occlusions and disocclusions artifacts [3]. Therefore, SSD may struggle to give satisfying
results when the stereo setup captures multiple objects or objects on long distances.

3.1.3 Normalized Cross Correlation
Commonly Normalized Cross Correlation is known to yield better results than SSD [27].
NCC is one of the most common algorithms to compare the similarity between two ma-
trices. It can be the right choice when using stereo vision because it can compare metrics
with different value ranges. In other words, the algorithm can achieve acceptable results if
the left and the right camera have variations in brightness.

Assuming the stereo pair is aligned, the following equation is used for calculation:

CNCC(d) =
∑

(u,v)∈Wm

ÎL(u, v)ÎR(u− d, v) , Î(x, y) =
I(x, y)− Ī
‖I − Ī‖Wm

Where Ī (calculated only once) is the average intensity value of the pixels in the window
Wm. Summarizing, NCC yields good results due to its precision and the high robustness
to different illumination conditions between two cameras. The technique presents two
significant drawbacks. The first is that the calculation of depth is generally prone to errors
close to the surface discontinuities, and due to the underlying mechanism for correlation
is based on a series of multiplication operations, it is notorious for high complexity and
computational cost. Thereby it rarely meets speed requirements in real-time stereo vision
systems [42].

3.1.4 Rank Transform
In contrast to the algorithms presented, the Rank Transform is a non-parametric transform.
When non-parametric, the method relies on the relative ordering of local intensity values
and not on the intensity values themselves. Due to this, the algorithm can tolerate a sig-
nificant number of outliers and is thereby more insensitive to image noise and brightness
difference of stereo images.

In brief, RT measures the local intensity and is calculated based on the absolute dif-
ference between the rank of the reference matrix and the rank from the target matrix. RT
analyze the set of pixels in some square neighborhood surrounding the pixel (u, v). The al-
gorithm compares the intensities of a pixel, I(u, v), versus the pixels in the neighborhood.

20

3.1 Correlation based methods

Equation (3.1) present the algorithm, while (3.2) elaborates.

CRT (d) =
∑

(u,v)∈Wm

|RankL(u, v)−RankR(u− d, v)| (3.1)

where

Rank(x, y) =
∑

(i,j)(x,y)

L(i, j) , L(i, j) =

{
0 : I(i, j) < I(x, y)

1 : otherwise
(3.2)

When comparing pixels with its neighborhood, RT only depends on the sign, as shown in
(3.2), where the pixel intensity I(i, j) is the neighboring pixel to the matching pixel (x, y).

Compared with conventional area-based methods, RT is shown to be suitable for real-
time implementation due to less computational complexity [48]. Looking at conventional
normalized correlation methods, such as NCC, RT can result in improved performance
near object boundaries. Since the method is efficient in coping with brightness differences,
it is reasonable to consider the algorithm for outdoor use.

3.1.5 Census Transform

Equal to Rank Transform, the Census Transform is a non-parametric measure. It summa-
rizes local spatial image structure and is well known for its illumination invariant prop-
erties. For every reference pixel, CT computes a binary string, the census signature, by
comparing the grey values in its neighborhood. As shown in (3.3) the signature encodes
whether the neighbours (i, j) are greater or equal to the reference pixel (x, y). For a 3x3
neighborhood window, the census signature has a length of eight represented efficiently
in a computer by a single byte [11]. Subsequently, the Hamming distance is used in (3.4)
to compare the similarity between two Census Transformed Images, i.e., between the two
matching windows. The Hamming distance is calculated by and XOR-operator, counting
the number of 1’s in the resulting string.

Census(x, y) = Bitstring(i,j)∈Wm
(I(i, j) ≥ I(x, y)) (3.3)

CCT (d) =
∑

(u,v)∈Wm

Hamming(CensusL(u, v)− CensusR(u− d, v)) (3.4)

In computer vision, the Census Transform is frequently used in local stereo algorithms
due to its decent performance under challenging lighting conditions [36]. It is illumination-
robust and invariant under global monotonically increasing grey level rescalings- both
crucial advantages in modern stereo vision applications like autonomous vehicles.

21

Chapter 3. Stereo matching

3.2 Feature based methods
Compared to the correlation based methods using image windows, the feature-based meth-
ods use a sparse set of features. Image features include edges, corners, vertices of linear
structures, circles, prominent surface markings, and patches. Summarized, they can be
determined as an object, structure, or trends occupying an image. Feature detection al-
gorithms involve searching for features in each image which are suitable to match with
features in other images. The region around each feature is further described in a com-
pact and stable manner in the descriptor to make matching easier. The features are thus
matched with features in the second image by comparing the feature descriptors. Corre-
sponding feature pairs extracted from the stereo images are the ones associated with the
minimum distance often computed by a brute force- or nearest neighbors-technique.

Feature based matching is increasingly used, and technological developments is ad-
vancing from correlation block matching methods to the feature based matching tech-
niques [15]. Local features are robust to occlusion and clutter, can differentiate an ex-
tensive database of objects, and exploit different types of features in different situations.
Nevertheless real-time performance is achievable. In disadvantage,s the methods cannot
detect small changes in the stereo images and are therefore not suitable for images with no
boundary.

Feature matching is at the base of many computer vision problems, such as object
recognition or structure from motion, but still not widely used in stereo matching problems.
Traditionally it makes little sense to use feature matching procedures in stereo matching.
This is by reason of rectification, by rectifying the image pairs finding correspondences is
less prone to errors and more effortless with the correlation-based methods. A key part of
feature detection is to find what features one wants to detect, i.e., finding the reoccurring
trends of a specific desired feature. In the sequel, an introduction to some of the most
popular feature based methods.

3.2.1 Harris Corner Detector
Harris Corner Detector or Harris Operator is one of the earliest detectors proposed in 1988
by Harris and Stephens [9]. It is an intensity-based mathematical operator finding features
using corner descriptors in the extraction of features. A corner is the intersection of two
edges, a point where the directions of the two edges change. Hence, a corner can be de-
tected by high variation in the intensity gradient (in both directions). To detect corners
and edges, the Harris corner detection uses a combination of partial derivatives, Gaus-
sian weighting function, and eigenvalues from the matrix representation of the following
equation:

E(∆u,∆v) =
∑
(u,v)

W (u, v)[IL(u+ ∆u, v + ∆v)− IR(u, v)]2 (3.5)

The equation (3.5) is indirectly searching for corners. By sweeping a window W at posi-
tion (u, v) the variation of intensity is calculated by computing the intensity between the
window W (u, v) and the displacement window W (u+ ∆u, v + ∆v). The window func-
tion W (u, v) is either a rectangular window or Gaussian window, giving weights to pixels

22

3.2 Feature based methods

underneath. The rectangle window function gives weight 1 to pixels inside the window
and 0 otherwise. In practice, one can get a noisy response with a binary window function.

The objective is to determine the positions which maximizes (3.5). By representing the
Taylor expansion as a matrix, subsequently calculating the eigenvalues, weak and robust
corners are detected with a threshold value. Deriving the mathematical expressions step
by step:

E(∆u,∆v) ≈
∑
(u,v)

w(u, v)[IL(u, v) + ∆uILu + ∆vILv − IR(u, v)]2

=
∑
(u,v)

w(u, v)
[
∆u2I2Lu + 2∆u∆vILuILv + ∆v2ILv

]

=
[
∆u ∆v

]∑
(u,v)

w(u, v)

[
I2Lu ILuILv

ILuILv v2ILv

][∆u
∆v

]

=
[
∆u ∆v

]
M

[
∆u
∆v

]

For each window a scoreR is calculated for determining if a window is containing a corner
or not;

R = det(M)− k(trace(M))2 (3.6)

where

det(M) = λ1λ2

trace(M) = λ1 + λ2

Based on (3.6) the algorithm decide whether a region is a corner, edge or flat. When |R| is
small, λ1 and λ2 small, the region is flat. If R < 0 (λ1 >> λ2 or λ1 << λ2) the region is
a edge. And last if R is large, i.e. λ1 and λ2 are large and approximately equal, the region
is declared a corner. The threshold of R is determined in advance.

The Harris Corner Detector is simple to compute, relatively fast, and popular because
it is rotation and illumination invariant. However, it is non-invariant to image scale. De-
tecting corners on a specific captured boat will present different results depending on its
distance from the cameras(size in the picture). A detected corner in a high-resolution
picture may not be a detected corner if the image is scaled down.

3.2.2 SIFT
SIFT was proposed in 2004, is widely used and the basis in many subsequently developed
features [23]. The keypoint detector and descriptor have proven remarkably successful in
several applications using visual features. The method can be comprehended in four stages

23

Chapter 3. Stereo matching

briefly explained in order:

Scale-space extrema detection
In contradiction to the Harris Corner Detector, SIFT is scale-invariant. This is accom-
plished by detecting keypoints under various image sizes. By successively reducing the
image size by combining smoothing and subsampling, the well-known pyramid represen-
tation is obtained. Briefly explained SIFT searches over all scales and image locations

Figure 3.3: A pyramid representation is obtained by successively reducing the image size by com-
bined smoothing and subsampling

to find the local maxima across scale and space. Due to speed constraints, the algorithm
is implemented using Difference of Gaussian, which is an approximation of Laplacian of
Gaussian. The DoG identifies potential interest points, invariant to scale, and orientation.
Outputting a list of (u, v, σ) values, which is the pixel position at the scale σ.

Keypoint localization
At each potential interest-point detected, a Taylor series expansion of the scale space is
fit to get a more accurate location and scale. Additionally, a concept similar to the Harris
Corner Detector is applied to discard edges. In short, SIFT selects keypoints based on a
measure of their stability; the remaining keypoints are the strongest interest points.

Orientation assignment
Based on local image gradient directions, orientations are assigned to each keypoint lo-
cation. The gradient magnitude and direction of a keypoint is calculated by taking the
neighboring pixels. This is accomplished to achieve invariance to image rotation. All the
keypoints are at the presence transformed relative to the assigned orientation, scale, and
location, providing invariance to these transformations.

Keypoint descriptor
The final stage generates the descriptor by measuring the local image gradients at the se-
lected scale. A total of 16x16 pixels around the keypoint is taken and divided into 16
sub-blocks. At each sub-block, eight orientations are created, represented as a histogram
(vector) to form keypoint descriptors. Finally, the eight vectors are assembled to a 128 di-
mension vector, normalized, and the values thresholded. Thus transforming the vector into

24

3.2 Feature based methods

a descriptor allowing significant levels of local shape distortion and change in illumination.

The method is computationally expensive and hard to comprise in a section for a com-
prehensive explanation look into the paper written by the developer Lowe [23]. It is known
to be highly expressive and thus suitable for applications with tracking and recognition.
However, it imposes a significant computational burden for real-time systems. It is worth
noticing that it is patented, and thereby, permission is needed to use SIFT in commercial
algorithms (free for academic and research purposes) [30].

3.2.3 SURF

SURF was introduced as a speeded-up version of SIFT in 2006 [2]. It is a rotation- and
scale-invariant descriptor, with the main interest in its fast computation of operators. Two
get an explicit explanation of the algorithm, it is recommended to look into the paper writ-
ten by the creators [2]. The method is separated into two steps; feature extraction and
feature description.

Feature Extraction
SURF approximates Laplacian of Gaussian with Box Filter to obtain scale-space; in com-
parison, SIFT approximates using DoG. The Box Filter is computationally agile when
using the Integral Image. For selecting location and scale, the method makes use of the
determinant of the Hessian matrix.

H(f(u, v)) =

[
∂2f
∂u2

∂2f
∂u∂v

∂2f
∂u∂v

∂2f
∂v2

]

With x = (u, v), the Hessian matrix is defined:

H(x, σ) =

[
Luu(x, σ) Luv(x, σ)
Luv(x, σ) Lvv(x, σ)

]
By approximating the second-order derivative with integral images, SURF reduce the

computation time compared to SIFT. In Figure 3.4 a box filter with size 9x9 is used to

(a) Lxy (b) Lyy

Figure 3.4: noe

approximate the second order-derivative in the given scale σ. This gives the determinant:

25

Chapter 3. Stereo matching

det(Happrox) = DuuDvv − (wDuv)2

To make it scale-space invariant, SURF uses the same technique as SIFT.

Feature Description
To make the descriptor invariant to rotation, SURF uses Wavelet responses in horizontal-
and vertical direction forming it into a vector with a dimension of 64 bits. It is worth notic-
ing that a SURF-descriptor takes half the memory-space compared to a SIFT-descriptor,
and this is part of the reason why SURF yields faster computation time.

SURF is relatively fast and can be implemented in real-time applications, but as SIFT,
the method is patented.

3.2.4 ORB
Oriented FAST and Rotation Aware BRIEF (ORB) was developed at OpenCV labs in 2011
as an efficient and viable alternative to SIFT and SURF. Both the latter are patented; thus
ORB was mainly conceived as an alternative free algorithm. The developers’ study is ex-
plained in their article [38]. The ORB feature builds upon the FAST keypoint descriptor
[37]. Selecting the most robust features using FAST or Harris response, and finds their
orientation using first-order moments. The descriptors are computed using BRIEF [4].
The algorithm is a fusion between keypoint detectors and descriptors, and the mathemat-
ical overview can be comprised in steps: The first step is a simple measure of a corner
orientation, namely the intensity centroid. The moments of a patch are defined as,

mpq =
∑
(u,v)

upvqI(u, v),

, with the center of mass for the patch, i.e., the centroid C.

C =

(
m10

m00
,
m01

m00

)
A vector is constructed between the centroid and the corner’s center. SImple trigonometry
gives us the orientation of the patch θ.

θ = arctan2(m01,m10)

The orientation is obtained to rotate the patch to a canonical rotation, making it ro-
tation invariant. The second step include an improved BRIEF algorithm taking all the
keypoints detected from the FAST keypoint descriptor and converts them into a binary
feature vector representing objects. By using a Gaussian kernel, the binary descriptors are
made insensitive to high-frequency noise.

ORB is known for being resistant to noise and is widely used in robotics because it is
proven to be an efficient alternative to SIFT. It is also, in selected articles, concluded to be
more efficient than SURF, but this seems to be dependent on the application and use [35].
However, Patel et al. [31] demonstrate that in low light conditions, the number of detected
keypoints decreases drastically.

26

3.2 Feature based methods

3.2.5 Descriptor Matching
After extracting local feature descriptors in both the images by one of the methods de-
scribed in Section 3.2 one has to match the features to find corresponding keypoints for
creating a disparity map. There exist various distance measures to compare the keypoints,
and the choice depends on the used feature extractor. The matching methods later used are
briefly explained throughout this section.

Brute-Force Matcher

Brute-Force matcher (BF) is known to be simple, and goes through all the descriptors in
one image and tries to match it with all the descriptors in the second image [28]. The
closest descriptor returned is the one based on some distance calculation. The distance
measurement used for SIFT and SURF is usually Euclidean distance (L2-norm), due to
both the methods represent their descriptors as vectors (histograms) of an oriented gradi-
ent. For binary descriptors like the ones produced by ORB, the Hamming distance should
be used.

FLANN Matcher

Fast Library for Approximate Nearest Neighbors Matcher performs an efficient matching
by using clustering and search in multi-dimensional spaces [28]. It was created by Muja
and Lowe [29] in 2009 because there existed no efficient nearest neighbor matching in
high-dimensional spaces. FLANN includes a collection of algorithms optimized for com-
puting the nearest neighbors in large datasets. However, the creators’ article [29] makes
a comparison of the various algorithms and found that the overall best performance was
achieved with multiple randomized k-d trees.

The classical kd-tree algorithm was proposed in 1977 by Freidman et al., [8]. Because
it did not perform in higher dimensions, an optimized version is proposed and implemented
in the library of OpenCV [29].

FLANN uses the same distance measurements as the BF-matcher. Usually, a FLANN
based method is preferred with images with high resolution. While the Brute-Force-
matcher tries every possibility and is guaranteed to find the best neighbor, the FLANN
matcher finds an approximation of the nearest neighbors. FLANN finds suitable matches,
but it may not be the best possible one.

27

Chapter 3. Stereo matching

3.3 Comparison
In literature, there is a limited amount of papers directly comparing correlation-based and
feature-based methods. Therefore, they are comprised in two tables, where every algo-
rithm is ranked in increasing order with the number 1 as the best. The comparisons are
based on the literature read throughout this chapter.

Method Computational Cost Accuracy

SAD 1 4
SSD 2 5
NCC 5 3
RT 3 2
CT 4 1

Table 3.1: Correlation based methods

In Table 3.1, the correlation-based methods are compared, equivalent the feature based
in Table 3.2. By examining the tables, one observes that there is a compromise between the

Methods for extracting and creating descriptors
Method Computational Cost Accuracy

HCD 1 4
SIFT 4 1
SURF 3 3
ORB 2 2

Method for matching descriptors
Method Computational Cost Accuracy

BF 2 1
FLANN 1 2

Table 3.2: Feature based methods

accuracy and the computational cost. Certainly, one strives for the most accurate algorithm
with the less computational cost. Based on this, the best correlation-based methods, in
theory, will be SAD, RT, and CT. Because there are most research and articles on SAD
and CT, they are the two expected to give the best result.

For the feature-based methods, ORB scores best considering both computational cost
and accuracy. It is the most recently developed algorithm and was published as an efficient
alternative to SIFT and SURF. Therefore ORB is expected to yield the best results overall.
For the algorithms matching descriptors, FLANN is anticipated to be preferred due to the
high number of pixels and thereby many descriptors to match.

28

Chapter 4
Implementation

4.1 Hardware
The sensors used, the chosen setup, and the calibration is the foundation for understanding
the application’s potential and limitations. Understanding the key strength and weaknesses
of the setup and how the real world is represented in the sensor data is, therefore, of great
importance. This chapter presents the sensors used, how the application is set up, the
calibration, and how the algorithms are implemented.

4.1.1 Camera

Both of the cameras used in the stereo setup is delivered by FLIR, and the camera
model is called Blackfly S GigE. The selected lens was bought from Edmund Optics and
is in the C Series. The most relevant specifications are written in Table 4.1, for further
reading, see the suppliers’ website; Link Camera specification, Link Lens specification.

Reading from Table 4.1, the sensor uses the Gigabit Ethernet or ”GigE” interface,
which is known to combine multiple cameras easily [1]. It is the most common interface
for industrial image processing, and offer the possibility for receiving power through the
GPIO pins or with Power over Ethernet. The sensor type is CMOS, and it utilizes a global

29

https://www.flir.com/products/blackfly-s-gige/?model=BFS-PGE-50S5C-C
https://www.edmundoptics.com/p/85mm-c-series-fixed-focal-length-lens/14947/

Chapter 4. Implementation

Camera specification
Frame rate 24 FPS (min. 1 FPS)
Resolution 2448 x 2048
Pixel Size 3.45µm
Sensor Sony IMX264, CMOS, 2/3”
Readout Method Global shutter
Interface GigE
Operating Temperature 0◦C to 50◦C
Exposure Range 13µs to 30s
Dimensions (W x H x L) 29mm x 29mm x 30mm

Power Requirements Power over Ethernet (PoE); or via
GPIO

Lens specification
Focal Length 8.5mm
Type Fixed Focal Length Lens

Table 4.1: Camera and Lens spesicifation

shutter to capture an entire frame all at once. Since the cameras are to be deployed on
a moving vessel, this enables capturing all of the motion simultaneously, resulting in no
rendering of slanted lines, which should have been straight.

The sensor format is used to determine the field of view. Together with the lens spec-
ification, it was calculated to be 59.1 degrees; see Section 2.2.2. Combined with the high
resolution, the camera will be able to detect and recognize objects on farther distances. In
disadvantage, the number of pixels is tremendous and thus also the computational burden
when iterating through the pixels in stereo processing. Moreover, the pixel size is micro-
scopic, which gives rise to noisier images in case of little light. Considering that the image
processing will have a notable higher runtime than 1

24 seconds, the frame rate is acceptable
even if one decides to lessen the image resolution.

The focus and ”iris” of the sensor are manually adjusted on the lens, and can later
be fine-tuned in software. The camera supports color images, but considering the stereo
matching algorithms is intensity-based, the camera is set to capture greyscale images to
maximize the frame rate. Greyscale images are the same as intensity-based images. By
summing all the colored layers, R+G+B

3 , a color image is transformed into greyscale.

The cameras are not waterproof, and together with the high operating temperature, it
is necessary to make a waterproof and isolating case for protecting the cameras.

In consideration of stereo matching, it is important to set the manual exposure and
focus of the cameras approximately equal. This will reduce noise when comparing corre-
sponding pixels in the image processing part. Related, it is also essential to synchronize
the capturing of the two cameras, so images will appear in the correct order when post-
processing.

30

4.1 Hardware

4.1.2 Synchronized Capture
Synchronized capture is when two or more cameras take pictures at ”the same time.” With
the cameras provided, there are three ways to achieve this. Either trigger both cameras at
the same time with code, use an external hardware trigger, or create a physical connection
between the cameras linking their GPIO pins. The latter seemed to be the best choice
due to less hardware, and it yields better results than code-triggering. To achieve this, a
master-slave architecture is implemented, where the left camera triggers the right. When
the master camera starts capturing an image, a strobe occurs, and this is used to trigger
the second camera. The frame rate of the secondary camera will thus follow the master
cameras frame rate. To implement this, a physical connection linking the cameras GPIO
pins is used.

Figure 4.2: GPIO connection circuit

A sketch of the implementation can be seen in Figure 4.2. The master’s output voltage
pin, 3.3 V, is connected to the secondary’s input voltage pin. Since the optoisolated output
is used, the strobe signal from the master camera needs to be strengthened. This is achieved
by using a pull-up resistor. A 10KΩ resistor is connected to the master camera’s non-
isolated output voltage and its optoisolated output to the secondary camera’s non-isolated
input. Next, the master’s ground is connected to the secondary’s ground. The optoisolated
ground on master is also connected to the secondary’s ground. [6]

Figure 4.3: GPIO connection circuit

Two hirose-cables were connected to each camera, as described above. To get the
length needed between the cameras’, an extension was added between the cables. A heat

31

Chapter 4. Implementation

shrink tube was added over the connections to make it waterproof, see Figure 4.3.
Next, the cameras need to be configured. This is done by using the demo program

SpinView available with Spinnaker SDK, FLIR’s GenICam3 API library [6]. For the mas-
ter camera, the 3.3 V line is enabled. For the secondary camera, the trigger source is set
to the input voltage pin, and the Trigger mode is set On. The trigger overlap is set to Read
Out, which means that the camera will start capturing as soon as the image area has been
cleared.

4.1.3 Stereo setup

The fixation point was initially chosen to 100 meters to get a sense of the requirements
needed for implementing stereo vision on long-distances. In lack of large enough baseline-
setup, the maximum baseline achieved where 1.753 meters, giving an optimal detection
on 52meters by the 1/30-rule. This was the initial setup, but because the stereo setup was
going to be used in a complementary report calibrating the stereo cameras together with
a LiDAR, the setup had to be changed optimized to a shorter distance. The new optimal
fixation point for the stereo setup was hence set to 4 meters.

Figure 4.4: FOV stereo setup angled 1.891 degrees

Given a fixation point on 4 meters, the rule of thumb suggests a baseline on 13 cm.
Because it was desired to angle the cameras for minimizing the estimated depth error,
hence the baseline was chosen to 26cm. With a baseline on 26cm and a fixation point on

32

4.2 Software

4m, the camera’s vergence angle is calculated by Pythagoras:

arctan
26/2

400
= 1.861◦

The angled system is theoretically shown in Figure 4.4, the two black lines in the middle
imitate the fixation point of each camera, meeting at 4 meters. The real stereo system is

Figure 4.5: Camera setup

shown in Figure 4.5 with the angle and baseline fixed to the end resulting setup. Because
the cameras have a wide FOV, the blind spot is only 22cm horizontal distance, depending
on the accuracy of the camera’s angle in practice.

The setup of the system is designed to easily be adjusted, using screws underneath to
tighten when the desired baseline and angle are achieved.

4.2 Software
The software on the autonomous ferry Milliampere is built upon Ubuntu 16.04 LTS and
the open-source robotic framework Robot Operating System (ROS). Hence, everything
used is selected to be able to integrate with the already running system.

4.2.1 ROS
ROS is a meta-operating system for robots, providing device drivers and communication
between multiple processes. It is known for hardware abstraction, low-level device con-
trol, and message-passing between processes. The ROS runtime graph is a peer-to-peer
network of processes that can be run on multiple machines. This allows the stereo-system
to be developed in a process on a single machine for later be integrated with the rest of the
system by just redirecting messages.

33

Chapter 4. Implementation

ROS already had an implemented driver for the camera used; it can be found here:
Github camera driver. The chosen driver is implemented in C++ and was the one with the
least issues and most recent updates.

4.2.2 OpenCV
All the software implemented is based on the third-party library OpenCV (Open Source
Computer Vision Library). It is a library for computer vision and machine learning appli-
cations, including both classic and state-of-the-art algorithms. The library has interfaces
for MATLAB, Python, and C++, where the latter was used to implement the stereo match-
ing and 3D reconstruction. OpenCV in C++ generally yields more functionality and more
parameter options.

4.2.3 MATLAB
MATLAB is numerical computer software to analyze data, develop algorithms, and cre-
ate models and applications. The Computer Vision Toolbox has built-in apps for both
monocular camera calibration and stereo calibration. Both of the apps are used during the
calibration, and they implement the calibration algorithm by Zhang’s method described
in Section 2.1.2. By uploading images of a calibration pattern in different orientations,
the app calibrates and provides tools for evaluating and improving the calibration. An
estimation of the intrinsic, extrinsic, and lens distortion parameters is outputted.

4.3 Calibration
Precise calibration is required for 3D interpretation of images and reconstruction of world
models. When calibrating on longer distances, it was found to yield the best result calibrat-
ing the intrinsic and extrinsic parameters in two separate sessions. Therefore monocular
camera calibration app first was used to calibrate the intrinsic parameters for each cam-
era, subsequently using the stereo calibration app to obtain the rigid body transformation
between the two cameras. This achieves better results for the intrinsic parameters of the
system because the monocular calibration can be done at a shorter distance.

Both applications use the same workflow:

Prepare
Images

Add
Images Calibrate Evaluate Improve Export

Further is an explanation of the stereo calibration done with the resulting parameters at the
end.

4.3.1 Prepare calibration
When the calibration parameters are calculated, the accuracy of the result depends on the
image resolution and the precise measurement of the calibration object. The calibration
object used is a 5x7 squared checkerboard with each square measured to 10.1cm. It is

34

https://github.com/neufieldrobotics/spinnaker_sdk_camera_driver

4.3 Calibration

printed on aluminum to make the board even and unbroken minimizing imperfections and
inaccuracy. When capturing images, it is vital to keep the calibration object in focus and
keep the camera parameters constant. Changes in focus or zoom will result in miscalcu-
lated focal length.

MATLAB states that the checkerboard should fill at least 20 percent of the captured
image, and one should use at least 10 to 20 images of the calibration pattern at different
angles and positions. This was achieved in the monocular calibration. Some of the images

Figure 4.6: Poses of checkerboard

used in the monocular calibration are displayed in Figure 4.6. It is essential to capture
images of the pattern at different positions and orientations. Additionally, the calibration
board must be captured as a whole to account for the lens distortion.

When calibrating the extrinsic parameters in the stereo calibration app, the pre-computed
fixed intrinsic parameters from the monocular calibration were loaded. The calibration im-
ages now should be captured at a distance roughly equal to the operating distance [25], i.e.,
4 meters away from the camera. This is not practical taking into account that the checker-
board should fill at least 20 percent of the captured image [25]. Furthermore, it is crucial
to capture the stereo images at the same time, and the pattern has to be fully visible in both
images. To compensate for the size of the pattern, more than 400 image-pairs were loaded
into the app to cover the different poses. By calibrating several times to improve the error,
the image-pairs were reduced to be 275.

35

Chapter 4. Implementation

4.3.2 Evaluation
There are several ways to evaluate the calibration accuracy. All the following methods
explained were examined to improve the result further and re-calibrate.

Examine reprojection errors

The app displays the calibrated images with green circles around the corners detected in
the image, and red cross for the reprojected 3D points. The reprojection error is measured
in Euclidean distance in pixels and is the distance between the center of a green circle and
the corresponding red cross. In Figure 4.7b, one can see that both the green circle and the

(a) Picture used in calibration (b) Zoomed into one of the corners

Figure 4.7: The distance between the red cross and the green circle’s origin is the reprojection error

red cross is within the same pixels, meaning the reprojection error is less than a pixel. It is
preferred to have a reprojection error of less than one pixel.

The mean reprojection error per image is plotted as a bar graph. In figure 4.8, the
final result of the reprojection error is displayed. The overall mean error, shown as the
horizontal stippled line, is 0.08 pixels. The highest spikes correspond to images that ad-
versely contribute to the calibration error. In theory, some of the most significant spikes
should have been removed. However, as the spikes correspond to rotated images and im-
ages captured in corners of the image plane, they need to remain to cover all variations of
rotation and translation needed. The low mean reprojection error and the approximately
equal error between corresponding image pairs makes this an overall satisfying result. The
reprojection error alone is not a trusted measure to verify the accuracy of the calibration.
Because if all the pictures where taken in the same region, this would have minimized
the reprojection error, but given erroneously results when rectifying and undistorted the
images after the calibration.

Examine Extrinsic Parameter Visualization

MATLAB’s 3D extrinsic parameter visualization was used to discover errors in the cali-
bration. By plotting the camera-centric view of the checkerboard’s position in each image

36

4.3 Calibration

Mean Reprojection Error per Image

50 100 150 200 250

Image Pairs

0

0.05

0.1

0.15

0.2

0.25

0.3
M

e
a

n
 E

rr
o

r
in

 P
ix

e
ls

Camera 1

Camera 2

Overall Mean Error: 0.08 pixels

(a) Reprojection Error Stereo Calibration

Mean Reprojection Error per Image

50 100 150 200 250

Image Pairs

0

0.05

0.1

0.15

0.2

0.25

0.3

M
e

a
n

 E
rr

o
r

in
 P

ix
e

ls

Camera 1

Camera 2

Overall Mean Error: 0.08 pixels

(b) Zoomed

Figure 4.8: Reprojection Error Stereo Calibration

pair.

Figure 4.9: Camera Centric visualization of the checkerboard’s position in the captured images

In Figure 4.9, the location of the calibration pattern is plotted in the camera’s coordi-
nate system. The cameras are displayed in dark blue and red. This is used to check if there
are enough pictures for the checkerboard to cover the area and see if the relative positions
match the expectations. New images were added to the calibration, and redundant ones
removed to improve the calibration further.

37

Chapter 4. Implementation

View undistorted image

The distortion estimation might be incorrect even if the reprojection errors are low. This
can appear if the checkerboard covers only some regions of the image. If the undistorted
images seem wrong, e.g., the checkerboard is curved or unrealistic images, one can change
the number of parameters of radial distortion. The cameras in use have barrel (positive
radial) distortion; see Section 2.1.1, which usually yields the best result with only two
coefficients. The result after undistorting the images from both cameras is shown in Figure

(a) Distorted left camera (b) Undistorted left camera

(c) Distorted right camera (d) Undistorted right camera

Figure 4.10: Before and after calibration of each camera

4.10.

Show Rectified Images

One of the primary goals of calibrating the stereo camera is to be able to row-align the
image pair. Looking at the rectified images is thus a reasonable basis for evaluating the
calibration. The rectified images should find the same world point in both images along the

38

4.3 Calibration

same line. This can be measured by eye. This is an important step, even if the reprojection
errors are small. If the images cover too small of an area, the distortion estimation might
be incorrect even though the reprojection error is small.

Figure 4.11: Rectified images after stereo calibration

Figure 4.11 shows the final result after calibrating and rectifying the images. As shown,
the distortion is removed, and the colorful lines match points in the two views.

4.3.3 Calibration parameters

The intrinsic parameters for the left and right camera were calibrated to be:

KL =

1229.4± 0.5 0 618.4± 0.3
0 1228.7± 0.5 536.7± 0.2
0 0 1

 (4.1)

Radial distortion coefficients for the left camera:
k1 = −0.3891± 0.0005 , k2 = 0.1732± 0.0011

The mean reprojection error for the left camera: 0.081

39

Chapter 4. Implementation

KR =

1229.0± 0.7 0 640.1± 0.2
0 1228.4± 0.7 533.1± 0.2
0 0 1

 (4.2)

Radial Distortion coefficients for the right camera:
k1 = −0.3875± 0.0005 , k2 = 0.1681± 0.0009

The mean reprojection error for the right camera: 0.081

The mean reprojection error does not say much alone, but because of the high reso-
lution of the cameras, the error is acceptable as long as it is below one pixel. In theory,
the intrinsic- and radial distortion parameters for the two cameras should have been equal,
but because the screw-lenses have to be set manually to the desired position, it is expected
to be some differences. The parameters for the focal length are almost identical, but for
the principal point on the x-axis, the values are noticeable divergent. Bear in mind that
the principal point is defined to be the image position where the optical axis intersects
the image plane. With this in mind, the principal point will change if the camera setting
changes, e.g., changing the focus or zoom. Hence, a small distinction in the rotation of the
two lenses will yield different results for the principal point’s parameters.

It should be mentioned that both the skew parameters are set to 0 in MATLAB before
calibrating. It is possible to allow for a non-zero skew, but with newer cameras, the skew-
parameters is usually negligible. In other words, an extra free parameter to calibrate in
most cases only give rise to more noise in the calibration. It was tested to calibrate with
the skew parameters as well, but it did not give any noticeable enhancement to the result.

Extrinsic parameters for the stereo setup is given relative to the left camera. Hence,
the rotation matrix and translation vector is given from the right camera relative to the left
measured in mm:

R =

0.9986 −0.0000 −0.0530
0.0001 1 0.0006
0.0530 −0.0006 0.9986

± ε < 10−5 (4.3)

t =
[
−260.51± 0.05 2.24± 0.07 6.79± 0.02

]
(4.4)

For the stereo setup, the x-axis in the coordinate system is defined to be with the baseline,
positive direction from the left camera to the right, y-axis pointing downwards, and z is
the depth straight forward from the left camera. In the translation matrix, this means the
stereo cameras are 260.51mm apart, it was measured by both ruler and a laser measure
to be approximately 260mm. For the stereo setup, it was never made any effort to make
the cameras be perfectly symmetrically aligned, thus it is reasonable to accept that the
right camera is 2mm above and 7mm in front of the left camera considering they are both
angled.

The rotation matrix converted to Euler angles, in degrees, corresponds to [x : −0.0343, y :
−3.0381, z : 0.0019]. As expected, the change is greatest around the y-axis. In theory, it

40

4.4 Implementing stereo matching algorithms

should have been 1.89 ∗ 2 degrees, but the angles were adjusted by hand using a protrac-
tor. Hence some error is expected. The rotation around the x- and the z-axis is negligible
compared to the inaccuracy of the setup.

Overall, both the intrinsic- and extrinsic parameters are more accurate than expected-
especially the extrinsic, which was calibrated using a checkerboard limited in size. In
practice, the checkerboard should have been > 5.3 meters in width when calibrating the
extrinsic parameters.

4.3.4 Calibration on long distance

The calibration was first done at the initial stereo setup, calibrating on 10meters for test-
ing purposes. Since the checkerboard only measures 0.505x0.707 meters, it was hard to
capture the checkerboard at all positions to yield satisfactory calibration parameters. This
includes a significantly higher amount of calibration pictures, making it difficult and te-
dious to evaluate the calibration. Hence, when calibrating on longer distances, one should
try to obtain a bigger calibration object. Considering the camera’s field of view, the pre-
ferred calibration object on 100 meters should exceed 130 meters in width. The calibration
object does not have to be a checkerboard, as long as the object has known measures.

4.4 Implementing stereo matching algorithms

Before implementing any of the stereo matching algorithms, it was written code to undis-
tort, rectify, and histogram equalize the stereo image pair. The rectifying and un-distorting
is a pre-request before using the correlation-based methods. The histogram equalization
was applied for contrast adjustment to improve the contrast in the images by stretching out
the intensity range of the image.

As a starting point, built-in algorithms were tested, but a lot of the open-source and
built-in algorithms are poorly documented. This made it hard to compare due most of
the algorithms used a lot of pre-filtering and post-filtering to yield better results. Some
were also optimized in threads to achieve better runtime on either GPU or CPU. This in
mind, the focus was adopting and writing code, which could be explained. Preferably code
in which one can say what is happening in the background and with input parameters to
tune. This yields a good understanding of the different algorithms used and further easier
to separate which could be a better choice in a difficult scene. The algorithms are thus
not optimized considering running-time, but some sense of the running time is achieved.
However, most of the already inbuilt functions were tested, and usually, they seem to yield
similar results even if it is hard to explain precisely why and what they use in the source-
code.

The result and discussion are written in a combination of the sense of running times
achieved, together with resources online. It is also worth noticing that today’s computer
vision programs are generally optimized for pictures around 400x400 pixels, which is
today’s state of the art computer vision processing. So, as expected, some of the algorithms
used several minutes, up to hours to compute, and thus, the input images had to be down-
scaled. This is not an optimal solution considering detecting objects on farther distances

41

Chapter 4. Implementation

will capture only a few pixels and may ”disappear” when down-scaling. As a solution, one
should, for example, crop the images around to the desired area.

As already mentioned, most of the code is implemented in C++ using the OpenCV,
using MATLAB to plot some of the figures.

4.4.1 Correlation based methods
Correlation based methods directly depend on the window size chosen. In general, a
smaller window will yield good precision and more details but is sensitive to noise. On the
other hand, a larger window will give robustness to noise, but both precision and details
are reduced, and hence the resulting disparity map will become more blurry. For a good
stereo correspondence, one should aim that every pixel will find a good match in the other
image, and if two pixels are adjacent, they usually will hold the same disparity. The latter
is tuned by setting the maximum and minimum disparity in the scene to filter out some of
the wrong matches, i.e., removing noise.

Sum of Absolute Differences and Sum of Squared Differences

SAD seems to be the most used algorithm considering the amount of code online, both
directly implemented but also optimized code. However, most of the optimized code was
not well-documented. Thus, both SAD and SSD were implemented using direct code with
many for-loops. So the code is not optimized for running-time. After comparing, they
were both tested with built-in optimized code to see the performance increase and further
using a filter to get a more usable result considering triangulation. Different windows
were tested to achieve the optimal matching window for the scene used for testing, see
Figure 5.6. Bear in mind that variation in the window size is a compromise between the
computation cost and accuracy.

Normalized Cross Correlation

The normalized cross correlation was as well implemented using both direct code and
more in-built ones with more or less documentation. In total, NCC is associated with
a high computationally cost, and there were not found any code which could have the
potential to run in real-time.

Rank Transform

It was implemented by first applying the rank transform to the image with various window
sizes and further matching the two rank images with the SAD directly implemented. A
quadratic window was applied in both cases.

Census Transform

Equivalent to RT, the census transform was first applied with the census transform with
different window sizes and accordingly matched with window sizes of various quadratic
sizes.

42

4.4 Implementing stereo matching algorithms

4.4.2 Feature based methods
For the feature-based methods, they are all implemented with two different approaches.
First, by using the four methods to both detect keypoints and make descriptors to match.
The methods are designed to find points of interest, keypoints, which are robust, re-
identifiable points. The number of keypoints found can be tuned in the algorithms, but
even maximizing this parameter will usually yield a sparsely distributed disparity map,
i.e., few pixels to be matched. This results in a sparse 3D reconstruction, which can be
hard to read, hence the second approach was tried. The second approach sets all pixels as
keypoints for further describing the keypoints (creating descriptors) with the four feature-
based algorithms respectfully. For both the approaches, the descriptors are matched using
both BF and FLANN respectfully. Based on 3.2.5, FLANN is implemented using multiple
randomized k-d trees.

Because the descriptors are based on local textures, the matches do not necessarily
follow any global geometrically consistency. This in mind, a threshold test is applied to
remove mismatches. By applying an adjusted cross-check-test, one can remove disparities
(distances) with greater or less distance than desired. The cross-check-test is applied with
different ranges for filtering out descriptor-matches-lengths to remove matches that are
less than the minimum or above the maximum range. This can remove some of the noise
constructed in images with repetitive patterns or sophisticated structures, i.e., filtering out
some of the erroneous matches.

Harris Corner Detector

HCD was implemented in both Matlab and C++ using the OpenCV library. Somehow the
algorithm in C++ managed to detect some more corners, even though they are both based
on the same library. The most relevant parameter to tune is the quality or the threshold R
for the corners detected; see Section 3.2.1. Further, while matching, the threshold for how
different a corner can be to be considered a match is tuned.

SIFT

It is implemented using the built-in SIFT class in OpenCV. As described above, the most
relevant parameter to tune is first the number of keypoints to detect and, subsequently, the
cross-check-test to filter out mismatches. For the matching, Euclidean distance is used as
distance measurement, as described in Section 3.2.5. The other inbuilt parameters in the
SIFT class were also tried tuned to yield the best result in beforehand. This includes the
number of octaves (layers in each pyramid image, the number of pyramid images can not
be tuned), the Gaussian filtering used, and the thresholds for an edge and for filtering out
features.

SURF

Similar to SIFT, but here the threshold for the Hessian matrix must be set instead of the
edge threshold. In addition, the number of pyramid images can be tuned. There is also
a choice to use a descriptor of size 128, but this was not used because it makes it almost
equal to the SIFT algorithm, reducing some of the improved running-time.

43

Chapter 4. Implementation

ORB

For the ORB algorithm, the most considered parameters to tune are the number of key-
points found and the ratio while doing the cross-check-testing. The ORB-class has inbuilt
functions to tune the pyramid scaling factor, the number of pyramid images, the threshold
for edges. Because the ORB descriptors are binary, the Hamming distance is used for
comparing matching descriptors.

44

Chapter 5
Experiment

An accurate disparity map achieves a better depth estimate from the triangulation. It is
possible to filter the image before processing the disparity map or filter the disparity map
afterward to remove noise and achieve a smoother disparity map. Finding the right filter
is time-consuming, and there exist numerous filters to obtain an optimal result. Besides,
every algorithm will usually perform better with different types of filters, depending on
the scene. With this in mind, filters are not used to simplify the comparison between the
different algorithms. Filters are another research area, and choosing the right one for the
application is something that should be done after choosing the best algorithm. However,
keep in mind that every disparity map can be improved by applying filters to obtain better
triangulation. As an example of the result which can be obtained, the first algorithm’s
disparity map are filtered.

Figure 5.1: Image pair directly from the camera

The two fresh images captured directly from the cameras is shown in Figure 5.1. Be-
fore applying any of the matching algorithms, the picture pair have been undistorted and
rectified, resulting in two images with 1069x1242 pixels respectfully. The two images used
in the stereo matching is shown in Figure 5.2. This is the image pair after undistorting, rec-
tifying, and histogram equalization. When the disparity maps are displayed- areas with no

45

Chapter 5. Experiment

Figure 5.2: Image pair used in stereo matching

matching region, the leftmost in the left image and rightmost in the right image, is cropped.

5.1 Ground Truth
Ground Truth refers to the accuracy of the data collected. In depth-estimation, the ground
truth is the real depth and tells us how accurate the depth estimation is. In the experiment
of comparing disparity maps obtained from different algorithms, a fixed scene is created
as the Ground Truth. The scene contains three objects with distinctive structure, located at
separate distances to try to isolate them in the image processing. The arena and the three
objects location is depicted in Figure 5.3.

Figure 5.3: Scene used as Ground Truth

By the camera setup, the fixation point is determined to be 4 meters. The objects were
placed at approximately 2, 4, and 6 meters, respectively. The distance to the background,
or wall, was measured to be 9.84m. The scene is measured by a LiDAR placed in between
the two cameras. The uncertainty in the measurement and the LiDARS position relative to
the cameras is approximately 1 cm. The LiDAR measured the three objects to be placed
at 1.85, 3.95, and 6.03 meters average.

The surface structure of the objects is chosen with the purpose of matching the cor-
responding pixels easier. The feature-based methods require corners and changes in the

46

5.2 Correlation based methods

pattern to be able to detect keypoints. Likewise, the correlation-based algorithms perform
poorly when matching images with no changes in intensity. The background was mainly
chosen to compare how the stereo matching algorithms manage such a cluttered back-
ground. In a real-world scenario, there will be noise and inconvenient lighting conditions,
and it is interesting to compare how the different methods manage to separate the objects
from the background. Considering some of the methods are known to be more resistant
against image noise and brightness differences.

To acquire the Ground Truth disparity map– two of the stereo images were rectified
for further measuring the disparity between central pixels. The disparity was measured in
MATLAB by plotting both the images in red-cyan anaglyph. Anaglyph is a stereoscopic
3D effect that fuses the brain into a perception of a 3D scene when using red-blue stereo
glasses. The number of pixels measured is equal to the correct grayscale value in the
Ground Truth disparity map. The Ground Truth depth map was thus refined in an image
editor. Eventually, a combination of median filtering and Gaussian bilateral filtering was
applied to create a notion of a more realistic disparity map. In Figure 5.4, the disparity

Figure 5.4: Rectified right image, and Ground Truth disparity map

map is displayed in both color and gray-scale, combined with the scene captured by the
right camera. The disparity map is normalized to be in the range [0,255], where each pixel

Figure 5.5: Color-map

in the range corresponds to a color shown in Figure 5.5. Zero disparity corresponds to
black or dark blue, and pixel-disparity of 255 is plotted in white or dark red. In the ground
truth disparity map, every pixel is between [35-211], and hence, when later plotting all the
disparity maps created by the algorithms, this range is used to filter out some of the noise.

5.2 Correlation based methods
The correlation-based algorithms require a distance parameter to specify how far from
the template location one wants to search for correspondences. For convenience, the al-

47

Chapter 5. Experiment

gorithms search for correspondences in both directions; this is user-friendly because one
does not have to consider what is the right and left image. However, in consideration of
real-time applications, this should be removed to reduce the running time. The minimum
disparity is set to 35 and the maximum to 211 pixels to match the scene. This will re-
move some noise, and additionally reduce the running time compared to searching the
total width of the image.

5.2.1 Sum of Absolute Differences
Using the correlation-based algorithm SAD on the image pair in Figure 5.2, yield different
results depending on the window size. The window is square, and varying the window size

(a) W = 7x7 (b) W = 9x9 (c) W = 11x11 (d) W = 13x13

(e) W = 15x15 (f) W = 17x17 (g) W = 19x19 (h) W = 21x21

(i) W = 23x23 (j) W = 27x27 (k) W = 31x31 (l) W = 35x35

Figure 5.6: Tuning the window size in the SAD algorithm

yields the results in Figure 5.6. As expected, the disparity map gets smoother by increasing
the window size, and because the objects take a lot of the image-area, greater window size
is preferred. However, increasing the window size will increase the computation time. An
alternative is to reduce the image resolution to lower the computation cost.

Nevertheless, the algorithm outputs an acceptable disparity map. Some of the noise
still needs to be removed to be able to segment out the objects in a 3D world map, but this
is achievable using filters. The code used is nowhere optimized considering computation-
time, but it gives a sense of the window size needed to yield a decent disparity map.

48

5.2 Correlation based methods

To test how the algorithm will perform using optimized code, some of the built-in
functions in OpenCV are used. Starting with scaling the image to half the size, and ap-
plying a block-window on 9x9 pixels. This will correspond to a window of size 18x18
in the original sized image. The result from the scaled image is as expected a bit noisier
than the original sized, but it is more agile. The disparity map is further smoothed by a
filter to be able to create a convenient 3D map. The filter used is based on Weighted Least
Square– and use a fast smoother to refine the result in half-occlusions and uniform areas
[26]. In Figure 5.7 the filtered disparity map is shown. The leftmost image is the scene

Figure 5.7: Right rectified image, matching with SAD, filtered with WLS, Ground Truth

captured from the right camera, following is the disparity map created by down-scaling
the image-pair and applying SAD-matching, then the filtered disparity map is displayed
with the Ground Truth to the right. The resulting filtered disparity map is quite similar
to the Ground Truth disparity map. The objects seem to be in the same color, but the
background has some inaccuracies. This is due to the ground truth having the background
filtered out, setting the disparity to zero; this is not done when running the algorithm. For
a further notion of the accuracy, the filtered disparity map is triangulated and plotted in a
point cloud.

Depth in PointCloud

(a) Plot from above (b) Plotted from camera view

Figure 5.8: Point Cloud, 3D map from the filtered disaprity map

49

Chapter 5. Experiment

The objects were by triangulation computed to average be 1.80, 3.90, and 6,04 meters
respectfully. Compared to the Ground Truth that was measured to be 1.85, 3.95, and
6.03meters, it gives an overall average error of 0.03 meters— a surprisingly accurate result.
The most noticeable is that the depth on the most distanced objects yields the minimum
error. However, the object in front has the most uneven surface. Hence, the measurement
can be inaccurate both from the LiDAR and when clustering the object. In Figure 5.8,
the point-cloud from the filtered disparity map is displayed. Removing the background by

(a) Plottet from above (b) Plotted from camera view

Figure 5.9: Point Cloud, 3D map. Plot without the background

setting the maximum distance to 9meters yields the point-cloud in Figure 5.9. The point-
cloud manages to show the three objects separated, with a negligible amount of noise.
With an average distance-error on only 3 centimeters and low computation time, this is a
promising algorithm.

5.2.2 Sum of Squared Differences
SSD is expected to give almost the same result as SAD-matching. Similar to SAD, SSD-
matching is sensitive to outliers and since it uses squared differences in the computation,
the dept discontinuities will be even harder to match. Varying the matching window yields
the results in Figure 5.10. As expected, the resulting disparity map is quite similar to the
one outputted from the SAD algorithm but with a negligible increase in noise. SSD is
furthermore tested with some very large window-sizes, but when applied in real-time, a
window-size of 101x101 is usually not feasible considering the CPU-usage. As with SAD,
applying filters is preferred. The results in SSD are almost identical to SAD, and thus, the
filtering and triangulation used on SAD will yield an almost identical result for the SSD.

50

5.2 Correlation based methods

(a) W = 3x3 (b) W = 7x7 (c) W = 11x11 (d) W = 15x15

(e) W = 19x19 (f) W = 23x23 (g) W = 51x51 (h) W = 55x55

(i) W = 63x63 (j) W = 73x73 (k) W = 83x83 (l) W = 101x101

Figure 5.10: Tuning the window size in the SSD algorithm

5.2.3 Normalized Cross Correlation

NCC is expected to be robust against the different illumination conditions in the left and
right captured pictures. In Section 3.1.3, it was stated to yield high computational cost,
which was confirmed when no algorithms running in real-time were found. With a large
window size, the algorithm runs for one hour. Reducing the running time by scaling
the image pair by a factor of 0.2, it still yields a computation of several minutes. The

(a) W = 3x3
(1− 9)

(b) W = 5x5
(10− 19)

(c) W = 7x7
(20− 29)

(d) W = 9x9
(30− 39)

(e) W = 11x11
(40− 49)

Figure 5.11: Tuning the window size in the NCC algorithm

performance of the algorithm on the downscaled image pair is shown in Figure 5.11. In
parenthesis, the windows corresponding to a full-sized image is written.

A window of size 7x7 gave the best result if one were to post-filter the disparity map.

51

Chapter 5. Experiment

However, the algorithm is still not able to perform anywhere near real-time. The two
closest objects may be possible to segment out to collect the distance, but the total disparity
map is much more sparse than expected. NCC yields disappointing results overall. It
managed to filter out much noise, but too much to make a disparity map for achieving a
decent point cloud. However, the computational burden is too significant to be applied in
a real-time system.

5.2.4 Rank Transform

Compared with NCC, RT was expected to improve performance near object boundaries
and cope with brightness differences. First, the Rank Transform with different sized neigh-
borhoods were applied to the image pair. The rank transform performed on the right image

(a) W = 3x3 (b) W = 5x5 (c) W = 11x11

(d) W = 17x17 (e) W = 23x23

Figure 5.12: Tuning the size of the neighborhood in the Rank transform

is displayed in Figure 5.12. The resulting binary image gets brighter with a greater win-
dow. Subsequently, the same algorithm as used for SAD, without filter, were applied to
match the image pair. The matching-window was adjusted and tested on the rank-images
constructed with different window-sizes. A selection of the disparity maps created is dis-
played in the three Figures; 5.13, 5.14, 5.15.

The most critical is that the colors are all wrong, meaning they will output a disparity
map with different depth estimates than the SAD and SSD algorithms. The yellow color
on the nearest object means a disparity of 110-130 pixels, which is nowhere near 200,
which it is expected to be. All distances will therefore be almost the double of the ground
truth.

52

5.2 Correlation based methods

(a) W = 11x11 (b) W = 21x21 (c) W = 31x31 (d) W = 41x41

(e) W = 51x51 (f) W = 61x61 (g) W = 71x71 (h) W = 81x81

Figure 5.13: Tuning Rank Transform with window 5x5, matching the images with the SAD-
algorithm

(a) W = 11x11 (b) W = 21x21 (c) W = 31x31 (d) W = 41x41

(e) W = 51x51 (f) W = 61x61 (g) W = 71x71 (h) W = 81x81

Figure 5.14: Tuning Rank Transform with window 17x17, matching the images with the SAD-
algorithm

Binary images are harder to match for the simple SAD approach since small patches
often appear similar, making a mismatch more likely. It is reasonable to assume that
a greater neighboring-window would derive a better result considering the colors, this
was however not the case. Another reasonable explanation could be the scaling of the
disparities, but again, the same algorithm as used in SAD is adopted. No changes are
made, meaning that the algorithm struggles matching binary images.

Disregarding the colors and only examining the shapes and segmentation, RT gives
valuable results. Much of the background noise is removed with a greater matching win-

53

Chapter 5. Experiment

(a) W = 11x11 (b) W = 21x21 (c) W = 31x31 (d) W = 41x41

(e) W = 51x51 (f) W = 61x61 (g) W = 71x71 (h) W = 81x81

Figure 5.15: Tuning Rank Transform with window 23x23, matching the images with the SAD-
algorithm

dow as shown in Figure 5.15. The object in-front, together with the one in the back, is
adequately segmented, even with smaller matching windows.

It is possible to change the shape of the neighborhood or the matching-window to
maybe yield some better results. If using another scene, RT appears to output a disparity
map with less noise than SAD. However, considering the wrong depth estimates for the
scene used, SAD seems like a more robust choice even if it creates some more noise. Also,
in SAD one can use the original images while matching, and thus no need to perform a
rank transform in beforehand.

5.2.5 Census Transform
In consideration of the rank transform, CT gave a much more realistic colored depth map.
The census transform was first applied with various sized neighborhoods. Subsequently,
the two images were matched with the XOR operator with separate matching windows.
The best results were achieved by changing the census neighborhood. In Figure 5.16,
a matching window of size 9x9 is used with various census-neighboring size. Similar,
in Figure 5.17, a matching window of 11x11 is used. It is noticeable how defective the
disparity map gets when using too big of a census neighborhood. This is important when
choosing the static size for the application. A favorable size in one scene may give an
inadequate disparity map in another scene.

The algorithm yields a disparity map with less noise than SAD without any pre-
processing. Given the algorithm is known to perform under challenging lighting con-
ditions, it would be interesting to compare CT with SAD in a brighter scene outdoor.
Overall, it is an interesting algorithm that could be a good choice, with the potential for
real-time applications.

54

5.3 Feature based methods

(a) Neighborhood sized to
5x5

(b) Neighborhood sized to
21x21

(c) Neighborhood sized to
45x45

(d) Neighborhood sized to
49x49

Figure 5.16: Different census windows, with block matching window of size 9x9

(a) Neighborhood sized to
17x17

(b) Neighborhood sized to
33x33

(c) Neighborhood sized to
41x41

(d) Neighborhood sized to
45x45

Figure 5.17: Different census windows, with block matching window of size 11x11

5.3 Feature based methods
Feature-based methods output sparse disparity maps. The algorithms first extract interest-
ing keypoints, and subsequently creates descriptors. This is the first approach tested. The
second approach sets all the pixels in each image to an interesting keypoint. The algo-
rithms are thus used only to create descriptors, to yield a dense disparity map. The latter
does not apply for HCD as the algorithm only outputs a value instead of a descriptive
vector. After creating descriptors, they are matched with both FLANN and BF, and the
matches used in the resulting disparity map are selected by applying a ratio check test to
remove some noise.

5.3.1 Harris Corner Detector
Harris corner detector was first implemented with both FLANN based matcher and BF-
matcher in Matlab. The most relevant parameters to tune is the quality or threshold R
for the corners detected, and the threshold of how different two corners can be to yield a
match.

The challenge with HCD was to find the right thresholds. Because there are no descrip-
tors the algorithm only creates a score for each corner. This score is based on intensity.
Thus two images of the same scene with variation in the lighting will yield two different
scores on a corresponding corner. This makes it challenging to tune the parameters seeing
that the image pairs can have brightness variations.

55

Chapter 5. Experiment

Figure 5.18: Best result using HCD. The matches and the corresponding disparity map

In Figure 5.18, the best result from HCD is shown. The dark blue area is pixels with no
detected corners. To be able to see any of the matched points in the disparity map, every
match is set to be 9 pixels in size, instead of the initial value of one pixel. The disparity
map was achieved by increasing the threshold for a corner to one percent of the maximum
value and is further set to match all the detected corners. This removes most of the noise,
and it detects between 900-1000 corners in each image. Looking closely at the matches,
one can see that most of the corners are matched correct, but there is still some noise. To
further reduce noise a solution is to increase the threshold for a corner. But the disparity
map is already too sparse to get any reasonable dept-estimates.

In comparison, the algorithm was set to detect every corner, threshold equal to zero,
and further to match all the keypoints found. This yields the result in Figure 5.19. It

56

5.3 Feature based methods

Figure 5.19: Harris Corner Detector, detecting all possible corners and edges

resulted in more points and matches in the disparity map, but way too much noise and still
a too sparse disparity map to separate the scene-objects.

One has to find the best correlation between the quality of detected keypoints (corners)
and the quality for matching pairs. However, the most troublesome problem of HCD was
that it did not detect enough corners. When setting the threshold for being an edge or
a corner to zero, the algorithm managed to detect between 9000 and 10 000 keypoints.
Considering the image is 1069x1242 pixels, HCD detects less than 0.008 percent of the
pixels, giving a disparity map too sparse to yield good results. This applies independently
of the matcher used. In the images displayed, a FLANN based matcher is used, but there
were no noticeable changes when using BF.

To explicitly figure out why the algorithm performed the way it did, the corners de-
tected in both the images were plotted with different threshold values R. The result seems
to be that the quality or the value for the same corresponding corner has a considerable
variation in the two images. A strong corner in the left image often corresponds to a weak
corner in the right image. In Figure 5.20, corners detected is tried illustrated. Black areas
mean there is detected corners or edges with values above the threshold, while grey means
no detected corner. If one could have achieved a result like Figure 5.20a in both the im-
ages at the same threshold, one could have used different computer vision techniques, like
dilation and blob detection, to filter the disparity map. However, since the threshold has to
be determined in advance, it was hard to find any values giving enough edges in both the
images to yield a somewhat dense or semi-dense result without too much noise.

57

Chapter 5. Experiment

(a) Left image, threshold 101 (b) Right image, threshold 101

(c) Left image, threshold 64 (d) Right iage, threshold 64

Figure 5.20: Detecting cornes with different thresholds. Black means corners, grey means no cor-
ners detected

HCD is one of the oldest and simplest algorithms and thus has some obstacles. To
improve the resulting disparity map, a kind of normalization of the right and left image in
beforehand could be a solution. This may help to reduce the problem of the necessity of
a manual threshold selection. Another solution would be to apply another algorithm for
creating a more descriptive descriptor than just a value for the corner. An example would
be to use SIFT or BRIEF as descriptors.

5.3.2 SIFT
Using SIFT as both keypoint extractor and descriptor type yields the following sparse
disparity maps. The input parameters for SIFT were first changed to get the highest number
of keypoints as possible. This was done by changing the number of layers, the contrast and
edge threshold, and the sigma value. In Figure 5.21, the result is shown. Many keypoints
were obtained, but when matching, the result was just noise. The keypoints extracted
is thus extracted from different features in the two image-views. The threshold in the
parameter values is therefore too low to extract strong enough features.

To further improve the matching, better descriptors were achieved by again changing
the parameters. It was hard to balance matching performance and noise. The best result
gave 60 000 descriptors in each image, in contrast, to Harris’s 1 000 keypoints. In Figure

58

5.3 Feature based methods

Figure 5.21: SIFT sparse, maximum detected matches achieved

5.22, one can see the best disparity map from using SIFT as both keypoint detector and
descriptor. Even though the matched pixels are of reasonable results, the map is sparse,
making it hard to attain reliable depth estimates. The algorithm is also not able to detect
any keypoint or descriptors around the object in the middle.

The second approach sets all the pixels in each image to an interesting keypoint. SIFT
is therefore used to create descriptors for every pixel in the two images. After creating
the descriptors, they are all matched with FLANN. In Figure 5.23 the disparity maps are
shown with increasing range for the cross-check-test. The ratio in the cross-check-test is a
measure of the accepted disparity, both minimum and maximum disparity allowed.

The corresponding matches are drawn in Figure 5.24. One can see that a lot of the
matches are not horizontal. This means, there is some noise in the corresponding disparity

59

Chapter 5. Experiment

Figure 5.22: SIFT sparse, the best matches plotted in both intensity and color

60

5.3 Feature based methods

(a) ratio = 0.7 (b) ratio = 0.9 (c) ratio = 1.1 (d) ratio = 1.3

(e) ratio = 1.5 (f) ratio = 1.7 (g) ratio = 2.0 (h) No ratio, every match

Figure 5.23: Tuning the length of disparities, i.e., descriptors to include in the map (FLANN)

Figure 5.24: SIFT matches

map. SIFT does not take into consideration if the image pair is rectified or not. In theory,
there will be no difference in matching two undistorted and rectified images or using the
raw format. An idea to improve the disparity map would be to make sure all the matches
are in a horizontal line. However, this may be more time-consuming than filtering the
disparity map.

To compare the latter result, SIFT was also tested with a BF matcher. The terminal-
window displayed the error ”Aborted (core dumped)” when using the BF matcher. The
reason is that the memory load is too big while matching every single descriptor with all
the other descriptors. The code runs fine when scaling the image by a value of ≤ 0.2, but
even so, all the twelve CPUs running were maxed out.

SIFT is scale-invariant, and by scaling the image by the factor 0.2 it should be able
to yield similar results. In Figure 5.25, some of the disparity maps achieved is displayed.
BF seems to give a more dense disparity map compared to FLANN. Nevertheless, BF is
tested on down-scaled images, hence fewer pixels to match, and most likely, less noise.

61

Chapter 5. Experiment

(a) ratio = 2 (b) ratio = 37 (c) ratio = 4.9 (d) All matches

Figure 5.25: Tuning the length of disparities, descriptors to include the SIFT algorithm (BF)

Comparing with HCD, SIFT managed to make descriptors of 1
5 of all the keypoints

in the scaled-down image. This makes the disparity map sufficiently dense to yield good
depth-estimates. Even though BF was used on a scaled image, it seems to give the best
results considering depth estimates. Some filtering is still preferable to remove some of the
noise applied and to easier segment out the objects. In general, SIFT seems to yield satisfy-
ing results, even when scaling the image. Scaling the image will improve the computation
time. However, it should be tested to acquire depth on minor objects in scaled-down im-
ages to find the best scaling value.

5.3.3 SURF
By using SURF as both keypoint extractor and descriptor type, it yields similar results
as SIFT. Changing the hessian threshold gave the most varying results, but also tuning
the number of octaves and octave-layers helped. The best values for SURF is shown in
Figure 5.26. SURF struggles to find enough strong keypoints. By decreasing the threshold
further, the new detected points are matched wrong and hence give rise to a noisy disparity
map. Identical results outputted from both BF and FLANN.

For the dense case, SURF was not able to make descriptors for most of the keypoints
giving a sparse disparity map with much noise. The two matcher’s gave almost identical
results. But again, while using the BF matcher, the images had to be scaled by a factor
of 0.2. In Figure 5.27, the best result was achieved with a ratio of 0.03. One can see the
structures of the scene. However, the matching gave rise to much noise. No reasonable
depth estimates were produced.

Seeing the noisy results and sparse disparity maps, it seems that using a SURF size of
only 64 bits is too small of a descriptor. The descriptors do not include enough information
to match the keypoints in the challenging scene.

5.3.4 ORB
ORB uses binary descriptors of 32 bits. Hence the descriptors are half the size compared
to the ones in SURF. Using ORB as both keypoint extractor and descriptor type yields the
following sparse disparity maps in Figure 5.28. There are more keypoints and less noise
than with both SIFT and SURF. The middle object contains no detected keypoints, but the

62

5.3 Feature based methods

Figure 5.26: SURF sparse

(a) ratio=0.03 (b) All descriptors matched)

Figure 5.27: Tuning the length of descriptors to include in disparity map in the SIFT. The original
rectified image is scaled by 0.2

other two objects may include enough to be segmented out. It needs some work, though,
and makes it hard to be used in a system detecting various scenes.

The second approach testes ORB with setting every pixel as a keypoint, creating the
ORB-descriptor, and further match with the Hamming distance. The more matches used
in the disparity map, it yields a more dense disparity map with clearly segmented objects.
In Figure 5.29, the various maps created by FLANN using an increasing range of the
matches is presented. Compared to the other featured-based descriptors, ORB constructs
less wrong-matches. As shown in Figure 5.30, most of the matches are along the horizontal

63

Chapter 5. Experiment

Figure 5.28: ORB, sparse matches

line creating clearly displayed objects. Still, there are some wrong matches, noise, but a
significantly less amount than with SIFT and SURF. By segmenting out the background,
most of the noise applied will be removed, and hence give an adequate map to query the
depth.

As with the two latter descriptors, the BF matcher is not able to perform on descriptors
from the original image. Hence, the images are scaled by a factor of 0.2. With the BF
matcher, the output gives an odd disparity map. The result is shown in Figure 5.31. The
colors are offset by value, meaning the descriptors are not matched correctly. Compared
to SIFT, the BF matcher on ORB gave an unacceptable map. The downscaled image was
further tested with FLANN matcher to understand the reason for the unexpected result. As
seen in Figure 5.32, FLANN yields almost identical results when applied to the images

64

5.3 Feature based methods

(a) ratio = 0.7 (b) ratio = 1.0 (c) ratio = 1.2 (d) ratio = 1.4

(e) ratio = 1.6 (f) ratio = 1.8 (g) ratio = 2.0 (h) Allfeaturematches

Figure 5.29: Tuning the length of descriptors to include in disparity map in the ORB algorithm
(FLANN)

Figure 5.30: ORB matches

(a) ratio = 0.0.5 (b) ratio = 1.0 (c) ratio = 1.5 (d) All matches

Figure 5.31: Tuning the length of descriptors to include in disparity map in the ORB algorithm (BF)
The original rectified image is scaled by 0.2

scaled by a factor of 0.2.
This means that ORB certainly has a threshold of how low resolution of the image can

be to provide valuable descriptors. The most noticeable is that the matched keypoints are

65

Chapter 5. Experiment

(a) ratio = 0.0.5 (b) ratio = 1.0 (c) ratio = 1.5 (d) All matches

Figure 5.32: Tuning the length of descriptors to include in disparity map in the ORB algorithm (BF)
The original rectified image is scaled by 0.2

almost all on a horizontal line, displayed in Figure 5.33. So it indeed has potential when
scaling down the image. On the other hand, a scaled-down image will have more trouble
detecting smaller objects or objects on longer distances. The colors may be a bit offset due

Figure 5.33: Flann scaled matches

to the scaling. Nevertheless, it did not seem to give such a result with SIFT. Considering
the running time, FLANN uses two-thirds of the time compared to BF.

In general, ORB is a promising descriptor for achieving disparity maps. Preferably
a filter is to be applied in the post-processing, but even without this it gives reasonable
results.

66

Chapter 6
Discussion

The resulting disparity maps and the dept-estimate achieved are all results dependent on
the stereo setup, the calibration, and the chosen algorithm. The best depth-error achieved
was 3 cm. The error is an overall exceptional satisfying result, considering the report
was written with no pre-knowledge of stereo setup and calibration. However, there is al-
ways potential for improvement, and this chapter gives a discussion of the different results
achieved. Disclaimer; the running time is mentioned in the algorithms with the most po-
tential, but when writing code, no effort was made to optimize the computation cost. The
code used focus on understanding, and is written for testing purposes. The code itself can
be optimized, and most likely, there exist faster libraries and functions.

6.1 Stereo Setup
The errors achieved is dependent on the stereo setup. The setup is the foundation for the
application and thus will influence the results. It is hard to say how much the setup affected
the correspondence problem because the algorithms were only tested with one setup using
a fixation point of 4 meters. However, the stereo setup used gave some reasonable disparity
maps, meaning the algorithms managed to solve the correspondence problem. Therefore,
it seems that the angling of the cameras helped to minimize the depth-error. This in mind,
it is reasonable to expect a more significant baseline and increased angling, with the same
fixation point, will decrease the error. The baseline was set to be 26 centimeters, and
widening it will increase the theoretically precision of depth. However, widening the
baseline and angling the cameras will also make the search problem more challenging. A
compromise is needed between the hardness of the search problem and the theoretically
precision. Hence, testing the scene with the same algorithms using a broader baseline
and increasing the angling will give a further understanding of how the setup affects the
dept-estimates.

Overall, the chosen setup was acceptable and conceived consistent results. It gave
disparity maps, and depth estimates acceptable for understanding how a 3D world map
differs with various algorithms.

67

Chapter 6. Discussion

6.2 Calibration
Calibrating the parameters for the cameras was a vital part of this project to be able to
reconstruct the scene by creating disparity maps. Dividing the calibration into two separate
parts seems to give the most valuable parameters when calibrating on longer distances. The
intrinsic parameters calibrated on the preferred distance, resulting in accurate parameters.
The extrinsic parameters were calibrated on the operating distance, 4 meters, and thus
needed 275 image pairs to cover the image plane. Using this amount of images is time-
consuming, and not recommended as it increases the likelihood of errors occuring.

A reason for wrongly matched pixels in the correlation-based methods is the calibra-
tion parameters. However, the rectification and distortion parameters seem acceptable as
most of the algorithms found suitable matches on the horizontal line. The calibration is
most likely the origin of some of the noise in the correlation-based disparity maps. Even
though some noise is to be expected, it can be reduced with a flawless calibration. Overall,
the calibration yield better results than expected, given the narrow calibration board used.

Improving the calibration should be attempted. First, setting the physical lens param-
eters more equal, focus and iris, to easier compare the intrinsic parameters. This will
equalize the intensity of illumination being fed into the lens, and therefore making the
intensity images more balanced. Nevertheless, there will always be some illumination
variations between two pictures captured at different positions. Additionally, a substantial
greater calibration board is preferred to lessen the number of images needed in the extrin-
sic calibration. Instead of using an enormous checkerboard, a static object with known
measures is most likely a better and more realistic alternative.

Kalibr seems to be a reliable alternative to the MATLAB’s calibration apps, which
should be tested, seeing if it achieve the same results.

6.3 Stereo matching algorithms
Knowing something about the scene is the key to yield the best depth estimates. The
knowledge is achieved after testing the algorithms with a bunch of parameter values in
Chapter 5. The searching range in the correlation-based methods was predefined, and with
the feature-based methods, the matches were filtered out with a cross-check-test. This
yields a smoother result, removing some of the noise. A predefined scene also makes it
easier to apply filters segmenting out the objects. In general, use everything known in
beforehand when choosing the parameters and filters.

Considering the running time, the size of the image is of considerable importance.
Every pixel in the two images is used for matching in both the stereo matching methods.
The image used contains 1 327 698 pixels, giving rise to a time-consuming matching. To
shrink the number of pixels, one could easily crop some parts of the images. In general,
there is no need to match every pixel. Like in the scene used, one could easily have cropped
a large portion of the pixels at the top of the image. An alternative approach would be to
match or create descriptors for every second pixel. This reduces the running time and
creates a semi-dense disparity map. The semi-dense map can effortlessly be made dense
by applying smoothing, or for example, using simple clustering algorithms like KNN or
DBSCAN. A similar approach would be to down-scale the image. Nevertheless, both

68

6.3 Stereo matching algorithms

the ese proposals may struggle while used in the detection of objects depicted with fewer
pixels.

Insight into some pre-information about the scene to be detected, the third option is
to down-scale only parts of the scene. By smoothing and reducing the resolution on only
near distances, one can achieve better matching for several objects with different sizes.
Further, it is also possible to up-scale the size of objects captured at longer distances. This
ensures that one matching window will yield better results on several objects captured on
varying distances and with disparate sizes. Similarly, it lets the featured based methods to
detect objects faster using fewer layers and octaves. Information about the scene ahead of
the stereo matching could, for example, be given through sensor fusion with a RADAR.

In general, it would be interesting to test the algorithms at longer distances with addi-
tional objects. However, since the camera setup was used in another project at the same
time, there was not enough time. Nevertheless, the checkerboard board used would not
have achieved an adequate calibration on farther distances. Furthermore, the algorithms
should be tested on several scenes with several diverse objects, backgrounds, and illumi-
nation conditions. Objects on greater distances will eventually, dependent on the setup,
vanish in the background. Furthermore, the use of pre-filtering and post-filtering should
further be examined with the chosen algorithm.

Following, the algorithms tested are briefly discussed with some comments on how
they may be improved.

6.3.1 Correlation based methods

In common for the algorithms, adjusting the windows’ size yields the most prominent vari-
ation. Therefore, it is necessary to know the size of the objects in beforehand to yield the
best results. With this in mind, the most valuable objects to detect and measure distance
to has to be predefined. Dependent on the surfaces of the preferred objects, one can es-
timate a window size expected to yield the best results. Choosing a window too big will
remove much of the noise, but also remove the smaller objects. Choosing a window size
too narrow will create a lot of noise, removing large neutral objects.

An alternative would be to look into windows with different shapes. A rectangular
window, a short and wide one, could be preferable when detecting boats. While writing
code, there is possible to use a predefined window-shape of any architecture. There also
exist articles on adaptive the window in real-time [34].

Most of the algorithms implemented to search for correspondences to match in both
the direction on the horizontal line. Considering the running time, this should be avoided.
If the calibration is satisfactory and the images rectified, there is no need to search in both
the directions making the burden double. Additionally, it can also apply extra noise.

The correlation-based method creates dense disparity maps. The resulting disparity
maps should be further refined to yield an more accurate map for estimating the depth.
For the dense case, there exists an excessive amount of filters to be applied, both before
creating the disparity map and post-filtering.

69

Chapter 6. Discussion

Sum of Absolute Differences

SAD gave one of the best results overall. It is maybe the fastest matcher, easiest to under-
stand and implement, while also yielding satisfactory results. There is much noise, but one
can easily spot the objects in the resulting disparity map, regardless of the chosen window-
size. By applying a WLS-filter, the noise was shown to be easily removable, creating a
smooth disparity map to achieve the depth.

For the semi-optimized code used to create the disparity map for the point cloud, the
running time for the matching part only is measured by GetTickCount() to be average
0.0071 seconds. The filtering used 0.025 seconds. The filter may be replaced with a better
one considering the running time. The total running time measured included command
line parser and creating four disparity maps (no imshow), yields 0.050 seconds.The com-
putational cost can be minimized by removing print sentences and the extra for-loops for
testing-purposes. However, the algorithm is feasible in real-time applications, of course,
depending on the real-time requirements for the system.

A problem with SAD, as with the other correlation-based algorithms, is detecting
smaller objects. Smaller objects require smaller window-sizes, which give rise to noise.
Noisy disparity maps are harder to filter, and the smaller objects tend to disappear through-
out the noise or in the filtering. A solution is to increase the resolution around objects on
farther distances or similar approaches, as discussed above. As well, the algorithm should
be tested in variate illumination conditions. The algorithm may struggle with brighter or
darker scenes, creating an excessive amount of noise.

Overall, SAD is one of the methods with the most articles and code online. It is widely
used, and there exists optimized code for use in real-time applications. However, most
of the codes used in real-time are applicable with images of sizes up to 400x400 pixels.
The image pair should, therefore, be cropped or smoothed to decrease the running time. A
larger window also increases the computation time.

Sum of Squared Differences

SSD seems to yield identical results as SAD, maybe some more noise, but nothing notice-
able in the images presented. In general, SAD and SSD achieve similar results, but SAD
is preferred. SAD is computationally faster and less sensitive to outliers. Hence, in this
report, SAD is preferred before SSD. SSD can yield better results in some applications
due to it being differentiable, e.g., in optical flow.

Normalized Cross Correlation

NCC was first tested on the full-scale image. The algorithm was interrupted after one hour,
as it did not manage to complete the computation. Code with less computation cost was
found, but still, it did not give any acceptable results considering the resulting disparity
map and the computational time.

NCC may be favored in a brighter and noisier scene. As stated in the theory chapter, it
is notorious for high complexity and thereby rarely meets speed requirements in real-time
systems.

70

6.3 Stereo matching algorithms

Rank Transform

RT, as expected, yields proper segmentation of the objects. It is known to improve perfor-
mance near object boundaries, but again, no noticeable improvements occurred compared
to the tree latter methods. The distance measures are all wrong, and the only logical expla-
nation is that binary images are harder to match for the simple SAD algorithm. Mismatches
are more likely to happen, resulting in wrong depth estimates.

It could be tested in another scene to see if it yields the same unacceptable result.
Overall, it seems the algorithm has more drawbacks than advantages compared to using
only SAD.

Census Transform

CT provides reasonable results, with less noise than SAD. Looking at the disparity maps
from both filtered SAD and CT, it looks to be in the same range. Calculating the average
depth on the three objects from CT’s disparity map, happened to give the exact same
results as with SAD. Namely an overall average error on 3 cm. Two algorithms producing
the same depth-estimates suggest that it may be the calibration or the stereo setup, causing
the errors. However, considering the running time, SAD outperforms CT. In total, CT
takes around 0.9-1 seconds to run. The code used has some potential to minimize the
computational cost, but nothing close to SAD.

The algorithm is frequently used in local stereo vision due its performance under chal-
lenging lighting conditions. It also seems to be robust against noise. Regardless, there
are several articles on improving the CT to be more robust against noise in stereo match-
ing, e.g., Lee et al. propose a star-census transform [19]. It can be improved either by
using filters or an improved version like the star-census transform. The binary matcher
yields one of the best disparity maps and should be further examined in various scenes.
It is conceivable that CT will be more robust than SAD considering various illumination
conditions. Therefore, CT is considered to be the algorithm with the most potential using
in a real-world scenario, implemented on the autonomous ferry prototype ”MilliAmpere”.
However, the algorithm generates noise when the census neighborhood is too large. Thus
one has to be tentative when choosing the aggregation window.

6.3.2 Feature based methods
Feature-based methods are generally more robust against illumination conditions, environ-
mental conditions, and change of contrast. Traditionally, the correlation-based methods
have been preferred in stereo vision due to computation cost when using rectified images.
However, from the algorithms tested, there is potential for the feature-based methods.
They may, traditionally, be more time consuming because of the extra step for extracting
features. Nevertheless, their computational cost is decreasing with more ongoing research.

The main restriction of feature-based methods is that they do not allow to generate
dense disparity maps. However, in this report, it was resolved by setting all pixels to
an interesting keypoint. As a result of the approach, a simpler algorithm may have been
preferred. An alternative method can be to use the BRIEF descriptor directly with rectified
images. Using rectified images and smaller angles on the cameras, will most likely not

71

Chapter 6. Discussion

need any rotation-invariant descriptors. Thus, a BRIEF descriptor seems to be a good
alternative, minimizing the computational cost. Similarly, one can set the feature-based
methods not to extract rotation; this is not tested throughout this project.

All of the images were captured using grayscale because the algorithms chosen are
intensity-based. Grayscale matching also reduces complexity. But there exist descriptors
operating on colored images like Opponent-SIFT and the Colored SIFT (CSIFT). Espe-
cially since the algorithms are going to be implemented outside in a marine environment,
one may predict some of the expected colors, and thus the colors can be used to improve
the contrasts. An example is Zhao et a. [50] which showed how image matching could be
improved by using color and exposure information with SIFT. Another example is van de
Sande et al., concluding that object recognition from the use of color benefit 30 percent in
performance improvement over using intensity only [46].

The feature-based methods tested, except HCD, is said to be invariant to rotation and
scale. Hence, in theory, there is no need to use rectified images or the total image in size.
A fresh down-scaled image should be tested to reduce computation time.

Harris Corner Detector

HCD struggled to detect corners to match in the images. Mainly, it struggles to detect
any corner in the middle of the objects or on the floor, meaning it needs sharp corners
to be able to detect and match them. HCD will, like the correlation-based methods, be
dependent on the size of the image, and also smaller objects are complicated to detect
and match. Overall, the descriptor seems to be the biggest problem as it only selects a
value for each corner. A value was shown to be hard to match when the images have
some illumination variations. Normalization of the right and left images can be applied to
improve matching and the resulting disparity map. Nevertheless, it is not robust enough
to use the same threshold values for various scenes, seeing that a more robust descriptor
should be used. A classic combination is a Harris detector + SIFT descriptor, but since the
algorithm detected few interesting keypoints, it seems not to be the best approach in this
report.

SIFT

SIFT gave noisy disparity maps, but nothing that cannot be fixed with applying filters.
Chiefly SIFT achieves acceptable results considering the colors in the disparity maps. Set-
ting all pixels in the original image to an interesting keypoint and following creating de-
scriptors takes 0.92 seconds for SIFT. For a down-scaled image, it takes 0.035 seconds.
The total run-time with the down-scaled image using the BF matcher is 28 seconds com-
pared to FLANN using 0.97 seconds. On the original sized image-pair, the total run-time
with FLANN is 42 seconds. There are some improvements than can be applied to min-
imize the computational cost, but so far, SIFT with BF is far from real-time applicable.
SIFT with FLANN has potential.

The disparity map was less noisy with down-scaled images using BF. However, it may
be that the method would have removed smaller objects if present in the scene used. Cal-
culating the depth in the images matched with BF yield some small errors. This is because

72

6.3 Stereo matching algorithms

the image-pair was first multiplied with 0.2, and the resulting disparity map multiplied
with 5 to get the real-world disparity.

Another alternative to SIFT would be DAISY [45]. The DAISY feature descriptor has
been shown to outperform SIFT and SURF in wide-baseline stereo matching and is more
computationally efficient than SIFT [32].

SURF

SURF yields noisy results, which was unexpected. In articles and projects online, SURF
seems to perform results similar to SIFT but faster. With the scene used, no parameters
were found to yield satisfactory disparity maps. Reading the specification, about the re-
strictions, and further tuning the parameters several times, there was still not achieved any
satisfactory results. The result, when setting all pixels to interesting keypoints, gave a
sparse set of descriptors. Testing SURF with a descriptor of size 128 may yield an im-
proved disparity map. Nevertheless, other scenes should be tested to see if it yields the
same noisy and sparse results. If this is the case, SURF features may not be robust enough
in certain scenes. Improvements could be to combine different algorithms. Li, Aomei, et
al. propose a fast matching algorithm based on the combination of FAST feature points
and SURF descriptors, resulting in an improved matching compared to SIFT [20].

ORB

ORB yields one of the best disparity maps without applying any filtering. Together with
CT’s result, it seems like binary descriptors provide less noisy disparity maps. Even when
using less than half of the descriptors created, ORB with the FLANN matcher manages to
create an acceptable disparity map. There is less noise compared to the other algorithms
testes, maybe except CT, and depth estimates are usable without any filtering. The average
depth provided on the object is identical to SAD and CT.

A point of interest is the unexpected result when scaling the image by a factor of
0.2. This yields an inaccurate disparity map, implying that ORB has a threshold for the
images to be matched. Regardless, it is beneficial that the matches seem to be mostly on
the horizontal line. The ORB descriptor is robust and easy to match in the scene used.
However, ORB, as well as the other algorithms, should be tested in various scenes to
consider the possibility that the scene used is a preferred scene for ORB.

Considering the running time, there is much potential for improvement. ORB with the
FLANN matcher on the full-scaled image-pair used 20 minutes (setting all keypoints to
be made descriptor of). To create the descriptors, ORB uses 2 seconds. ORB is proven
to be an efficient alternative to SIFT, so the slow running time was an unexpected result.
Nevertheless, there is potential for optimization, better parameters and code may exist.

Descriptor matching

For the two feature matchers, the result was as stated in theory. FLANN was the best
and fastest matcher when using images with many descriptors, and BF yields the best
result when the images had fewer descriptors to match. The most noticeable was that BF
needed the image pair to be scaled with a factor of 0.2. The maximum number of features

73

Chapter 6. Discussion

it managed to match was around 200 000 (but it yields a running time of 8 minutes).
Overall, FLANN gave satisfactory results. It computed much faster compared to BF and
hence should be preferred in real-time systems with a large number of descriptors to match.

74

Chapter 7
Conclusion and Future work

In total, the algorithms which were stated to yield the best results managed to calculate
the best depth-estimates; SAD, CT, and ORB all three resulted in an average error on 3
centimeters. An insignificant small error, much better than what was thought possible in
advance.

This thesis gives an understanding of the stereo setup, the calibration, and the algo-
rithms. In complete, some algorithms have been outsourced; SSD, NCC, RT, HCD, and
SURF. Ending up with some algorithms with potential; SAD, CT, SIFT, and ORB. Overall,
CT seems to yield the best result considering accuracy, computation cost, and robustness
against variations in illumination. Moreover, new additions that may be beneficial to look
into were discussed; DAISY, BRIEF, Opponent-SIFT, and CSIFT.

By using a bigger calibration board and testing with distinct stereo setups, even better
knowledge is to be achieved. Additionally, several scenes are to be preferred tested, and
with optimizing the algorithms considering run-time and filters, stereo vision indeed has
potential on longer distances.

The average depth-error was only 3 centimeters, and the system achieved seems to
have much potential on longer distances. However, the range of topics covered gives
several subjects to look more into. To be able to implement this on the autonomous all-
electric passenger ferry, several improvements need to be conducted.

• Find calibration objects which are suitable for calibrating at longer distances, re-
placing the common checkerboard

• Test how much the cameras can be angled before the correspondence problem is
intractable with stereo matching

• Test in scenes with varying illumination conditions and different sized objects.

• What is the best solution to reduce the resolution of the images without removing
the smaller objects

• Figure out the threshold for down-scaling images with feature based methods

75

Chapter 7. Conclusion and Future work

• Look into descriptors using color images.

• Test DAISY and BRIEF for extracting descriptors

• Test histogram-based metrics instead of Euclidean

• Test the FLANN descriptor matcher with other index methods and parameters

• RANSAC can be used to remove outliers in the disparity maps

• Filters. What kind of filtering yields the best result.

• The best computation cost to be achieved for the different algorithms

• In which scene do the algorithm struggle the most. The robustness of the various
algorithms

76

Bibliography

[1] B. AG. Gigabit Ethernet and GigE Vision. http://www.shortcourses.com/
stereo/stereo3-14.html, not announced.

[2] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. European
Conference on Computer Vision, 2006.

[3] A. Buades and G. Facciolo. Reliable multiscale and multiwindow stereo matching.
SIAM Journal on Imaging Sciences, 8:888–915, 2015.

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent
elementary features. European Conference on Computer Vision (ECCV), Heraklion,
Crete, 2010.

[5] D. P. Curtin. Understanding the Baseline. http://www.shortcourses.com/
stereo/stereo3-14.html, 2011.

[6] FLIR. Configuring Synchronized Capture with Multiple Cameras, 2017.

[7] D. A. Forsyth and J. Ponce. Computer vision: a modern approach. Prentice Hall
Professional Technical Reference, 2002.

[8] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches
in logarithmic time. ACM Trans. Math. Software, 3:209–226, 1976.

[9] C. G. and M. Stephens. A combined corner and edge detector. Alvey vision confer-
ence, 15:10–5244, 1988.

[10] T. V. Haavardsholm. A handbook in Visual SLAM. Compendium in TTK21 In-
troduction to Visual Simultaneous Localization and Mapping - VSLAM at NTNU,
2019.

[11] D. Hafner, O. Demetz, and J. Weickert. Why is the census transform good for robust
optic flow computation? Scale Space and Variational Methods in Computer Vision.
SSVM 2013. Lecture Notes in Computer Science, 7893, 2013.

77

http://www.shortcourses.com/stereo/stereo3-14.html
http://www.shortcourses.com/stereo/stereo3-14.html
http://www.shortcourses.com/stereo/stereo3-14.html
http://www.shortcourses.com/stereo/stereo3-14.html

[12] R. A. Hamzah and H. Ibrahim. Literature survey on stereo vision disparity map
algorithms. Journal of Sensors, 2016, 2016.

[13] R. Hartley and A. Zisserman. Multiple View Geometry in computer vision, 2nd edi-
tion. Cambridge University Press, 2004.

[14] J. Jiao, R. Wang, W. Wang, S. Dong, Z. Wang, , and W. Gao. Local stereo matching
with improved matching cost and disparity refinement. IEEE MultiMedia, 21(4):16
– 27, 2014.

[15] J. Joglekar and S. Gedam. Area based stereo image matching technique using haus-
dorff distance and texture analysis. ISPRS - International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, XXXVIII-3/W22:109–
114, 2013.

[16] J. Joglekar and S. S. Gedam. Area based image matching methods – a survey. Inter-
national Journal of Emerging Technology and Advanced Engineering, 2(1):130–136,
2012.

[17] K. Jyothi. A robust and efficient pre processing techniques for stereo images. In-
ternational Conference on Electrical, Electronics, Communication, Computer, and
Optimization Techniques (ICEECCOT), pages 89–92, 2017.

[18] D. Kumaria and K. Kaur. A survey on stereo matching techniques for 3D vision in
image processing. IJEM, 4:40–49, 2016.

[19] J. Lee, D. Jun, C. Eem, and H. Hong. Improved census transform for noise robust
stereo matching. Optical Engineering, 55(6), 2016.

[20] A. Lia, W. Jianga, W. Yuana, D. Daia, S. Zhanga, and Z. Wei. An improved fast+surf
fast matching algorithm. Procedia Computer Science, 107:306–312, 2017.

[21] A. Liszewski. Elon Musk Was Right: Cheap Cameras Could Replace Li-
dar on Self-Driving Cars, Researchers Find. https://gizmodo.com/
elon-musk-was-right-cheap-cameras-could-replace-lidar-1834266742,
2019.

[22] Y. Liu and J. Aggarwal. Local and Global Stereo Methods, pages 297–308. 12 2005.

[23] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 2004.

[24] N. A. Manap, S. F. Hussin, A. M. Darsono, and M. M. Ibrahim. Performance analysis
on stereo matching algorithms based on local and global methods for 3d images
application. JTEC, 10:23–28, 2018.

[25] K. McCabe. How to Set Up a Stereo Machine Vision So-
lution. https://www.qualitymag.com/articles/
93543-how-to-set-up-a-stereo-machine-vision-solution,
2016.

78

https://gizmodo.com/elon-musk-was-right-cheap-cameras-could-replace-lidar-1834266742
https://gizmodo.com/elon-musk-was-right-cheap-cameras-could-replace-lidar-1834266742
https://www.qualitymag.com/articles/93543-how-to-set-up-a-stereo-machine-vision-solution
https://www.qualitymag.com/articles/93543-how-to-set-up-a-stereo-machine-vision-solution

[26] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do. Fast global image smooth-
ing based on weighted least squares. Image Processing, IEEE Transactions on,
23(12):5638–5653, 2014.

[27] B. Mohamad, S. Yaakob, R. Raof, A. Nazren, and M. Nasrudin. Template match-
ing using sum of squared difference and normalized cross correlation. Journal of
Sensors, pages 100–104, 2015.

[28] A. Mordvintsev and A. K. Revision. Feature Matching. https:
//opencv-python-tutroals.readthedocs.io/en/latest/py_
tutorials/py_feature2d/py_matcher/py_matcher.html, 2013.

[29] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algo-
rithm configuration. VISAPP, 1, 2009.

[30] T. U. of British Columbia. SIFT: Scale Invariant Feature Transform. https://
uilo.ubc.ca/sift-scale-invariant-feature-transform, 2004.

[31] A. Patel, D. R. Kasat, S. Jain, and V. Thakare. Performance analysis of various
feature detector and descriptor for real-time video based face tracking. International
Journal of Computer Applications, 93, 2014.

[32] X. Peng, A. Bouzerdoum, and S. L. Phung. Efficient cost aggregation for feature-
vector-based wide-baseline stereo matching. EURASIP Journal on Image and Video
Processing, page 24, 2018.

[33] S. Praveen. Efficient depth estimation using sparse stereo-vision with other percep-
tion techniques. Advanced Image and Video Coding, 2019.

[34] M. Pérez-Patricio and A. Aguilar-González. Fpga implementation of an efficient
similarity-basedadaptive window algorithm for real-time stereo matching. Journal
of Real-Time Image Processing, 16(2):271–287, 2019.

[35] M. Ramakrishna and S. S. S. Is orb efficient over surf for object recognition? In-
ternational Journal of Advanced Research in Computer Engineering & Technology
(IJARCET), 3(8), 2014.

[36] R. Ranftl, S. Gehrig, T. Pock, and H. Bischof. Pushing the limits of stereo using
variational stereo estimation. IEEE Intelligent Vehicles Symposium, pages 401–407,
2012.

[37] E. Rosten and T. Drummond. Machine learning for high speed corner detection.
European Conference on Computer Vision, 1:430–443, 2006.

[38] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to
sift or surf. ICCV, 11(1):2, 2011.

[39] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011.

79

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://uilo.ubc.ca/sift-scale-invariant-feature-transform
https://uilo.ubc.ca/sift-scale-invariant-feature-transform

[40] J. M. Røe. Continuous Calibration of 3D Vision Systems. https://ntnuopen.
ntnu.no/ntnu-xmlui/handle/11250/260911, 2013.

[41] Y. Sadakuni, R. Kusakari, K. Onda, and Y. Kuroda. Construction of highly accu-
rate depth estimation dataset using high density 3d lidar and stereo camera. 2019
IEEE/SICE International Symposium on System Integration (SII), 2019.

[42] Y. Shen. Efficient normalized cross correlation calculation method for stereo vision
based robot navigation. Frontiers of Computer Science in China, 5:227–235, 2011.

[43] B. Templeton. Cameras or Lasers? https://www.templetons.com/brad/
robocars/cameras-lasers.html, 2013.

[44] R. H. Thaher and Z. K. Hussein. Stereo vision distance estimation employing sad
with canny edge detector. International Journal of Computer Applications, 107(3),
2014.

[45] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied to wide-
baseline stereo. IEEE Trans. Pattern Anal, 32:815–830, 2010.

[46] T. G. van de Sande, Koen EA and C. G. Snoek. Color descriptors for object category
recognition. Conference on Colour in Graphics, Imaging, and Vision, 2008, 2008.

[47] Y. Wang, W. L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger.
Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection
for autonomous driving. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

[48] R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual
correspondence. Lecture Notes in Computer Science, 801, 2005.

[49] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence, 22:1330 – 1334, 2000.

[50] Y. Zhao, Y. Zhai, E. Dubois, and S. Wang. Image matching algorithm based on sift
using color and exposure information. Journal of Systems Engineering and Electron-
ics, 27, 2016.

80

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/260911
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/260911
https://www.templetons.com/brad/robocars/cameras-lasers.html
https://www.templetons.com/brad/robocars/cameras-lasers.html

	Abstract
	Preface
	Table of Contents
	Abbreviations
	Background
	Problem description
	Literature review
	Report outline

	Theory
	Pinhole model
	Camera parameters
	Calibration

	Stereo Camera
	Stereo geometry
	Stereo setup
	Correspondence problem

	Stereo matching
	Correlation based methods
	Sum of Absolute Differences
	Sum of Squared Differences
	Normalized Cross Correlation
	Rank Transform
	Census Transform

	Feature based methods
	Harris Corner Detector
	SIFT
	SURF
	ORB
	Descriptor Matching

	Comparison

	Implementation
	Hardware
	Camera
	Synchronized Capture
	Stereo setup

	Software
	ROS
	OpenCV
	MATLAB

	Calibration
	Prepare calibration
	Evaluation
	Calibration parameters
	Calibration on long distance

	Implementing stereo matching algorithms
	Correlation based methods
	Feature based methods

	Experiment
	Ground Truth
	Correlation based methods
	Sum of Absolute Differences
	Sum of Squared Differences
	Normalized Cross Correlation
	Rank Transform
	Census Transform

	Feature based methods
	Harris Corner Detector
	SIFT
	SURF
	ORB

	Discussion
	Stereo Setup
	Calibration
	Stereo matching algorithms
	Correlation based methods
	Feature based methods

	Conclusion and Future work
	Bibliography

