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Abstract

The detection of 3D objects is an essential task for autonomous vehicles. A common
approach is to obtain the 3D measurements from LiDAR technology, which is precise
but expensive. A cheaper approach is to utilize stereo cameras for 3D object detection
purposes. The problem is gaining the same accuracy as the LiDAR. This report presents
work done in comparing the depth information obtained by a stereo camera with a LiDAR.

Disparity map algorithms based on block matching with Sum of Absolute Differences as
a cost function and Semi-Global Matching are implemented and the depth compared with
the LiDAR. Both a visual comparison and a calculation of the distance between corre-
sponding points in the two sensors is performed. The depth estimates from the LiDAR is
considered as the ground truth. A method for finding corresponding points between two
point clouds using a nearest neighborhood search is proposed. It requires the point clouds
to be aligned and represented in the same coordinate frame. An extrinsic calibration of the
sensors is performed using a Iterative Closest Point algorithm on the point clouds. When
used on aligned point clouds the method provide a good measure of the accuracy of the
depth estimate obtained by the stereo camera. An experiment is conducted and the analy-
sis of the data shows that there is a possibility for the stereo camera to obtain an accurate
depth estimate compared with the LiDAR. Through Semi-Global matching only a small
deviation from the LiDAR data is present.
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Chapter 1
Introduction

1.1 Motivation

Situational awareness for an autonomous vehicle depends on sensors that can perceive ob-
stacles and other vehicles, and track and predict their motion so that collisions are avoided.
The ability to perceive depth is a crucial part of the process. LiDAR is one of the most
popular sensors used for this purpose when operating in urban environments. On the
autonomous ferry Milliampere LiDAR is one of the primary sensor used for 3D object
detection.

The LiDAR is a precise but expensive sensor. At Tesla Autonomy Investor Day Elon
Musk said: ”LiDAR is a fool’s errand. Anyone who relies on LiDAR is doomed. Expen-
sive sensors that are unnecessary” [30]. Tesla’s self-driving cars only rely on cameras and
radar, while most other developers use LiDAR combined with cameras and radars. The
reason why LiDAR is most often used is that 3D approaches based on stereo cameras have
up until now have not been able to reach the same level of accuracy as the LiDAR. But in
2019 researchers at Cornell University [33] presented a report where a method for detect-
ing objects using to inexpensive cameras achieved almost the same accuracy the LiDAR.
With this they have shown that in theory it is possible that stereo cameras could replace
the LiDAR in the future. The task of comparing the depth accuracy obtained by a stereo
camera with the LiDAR is thus proven very interesting.

1.2 Background and previous work

A substantial amount of research has been done in the field of remote sensing. For au-
tonomous vehicles a reliable depth estimation is a crucial task. Previous research into
depth estimation by stereo cameras has not been able to reach the level of accuracy that
the LiDAR has. That is not until in April 2019 when researchers at Cornell University
published the paper Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in
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Chapter 1. Introduction

3D Object Detection for Autonomous Driving [33]. They were able to triple the accuracy
of depth estimation by stereo cameras at 30 meters by changing the way one represents
the data. With this they showed that in principle it is possible to replace the LiDAR with
stereo cameras.

For over 60 years research has been done in the field of computer vision. The stereo
vision is one of the more popular techniques from this field of study. A substantial amount
of research on different disparity map algorithms has been done. However, most of the
research tends to focus on object detection at small distances around one to two meters.
Depth estimation with a stereo camera at longer distances needs to be looked more into.

Several literature surveys comparing different matching methods for creating disparity
maps have been published. Among them are [15], [20] and [19]. The different matching
methods can be divided into local and global methods. The global methods are generally
more accurate but less efficient than local methods. Since stereo cameras are supposed
to be used on an autonomous ferry real-time performance is important. Thus local al-
gorithms are more feasible. One of the local algorithms performing well is the Sum of
Absolute Differences, SAD, due to its low computation time [28]. This is a well-known
algorithm and different implementations are available online. In 2005 Hirschmuller [17]
proposed a Semi Global Matching Method performing pixel-wise matching based on Mu-
tual Information and the approximation of a global smoothness constraint. It was proven
that the algorithm performed the matching almost as efficient as local methods but with
higher precision. The semi global matching method and the SAD algorithm are thus used
in this project. The accuracy achieved by the algorithms are compared with the LiDAR.

Comparing depth information from the LiDAR and stereo camera is typically done by
utilizing the sensors on the same data set and not by representing the data together. The
3D data obtained from both the stereo camera and the LiDAR can be represented as point
clouds. To get a more direct comparison computer vision techniques for point clouds are
used in this project. To do the comparison the data needs to be represented in the same
coordinate frame. Estimating the extrinsic calibration parameters can be performed by
using methods for point cloud registration. In 1992 Besl and Kay [4] proposed a method
for registering 3D shapes of any form. It uses the Iterative Closest Point (ICP) algorithm
and is able to register two data sets of different sizes. The method is fast and perform well.
However, it requires the number of statistical outliers to be near zero.

Other techniques for performing extrinsic calibration of a LiDAR and cameras have
been developed mostly for sensor fusion purposes. A method for estimating extrinsic
calibration parameters using 3D-3D correspondences was proposed by Dhall et al. [6].
The method finds the extrinsic parameters between a LiDAR and a monocular camera. In
2017 Guindel et al. [13] proposed a method for automatic extrinsic calibration of LiDAR-
stereo sensor setups. The methods allow for different relative poses of the sensors and
do not require user interference. The published code requires a specific calibration target
of size 80cm by 120cm with four symmetrically disposed circular holes. The problem
with techniques like these is that they are used for monocular cameras or on a specific
calibration target. The objective is to use the stereo camera for long distances which might
affect the calibration accuracy. The calibration target needs to be fully visible for both
sensors and when using a small target some LiDARs might see less of the structure of the
object when placed at a great distance. This is dependent on the vertical resolution of the
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1.3 Problem description

LiDAR used.
Another helpful tool in analyzing point clouds is the nearest neighborhood search. In

2009 Muja and Lowe[27] published a paper presenting a fast and accurate nearest neigh-
borhood search method. The method includes different search algorithms depending on
the data it is used on. The best algorithm for the search and the optimal parameters are
automatically selected. Thus the method can be used to find the nearest neighbor of a point
in a point cloud.

1.3 Problem description
The objective of this specialization project is to compare the depth information obtained
from a stereo camera with the one obtained from a LiDAR. With this an analysis of the
possibility of using the stereo setup for 3D object detection on the autonomous ferry Mil-
liampere can be performed. The accuracy of different algorithms for obtaining depth in-
formation should be evaluated. The LiDAR is considered as the ground truth and the
necessary steps in order to compare the information retrieved by the two sensors should
be defined and implemented. This project includes the following tasks:

1. Design a stereo setup to be used on the ferry Milliampere.

2. Perform a calibration of the stereo camera such that the images can be undistorted
and rectified.

3. Integrate a velodyne LiDAR with the stereo setup.

4. Implement a method for retrieving depth from the stereo camera.

5. Perform an extrinsic calibration of the LiDAR and stereo camera.

6. Implement a method for comparing depth information from stereo camera with the
LiDAR.

7. Perform the comparison on a test scene.

1.4 Report outline
The structure of the projects is as follows. First, some theoretical background of the sen-
sors used in the project is presented in chapter 2. Chapter 3 presents the algorithms used
for estimating depth from the stereo camera and comparing the depth information of the
two sensors. The used method for comparing depth information by the two sensors is pre-
sented. Chapter 4 deals with the hardware and software used. The sensors used and the
decisions behind the setup are given. In chapter 5 the calibration process of both the stereo
camera and the calibration of the LiDAR and the stereo camera is described. Chapter 6
the experiment performed is presented along with the results obtained and the following
discussion. Chapter 7 concludes the project and gives suggestions for further work to be
done.
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Chapter 2
Sensor Fundamentals

This chapter introduces the theory behind the sensors used in this project. Two single
cameras are connected to generate a stereo vision and a 360◦ LiDAR is used as ground
truth to the depth information retrieved by the stereo camera. First, the principles behind a
camera is presented. Then, the theory behind the stereo camera and how one can retrieve
depth information from it is given. In the end, some background of the LiDAR is presented.
The theory presented in chapter is mainly based on the VSLAM compendium by Trym
Haavardsholm [14] and the textbook ”Multiple View in Geometry in computer vison” by
Hartley and Zisserman [16].

2.1 Camera

2.1.1 Pinhole model

The pinhole model is one of the most widely used geometric camera models [14]. It is a
mathematical model describing the correspondence between real-world 3D points and 2D
points in the captured image.

Figure 2.1 is an illustration of the model. The box represents the camera body. On one
side of the camera body we have the camera film or the image plane which captures the
light emitted through the pinhole. Only light rays from one direction are allowed through
at a time. Thus the light rays coming from other directions is filtered out. The light rays
will move through the hole in a straight line, as illustrated by the red lines in the figure.
Thus light from the bottom of the object will end up at the top of the image, and light from
the top of the scene will end up at the bottom. In the images produced everything will be
in focus. For the model to work properly, long exposure time is necessary to avoid blur
or the absence of moving objects. In practise cameras are usually equipped with a lens in
order to produce useful images. The pinhole is mathematical convenient and the geometry
of the model is an adequate approximation of the imaging process.
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Chapter 2. Sensor Fundamentals

Figure 2.1: Pinhole model

2.1.2 Camera parameters

Figure 2.2: Extrinsic and extrinsic geometry

The camera parameters are what describe the relationship between the camera coor-
dinate system and real-world coordinates. They can be divided into two groups; intrinsic
and extrinsic parameters. The intrinsic parameters represent the focal length and the op-
tical center of a camera and it is described as a mapping between camera coordinates and
pixel coordinates in the image frame. The extrinsic parameters represent the position of
the camera in real-world coordinates and it is described as a mapping between the camera
coordinates and the real-world coordinates. See figure 2.2. The image plane is parallel
to the camera plane at a fixed distance from the pinhole. This distance is called the focal
length, f . The gray line in the figure represents the principal axis. The principal axis
intercepts the image plane in a point called the principal point.

6



2.1 Camera

Homogeneous coordinates

Homogeneous coordinates are an alternative way to describe Cartesian coordinates in Eu-
clidean space. It is convenient to use when representing geometric transformations. Map-
ping a homogeneous vector to a Cartesian space and Cartesian to homogeneous is given
by equation 2.1 and equation 2.2 respectively [14].

x =

xy
z

 −→ x̃ =


x
y
z
1

 (2.1)

x̃ =


x̃
ỹ
z̃
w̃

 −→ x =

x̃/w̃ỹ/w̃
z̃/w̃

 (2.2)

Intrinsic parameters

The intrinsic parameters are described by the transformation between camera coordinates
and pixel coordinates in the image frame. The world coordinates are assumed to be given
in the camera coordinate frame, where the origin is in the optical center. Considering the
reference frames showed in figure 2.2, the mapping between the Euclidean 3D space, (X,
Y, Z), to Euclidean 2D space (u,v) is expressed as

u =
f

Z
X v =

f

Z
Y (2.3)

The corresponding mapping in homogeneous coordinates is thus given by
X
Y
Z
1

→
fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 (2.4)

This mapping does not take into consideration that the origin of the image plane may
not coincide with the principal point. If this is the case, then the mapping becomesXY

Z

→ [
f X

Z + px
f Y

Z + py

]

X
Y
Z
1

→
fX + Zpx
fY + Zpy

Z

 =

f 0 px 0
0 f py
0 0 1 0



X
Y
Z
1

 (2.5)

where (px, py)T are the coordinates of the principal point and
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K =

f 0 px
0 f py
0 0 1

 (2.6)

is the camera calibration matrix of a true pinhole camera.
Most often cameras are not true pinhole cameras. The pinhole model assumes pixels

to be square which may not be the case for other camera models. CCD (Charged-coupled
device) is the model most often found in digital cameras. By a few adjustments the pinhole
model can be made to fit the CCD model. In CCD cameras there is the possibility of
having non-square pixels. This may cause an unequal scale factor in each direction if
image coordinates is measured in pixels. To account for this mx and my are defined as the
number of pixels per unit distance in image coordinates in x and y directions, respectively.
The camera calibration matrix then becomes

K =

αx s x0
0 αy y0
0 0 1

 (2.7)

where αx = fmx and αy = fmy represents the focal length in pixel units, and x0 =
mxpx and y0 = mypy represents the principal point in pixel units [16]. The s is called
the skew parameter. It is non-zero in cameras where the image axes are not perpendicular.
This is usually not the case for most cameras.

Extrinsic parameters

The camera frame and the world reference frame are related via a translation and a rotation.
If we have two coordinate frames Fa and Fb with different position and orientations,

the transformation between the two frames can be described by the homogeneous trans-
formation matrix

Tab =

[
Rab taab
0> 1

]
where xa = Tabx

b, (2.8)

Rab is the orientation of Fb relative to Fa, and taab the translation vector given in the
coordinate frame of Fa [14].

When describing the intrinsic parameters the world coordinates were assumed to be
given in the camera frame. Now, to describe the extrinsic parameters the scene points are
expressed in the world coordinate frame (X, Y, Z), the one to the far right in figure 2.2. A
point, xw in the world frame can be expressed as a point, xc, in the camera frame by

xc = Rxw + t (2.9)

R and t is thus the extrinsic parameters of the camera.
Combining the intrinsic parameters in 2.6 or 2.7 with 2.9 we get the camera matrix. It

relates world coordinates with pixel coordinates and can be written as

P =

[
R
t

]
K (2.10)
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2.1 Camera

Distortion

Distortion occurs in lenses. It makes straight lines in a scene appear bent in the image. An
ideal pinhole camera does not have a lens and thus it is not accounted for in the camera
matrix.

(a) Negative radial distortion (b) No distortion (c) Positive radial distortion

Figure 2.3: Radial distortion by MathWorks [23]

There are different kinds of distortion; radial distortion and tangential distortion. The
most important one is the radial distortion. It occurs when light rays are bent more near
the edges of the lens than in the center. Figure 2.3 shows how different types of radial
distortion looks like in an image. Letting (x, y) be the ideal points and (xd, yd) the radial
distortion can be modeled as

xd = x+ x
[
k1(x2 + y2) + k2(x2 + y2)2 + k3(x2 + y2)3...

]
yd = y + y

[
k1(x2 + y2) + k2(x2 + y2)2 + k3(x2 + y2)3...

] (2.11)

where k1, k2, k2, ... are the radial distortion coefficients of the lens[35].

(a) No tangential distortion (b) Tangential distortion

Figure 2.4: Tangential distortion

Tangential distortion occurs when the lens and the image plane are not parallel, see
figure 2.4. It can be modeled as

9



Chapter 2. Sensor Fundamentals

xd = x+
[
2p1xy + p2(x2 + y2 + 2x2)

]
yd = y +

[
p1(x2 + y2 + 2y2) + 2p2xy

] (2.12)

where as before (x, y) are the undistorted pixel locations and (xd, yd) the distorted ones
[23]. p1 and p2 are the tangential distortion coefficients of the lens.

2.1.3 Camera Calibration

Camera calibration is the process where intrinsic and extrinsic parameters are estimated.
Lens distortion is modeled and correct for. The intrinsic and extrinsic parameters are what
relates the world and the camera coordinate system. These parameters can be used to
get the size of an object in the real world, or determine where in the scene the camera is
located. There exist different techniques, but the two main ones according to Zhang[35]
are:

• Photogrammetric calibration: calibration is performed by using an object with
known 3D world points. The correspondences between the real world points and the
corresponding 2D image points can be found by having multiple images of a known
calibration object. The most commonly used object is the checkerboard where the
number of squares and their size is known.

• Self-calibration: no calibration object is used. The camera is moved around while
the scene remains static. The correspondence between the three images is used to
estimate the intrinsic and extrinsic parameters.

Zhangs method

Zhang’s method is a calibration technique developed by Zhengyou Zhang at Microsoft
Research [35]. This method lies between the two main techniques described above, ex-
ploiting the advantages of both methods. The only requirement is that the camera has to
observe a planar pattern, typically a checkerboard, in at least two different orientations.
The algorithm then detects feature points in the images. Since the plane z = 0 is given by
the pattern itself only 2D metric information is used. The linear transformation between
planes is computed and by using singular value decomposition an initial estimation of the
intrinsic parameters is computed. Further, applying the Levenberg-Marquardt algorithm
to the algebraic error the parameters are refined. The same approach is used to make an
estimation of the extrinsic parameters. Lens distortion also needs to be dealt with. An esti-
mation of the radial distortion parameters is calculated by comparing the real pixel values
and the ideal ones given by the pinhole model.

2.2 Stereo Camera
The pinhole model allows for a reconstruction of a pixel coordinate into a world point,
but using a monocular camera one cannot without having prior knowledge of the world
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2.2 Stereo Camera

perceive the accurate depth of an object. The stereo setup allows two cameras to simulate
the human binocular vision, and recover a 3D structure of a scene.

Retrieving depth information from a stereo camera is based on the principle of stereo
geometry. When pictures are taken with the two cameras the scene is captured in two
different viewpoints. To obtain the 3D position of the scene the stereo geometry needs to
be known and for each point x in one camera the corresponding point x′ in the other needs
to be located. This is called the correspondence problem. To solve the correspondence
problem and retrieving the 3d world point the following steps needs to be taken

• Find a suitable stereo setup

• Calibrate and rectify

• Find matching points in the two images

• Make a disparity map

• Make a 3D reconstruction from the disparity map

2.2.1 Stereo setup
When deciding the stereo setup it is important to choose the appropriate hardware setup
according to the application area. A good starting point is to outline the area where you
want to look. The cameras should be set up so that their field of view covers that area.

(a) Small baseline (b) Large baseline (c) Angled

Figure 2.5: Stereo setup

When deciding the field of view of the system it is important to consider the area
the system is going to be implemented, how large an area it is necessary to capture in
combination with the size of the desired object to be detected. The field of view of the
system is directly linked to the distance between the two cameras, the baseline, and the
orientation the cameras has according to one another, the vergence angle [26]. Figure 2.5
shows some possible setups, where the field of view for the matching image is marked in
green. It illustrates how the resulting field of view is influenced by the size of the baseline
and the orientation of the cameras. From this one can conclude that the distance one can
detect objects, the field of view and the blind spots are correlated and dependent on the
setup.

The pixel accuracy is also dependent on the baseline. From figure 2.6 one can see that
when the baseline is small several points will project to the same pixel. Thus with a small
baseline the depth error will be larger. A larger baseline will have higher accuracy but with
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Figure 2.6: Pixel accuracy dependent on baseline

a larger field of view searching for corresponding pixels will become more difficult. The
level of depth-accuracy the system will achieve is dependent on the size of the baseline,
the field of view and the blind spots.

It is only the area captured in both of the images that are considered for further pro-
cessing. As a rule of thumb 2

3 of each image should overlap the other. If this is not the
case only a small part of the images captured provide useful information. Thus the cam-
eras should be placed accordingly. The overlap is dependent on both the baseline and the
angle between the cameras.

The depth accuracy achieved is dependent on the baseline. The size of the baseline
is directly proportional to the distance at which one is able to detect objects. Thus stereo
systems with a small baseline are well suited for detecting objects at short distances, while
a larger baseline is better for detecting objects at greater distances. There is a rule of
thumb saying that the relation of the baseline and the distance at which the depth is the
most accurate perceived is 1

30 . E. g. when the baseline is of 1 meter the best depth-accuracy
is achieved at 30 meters [5].

Angling the cameras towards each other will influence the field of view and where the
focus lies. Having the axis through the optical centers intercept at the desired operating
distance will make that the distance at which the cameras are in focus.

It is also crucial to have a sense of the optics of the two cameras. When processing
the images from the stereo camera different optics will output different results. To ease
the matching of the images it is common to use the same type of cameras. One thing
to consider is the resolution of the camera. To accurately measure the depth the images
should have multiple pixels on the surface of the objects. The operating distance and the
field of view of the camera are dependent on the focal length. Both resolution and focal
length should be taken into consideration when selecting the camera sensor.
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2.2 Stereo Camera

f = focal length
h = horizontal sensor size

f =
h ∗OD
FOV

, OD = operating distance

FOV = horizontal field of view

2.2.2 Epipolar geometry

Figure 2.7: Epipolar geometry

The geometry of stereo vision is called the epipolar geometry and is illustrated in
figure 2.7. The green triangular connecting the two optical centers and the scene point X
is called the epipolar plane. The baseline is the line connecting the two optical centers,
OL and OR. The points where the baseline intersects the image planes, eL and eR are
called the epipoles. The lines between the epipoles and the points XL and XR are called
the epipolar lines. The epipolar lines is where the epipolar plane intersects the image
planes. When a scene point X is given the projected image points xl and xr must lie
on the corresponding epipolar line. This is called the epipolar constraint. Exploiting this
makes the correspondence problem go from a region search to a search along one line.

The epipolar constraint can be represented mathematically by the essential matrix, E,
and the fundamental matrix, F. The essential matrix represents the constraint in the nor-
malized image coordinates while the fundamental matrix represents it in pixel coordinates.
A correspondence between the points xL and xR is represented in normalised image co-
ordinates as

xLExR = 0

The essential matrix is given by the following equation in [14]

E = [tLLR]xRLf
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This is related to the pose between the left and right image planes in figure 2.7 which
can be given by the rigid body transformation

TLR =

[
RLR tLLR

0 1

]
This can be extended to pixel correspondences between uL and uR via the related

camera calibration matrices KL and KR of each camera. The epipolar constraint can now
be represented by the fundamental matrix as

uL
>FLRuR = 0

The fundamental matrix is related to the essential matrix and it can be written as

FLR = KL
−>ELRKR

−1

2.2.3 Calibration and Rectification
Even though the pose and distance between the cameras in the stereo setup can be mea-
sured it is desirable to find an exact model of the stereo camera. This can be obtained
through a stereo calibration. Calibrating a stereo camera is the process of estimating the
essential and fundamental matrix. This allows for the rotation and translation of one cam-
era according to the other to be known.

Figure 2.8: Image rectification

When the rigid body transformation between the two cameras is known this can be
used to rectify the images. Rectification is the process of reprojecting the images such
that the image planes are row aligned and coplanar [18]. The result of the process can be
seen in figure 2.8. Having two rectified images makes the correspondence problem easier.
Looking for corresponding pixels in the two images is now a 1D problem. From the figure
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one can see that the corresponding points in the images are aligned in the same straight
leveled line that can be drawn between the two images.

2.2.4 Stereo matching

A stereo matching algorithm needs to be implemented to find the corresponding points in
two rectified images. The different approaches are usually divided into two methods; local
and global methods.

In local methods a small number of pixels surrounding the pixel of interest are consid-
ered. This is usually referred to as block matching. A small region of pixels is taken from
one of the images and a search for the closest matching region in the other is performed.
The search starts at the same location as where the block was taken, and moves to the
left and right up to a maximum distance. To compare the image regions a cost function is
needed.

In global methods a scan-line or even the whole image is taken into consideration [20].
The methods use optimization techniques such as dynamic programming and graph cuts.
Solving the correspondence problem using a global approach makes the matching process
more robust to among others uniform textures and occlusions which local methods are sen-
sitive to. The disadvantage on the other hand is that the methods are usually computational
heavy and slower than local methods.

2.2.5 Disparity map

Figure 2.9: Left and right stereo image and the resulting disparity map given by [11]

Disparity map is a representation of the motion between the two images taken by the
stereo camera [11] and it is calculated based on the distance between the corresponding
pixels. It can also be called a range map. Figure 2.9 shows an example of what a disparity
map can look like. The darkest colors represent pixels with low disparity, high depth, and
the brightest pixels represents pixels with high disparity, low depth.

The depth, z, of each point in the disparity map can be calculated by

z =
b · f
d

(2.13)

where b is the baseline, f the focal length and d the disparity.
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2.3 LiDAR
Light Detection and Ranging (LiDAR) is an active remote sensing system. The LiDAR
emits a laser pulse and the reflected light energy is returned and recorded by the sensor.
The system measures the time it takes for the emitted pulse to be reflected to the sensor.
The travel time is used to calculate the distance to the object that reflects the light. This is
done by using the formula stated in equation 2.14. [34]

Distance =
Speed of light · time of flight

2
(2.14)

A LiDAR consists of lasers, scanners and photodetectors. The laser emits the laser
light and the photodetector records the echoed light. The scanner then processes the dis-
tances and angles into the system. The speed of developing pictures depends on how fast
the scanner is. [31]

There are different types of LiDARs, but in this project the focus will be on 3D Li-
DARs. A 3D LiDAR measures azimuth and elevation of the reflection in addition to the
range. This gives us a 3D point in spherical coordinates, see illustration in figure 2.10. In
the figure ϕ is the azimuth angle, θ is the elevation angle and r the distance from the point
to the LiDAR. A Cartesian point is thus given by

x = r cos(θ) sin(ϕ)

y = r cos(θ) cos(ϕ)

z = r sin(θ)

(2.15)

Figure 2.10: Spherical coordinates

The output of the LiDAR called a point cloud and it contains 3D points in spherical
coordinates.
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2.3.1 Ground Truth
Ground truth refers to the accuracy of the data collected. In depth estimation the ground
truth is the real depth and tells how accurate the depth estimation is. When using stereo
vision to acquire depth information a good ground truth can be obtained from a 3D LiDAR.
The LiDAR is considered as a highly accurate sensor and is adequate as ground truth for
long distances. Comparing the points obtained by the stereo camera with the ones obtained
by the LiDAR gives a good estimate of how exact the stereo depth estimates are.
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Chapter 3
Depth estimation and comparison

The objective of the project is to be able to compare depth estimates from the stereo cam-
era with the LiDAR. The data produced by the LiDAR include an array of 3D points of
the observed surroundings, a point cloud. For the stereo camera to produce 3D points a
matching function must be implemented in order to produce a disparity map. To com-
pare the depth estimates some operations on the obtained point clouds must be performed.
The LiDAR is considered the ground truth and thus the accuracy of the stereo camera is
evaluated based on the LiDAR data.

3.1 Stereo matching algorithms
As mentioned in 2.2.4 stereo matching algorithms can be divided into local and global
methods. The global algorithms performs better in terms of accuracy but are generally less
efficient than the local ones. For autonomous vehicles real-time performance is essential.
Thus local algorithms are more suitable.

3.1.1 Sum of Absolute Differences
In this project block matching is used with the Sum of Absolute Differences (SAD) al-
gorithm as a cost function. The local algorithm is used due to its simplicity and low
computation time.

SAD(d) =
∑

(u,v)∈Wm

| IL(u, v)− IR(u− d, v) | (3.1)

Equation 3.1 states the SAD algorithm where IL(u, v) is the left image point’s inten-
sity, IR the right image point’s intensity and d the pixel disparity [28]. To compare two
blocks the absolute value of the difference between the corresponding pixels in the blocks
is computed. These values are summed together and are used as an estimate of how similar
the blocks are. The lower the value the more similar the blocks are.
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3.1.2 Semi-Global Matching
Semi-Global Matching is a method that takes advantage of both local and global properties.
The idea is to have a method that is more accurate than local methods and faster than global
methods. A Semi-Global Matching approach introduced by Hirchmüller [17] matches
each pixel based on Mutual Information and the approximation of a global smoothness
constraint. Mutual information is defined by the entropy of the two images which is cal-
culated from the probability distributions of the intensities. Mutual information thus acts
as a cost function as to whether pixels match or not. It is calculated for each pixel and it
is not sensitive to illumination changes. A hierarchical approach is used in order to de-
crease runtime. Calculating the cost pixel-wise can often lead to wrong matches, due to
for example noise. For this reason a penalization of changes of neighboring disparities is
added. The cost aggregation approximates a global smoothness constraint. The matching
costs are connected with one another by calculating cost paths. Thus the cost of a pixel is
calculated by the sum of all 1D minimum cost paths leading to that pixel. The matching
pixels are the ones that correspond to the minimum cost. The method uses a median filter
with a small window to remove outliers.

3.2 Point cloud operations
In order to get an accurate comparison of the depth estimation obtained by the two sensors
some operations on the obtained point clouds must be performed.

3.2.1 Nearest Neighborhood Search

Figure 3.1: Nearest neighbour

When using the LiDAR as ground truth it is crucial to be able to compare the 3D points
given by stereo camera to the LiDAR. This can be achieved by calculating the distance
between a point given by the stereo camera and the nearest point given by the LiDAR.
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Thus it is essential to be able to find the point in a point cloud that is closest to a given
point. This is called a nearest neighborhood search and is illustrated in figure 3.1.

Finding the nearest neighbor of a point in a point cloud is the operation of finding the
point that yields the smallest distance. The metric distance between two points is simply
given by the difference of the points. Thus the nearest point, ~y, of a reference point cloud,
X , to a point, ~p, is given by the solution of

‖~p− ~y‖ 6 ‖~p− ~xi‖ (3.2)

where ~xi is a point in X . The search can be made efficient by using a k-d tree approach,
for more information see [12].

3.2.2 Iterative Closest Point
The point clouds produced by the sensors are given in different coordinate frames. Thus
an extrinsic calibration of the two sensors must be performed.

The Iterative Closes Point (ICP) algorithm by Besl and McKay [4] calculates the ro-
tation and translation that minimizes the Euclidean distance between two point clouds. A
base cloud, P, and a reference cloud, X. ICP is independent of representation, it utilizes a
shape matching metrics that is both global and local.

First, the closest point in the reference cloud must be found for each point in the base
cloud. This can be solved by performing a nearest neighborhood search on each point
in the base cloud. When the corresponding points in the two point clouds is known the
rotation, R, and translation, t, between the point clouds can be calculated. This is done by
minimizing the error

e(R, t) =
1

Np

Np∑
i=1

‖~xi −R~pi − t‖2

where Np is the number of points in the base cloud P, ~xi is a point in the reference point
cloud X and ~pi is a point in the base cloud P [4].

To find the optimal rotation and translation the centroids of the point clouds must be
found. The centroid of a point cloud is the average of the points and can be calculated as
follows

~µp =

Np∑
i=1

~pi ~µx =

Nx∑
i=1

~xi (3.3)

The cross-variance matrix of the point clouds is given by

Σpx =
1

Np

Np∑
i=1

[(~pi − ~µp)(~xi − ~µx)>] =
1

Np

Np∑
i=1

[~pi ~xi
>]− ~µp ~µp

> (3.4)

The optimal rotation can be found by finding the maximum eigenvalue of the following
matrix

Q(Σpx) =

[
tr(Σpx) ∆>

∆ Σpx + Σ>px − tr(Σpx)I3

]
(3.5)
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where I3 is the 3× 3 identity matrix and ∆ is given by [A23 A31 A12]> where
Aij = (Σpx − Σ>px)ij [4].

When the rotation is found the translation is given by

t = ~µx −R ~µp (3.6)

3.3 Depth comparison
Two methods for comparing depth information from the stereo point cloud with the LiDAR
point cloud is proposed.

3.3.1 Depth comparison using a nearest neighborhood search
In theory the stereo camera produces a flat point cloud of objects with flat surfaces. When
aligning the point cloud of the LiDAR and the stereo camera, a point in the LiDAR will
have its corresponding point in the nearest point produced by the stereo point cloud. Thus
when selecting points in one of the point clouds the corresponding points in the other can
be found by performing a nearest neighborhood search as described in section 3.2.1.

The following procedure for comparing depth estimates by the LiDAR and the stereo
point cloud is proposed

1. Perform an extrinsic calibration of the two sensors

2. Transform the LiDAR point cloud into the stereo reference frame

3. Visualize the two point clouds in the same plot

4. Select points from one of the point clouds one want to compare the depth of the
other with

5. For each extracted point search for the nearest neighbour in the other point cloud

6. Calculate the distance between the corresponding points

The extrinsic calibration is performed by using the ICP algorithm as described in section
3.2.2.

3.3.2 Depth comparison using manually selected points
It is important to notice that the nearest neighborhood search only returns the correspond-
ing point in the other point cloud if they are aligned and the distance between the point
clouds is reasonable. If the point clouds are too far apart noise could appear between them
and the nearest neighbor might be a different point than the desired corresponding point.
If that is the case corresponding points should be selected manually for both point clouds.
Thus an evaluation after step 3 must be made. If a nearest neighborhood search is deemed
unreasonable the following procedure is proposed

1. Perform an extrinsic calibration of the two sensors
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2. Transform the LiDAR point cloud into the stereo reference frame

3. Visualize the two point clouds in the same plot

4. Select points in both point clouds that corresponds to roughly the same place on the
object.

5. Calculate the distance between the corresponding points
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Chapter 4
Hardware and Software

The system is designed so that it can be taken in use on the autonomous ferry Milliampere.
To do that some considerations need to be taken into account. This chapter describes the
sensors used in this project and what considerations that need to be made in order to
integrate them into the system. Furthermore, the software used for the implementation of
the point cloud processing, the calibration of stereo camera, LiDAR-camera calibration
and disparity map is presented.

4.1 Hardware

4.1.1 Camera sensor

Figure 4.1: Blackfly S GigE cameras from [10]

For the camera sensor two cameras of the model Blackfly S GigE from FLIR are used
together with lenses of the model 8.5mm C Series Fixed Focal Length Lens from Edmund
Optics. The datasheet of the camera and lens can be found in [10] and [7] respectively.

The Blackfly S GigE cameras are high-performance machine vision cameras that are
easy to use. They are compact sensors in the form of an ice cube. The specifications of the
camera are stated in table 4.1. A resolution as high as 2248× 2048 makes the sensor very
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Frame rate 24 FPS
Resolution 2248× 2048
Pixel Size 3.45 µm
Sensor Type CMOS
Sensor Size 2/3′′

Readout Method Global shutter
Machine Vision Standard GigE Vision v1.2
Operating Temperature 0◦ C to 50◦ C
Exposure Range 13 µ s to 30 s
Dimensions (W x H x L) 29 mm x 29 mm x 30 mm

Power Requirements Power over Ethernet (PoE), or 12 V
nominal (8 - 24 V) via GPIO

Table 4.1: FLIR Blackfly S GigE specifications given by [10]

attractive for the use of object detection at long distances. Taking into consideration the
different qualities presented in section 2.2.1 the Blackfly S GigE camera is a good choice.
Having a GigE, Gigabit Ethernet, interface makes it easy to connect several cameras. It
provides fast transfer over ethernet cable.

The lens has a focal length of 8.5 mm. It allows for iris and focus to be adjusted
manually and it can be tuned in code. When the lens is used together with a camera with a
sensor size of 2/3′′ the resulting field of view is given in the datasheet of the lens and it is

FOV = 59.1◦

A field of view of that size is very satisfactory and makes it possible to see most of the area
in front of the ferry. This also gives more freedom in deciding the stereo setup because
there will be much overlap in the field view of the two cameras.

A drawback of the cameras is the operating temperature. In a city like Trondheim this
is not feasible when for large portions of the year the temperature is below zero. Testing
outside is thus dependent on the weather.

4.1.2 Stereo setup
The setup of the stereo camera was designed so that it could fit on the ferry Milliampere.
Placing the cameras below the sensor rig already installed on the ferry gives a space of
two meters where the cameras can be installed. To exploit the space available a mount
of 2 meters was designed where the distance between the cameras and their pose can be
adjusted, see figure 4.2.

Considering the rule of thumb presented in section 2.2.1 a distance of 2 meters between
the cameras allows for objects 60 meters away to be captured. This is feasible for such a
slow moving ferry and thus the cameras were placed at each end of the mount measuring
the exact baseline of 1.75 meters. Seeing as the cameras have such a broad field of view
the resulting field of view at 60 meters is approximately 60 meters wide giving a blind
spot of only one meter on each side, see figure 4.3. Thus the rule of thumb saying that 2

3
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Figure 4.2: Designed stereo setup

Figure 4.3: FOV stereo setup with baseline of 1.75 m

Figure 4.4: FOV stereo setup with baseline of 1.75 m and cameras angled 0.8◦ towards each other

of views must be overlapping is fulfilled. The cameras were angled approximately 0.8◦

towards each other so that the optical axis of the cameras intersect at 60 meters making
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that the area of focus. The angle was found by using basic trigonometric

tan−1(
1.75/2

60
) ≈ 0.8◦

See figure 4.4 for the resulting field of view.

Figure 4.5: FOV stereo setup with baseline of 26 cm

Figure 4.6: FOV stereo setup with baseline of 26 cm and cameras angled 1.86◦ towards each other

Due to the cameras operating temperature testing outside is not feasible during the
winter and most of the autumn. A setup optimal at 60 meters is proven challenging. For
this reason an experimental setup was designed for the purpose of this project. For sim-
plicity the focusing distance was chosen to be at four meters. By the rule of thumb the
baseline should be around 13 centimeters. Looking at the theory behind the stereo setup

28



4.1 Hardware

in section 2.2.1 a small baseline will give a low accuracy due to several points projecting
to the same pixel. For that reason the baseline was set to 26 centimeters. This also makes
it possible to place the LiDAR between the two cameras. To make the focusing distance at
4 meters the cameras were angled such that the optical axis intercepts at 4 meters. Again
using basic trigonometric the angle of the cameras was computed to

tan−1(
26/2

400
) ≈ 1.86◦

See figure 4.6 for the resulting field of view. The setup causes the cameras to have a
blind sport of approximately 22 cm before the field of view starts.

4.1.3 Synchronized Capture
Synchronized capture is when two or more cameras take pictures at the same time. To
retrieve exact depth of moving objects it is crucial that the cameras captures images at
the exact same time. To achieve this a master-slave architecture is implemented, where
one camera triggers the other. The implementation is done by following the suggested
approach in [9]. When the master camera starts capturing an image a strobe occurs, and
this is used to trigger the second camera. The frame rate of the secondary camera will now
follow the master cameras frame rate. To implement this a physical connection linking the
cameras GPIO pins is used.

Figure 4.7: GPIO connection circuit

A sketch of the implementation can be seen in figure 4.7. The master’s output voltage
pin, 3.3 V, is connected to the secondary’s input voltage pin. Since the optoisolated output
is used the strobe signal from the master camera need to be strengthened. This is achieved
by using a pull-up resistor. A 10KΩ resistor is connected to the master camera’s non-
isolated output voltage and its opto-isolated output to the secondary camera’s non-isolated
input. Next master’s ground is connected to the secondary’s ground. The opto-isolated
ground on master is also connected to the secondary’s ground.

Two Hirose cables were connected as described above. To get the length need between
the cameras an extension was added between the cables. A heat shrink tube was added
over the connections to make it waterproof, see figure 4.8.
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Figure 4.8: GPIO connection circuit

Next, the cameras need to be configured. This is done by using the demo program
SpinView available with Spinnaker SDK, FLIR’s GenICam3 API library. For the master
camera the 3.3 V line is enabled. For the secondary camera the trigger source is set to
the input voltage pin and the Trigger mode is set On. The trigger overlap is set to Read
Out, which means that the camera will start capturing as soon as the image area has been
cleared.

4.1.4 LiDAR

Figure 4.9: Velodyne LiDAR Puck 16

The LiDAR used in this project is the Velodyne LiDAR Puck, VLP 16, see figure 4.9.
Its specifications are given in [32]. It is a small, compact LiDAR that has a range up to
100 meters and it has a 360◦ horizontal and 30◦ vertical field of view. It has an accuracy
of ±3 cm making it attractive both in price and accuracy.

The VLP 16 has 16 laser/detector pairs mounted 2 degrees apart in the vertical direction
starting at -15◦ and ending at 15◦. In the horizontal direction the VLP 16 has a resolution
between 0.1◦ and 0.4◦ and the rotation rate can be chosen as a value between 5 and 20 Hz.
The number of measurements obtained by the LiDAR is dependent on horizontal angular
resolution and the rotation rate.

It is desirable to represent the spherical points given by the sensor in a Cartesian coor-
dinate system. This is achieved by creating a coordinate frame centered in the LiDAR, see
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(a) Side view (b) Top view

Figure 4.10: The LiDAR coordinate frame

figure 4.10. Here ϕ represents the azimuth angle and θ the elevation angle. As described
in section 2.3 a 3D point from the LiDAR can be represented in the LiDAR frame as:

Pl =

rcos(θ)sin(ϕ)
rcos(θ)cos(ϕ)

rsin(θ)

 where Pl =
[
x y z

]>
(4.1)

4.1.5 LiDAR setup

Figure 4.11: LiDAR mount

The purpose of the LiDAR is to serve as ground truth to the stereo camera. Seeing as
the LiDAR and the camera should observe the same points the simplest setup is to place
the LiDAR in the center between the two cameras. Thus an extra mount was created to be
attached to the same bar as the cameras. The LiDAR mount is designed so that the LiDAR
can easily be attached and detached. What is important here is that the LiDAR is placed
in the same place and orientation every time it is attached. To fulfill these requirements
the mount is designed so that the LiDAR can only be placed either facing forward or
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backward. Figure 4.11 shows the final design of the mount. The two metal screws are
placed to fit with the two holes underneath the LiDAR making sure it can only be placed
in a certain orientation.

Figure 4.12: Complete setup of stereo camera and LiDAR

The complete setup of the LiDAR together with the cameras is shown in figure 4.12

Connection

The VLP 16 primary interface is its Ethernet interface. All the data, command and control
are transmitted over it. To integrate it in the system together with the stereo setup the
LiDARs Ethernet cable needs to be connected in the same switch at the cameras. The
LiDAR does not get its power through Ethernet as the cameras, it has its separate power
supply. Ethernet is only used for data transfers and command and control. To gain access
to the data from the LiDAR a network need to be set up as an interface. When creating the
network the LiDARs IP address is set and a static route between the Ethernet port in use
and the LiDARs IP is setup.

4.2 Software

4.2.1 Robot Operating System - ROS
ROS is an open-source framework with a collection of tools and libraries [1]. It provides
device drivers and communication between multiple processes. It is in this project used
to collect and organize data. Ubuntu Linux is a supported operating system. This work is
done as a part of the autonomous ferry ”Milliampere”. To be compatible with the already
existing system on the ferry ROS Kinetic was downloaded on a computer running on
Ubuntu 16.04 LTS. The main languages for writing ROS code is C++ and Python.

A node in ROS in an executable that is connected to the ROS network. The nodes
communicate using publishers and subscribers for sending and listening to messages. ROS
also provides a built-in command-line tool for recording and playing published messages,
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called rosbag. This makes it possible to store data from experiments. When playing the
stored data the sensor outputs and inputs are simulated without actually having the sensors
present in the system.

Drivers

ROS provides open source packages for different sensors. The
spinnaker_sdk_camera_driver and the velodyne_driver driver is used for
the FLIR cameras and the LiDAR. The drivers are downloaded from [3] and [2] respec-
tively.

The Velodyne driver collects all the TCP packages sent over the ethernet cable from the
LiDAR into the computer. A message containing the raw data from one scan from the Li-
DAR is published i.e. all points captured when the 16 lasers do a 360◦ scan. The raw data
is represented in a point cloud format. The point cloud message is of type PointCloud2
which stores the height and width of the point cloud and the intensity of each point in it.
This message is easily converted into a 3D Cartesian representation using built-in func-
tions. This results in an array of 3D points. Once the LiDAR is turned on it will publish
data continuously and it is thus not triggered by the user. The camera driver is a driver for
running cameras that uses the Spinnaker SDK. As mentioned in section 4.1.3 Spinnaker
SDK is a API Library by FLIR and it provides the interface with the camera. It needs to be
downloaded on the computer running the driver. The camera driver also collects data sent
over an ethernet cable. It reads the image stream sent through GigE ports and publishes the
raw data of a single frame of a video stream. The driver allows for different parameters to
be set when launching the code. Exposure time, the number of frames to save, location of
where to save the images and whether to use color or not are just some of the parameters
that can be set. The driver provides code for launching several cameras at once. The ID
of both cameras is specified in the code along with which camera is the master and which
one is the slave. Thus by using the tools provided by the driver a subscriber that listens for
data published by both cameras can be implemented. Only the master needs to be triggered
when wanting to capture images, the slave is triggered by the master. The driver also labels
the frames captured with a timestamp which is helpful in ensuring synchronized capture.

4.2.2 MATLAB

MATLAB’s ROS toolbox provides functions making it possible to connect to an already
existing ROS network. The function rosinit(’IP_address’) where the ip-address
of the ROS network is inserted makes it possible to use the messages published in the
network. Connecting MATLAB to the ROS network is especially helpful due to the Tool-
boxes provided by MATLAB. The Computer Vision Toolbox provides functions and apps
helpful for designing 3D vision. It contains functions for processing point clouds. Dif-
ferent function for denoising, downsampling and removing invalid points are available for
preprocessing. It also provides complete methods for registering point clouds where the
preprocessing, registration and alignment and stitching are all done by the same function.
This makes MATLAB a suitable environment to perform the extrinsic calibartion of the
LiDAR and the stereo camera.
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The Computer Vision Toolbox also provides apps for camera calibration, both monoc-
ular and stereo calibration. The Camera Calibrator app is deployed to estimate a single
camera’s intrinsic, extrinsic and lens distortion parameters. The app implements the cali-
bration algorithm by Zhang, see section 2.1.3. Uploading images of a calibration pattern
in different orientations the app calibrates and provides tools for evaluating the calibration.
Parameters or images can be updated in order to improve the calibration. The Stereo Cam-
era Calibrator App is deployed to estimate the rigid body transformation between the two
cameras. The result of the single camera calibration is used to account for distortion. The
app requires one to upload images of a calibration pattern in different orientations taken
simultaneously by the two cameras. As the Camera Calibrator App this app also provides
tools for evaluating and improving the calibration.

4.2.3 OpenCV

Open Source Computer Vision Library, OpenCV, is a library of programming functions for
computer vision applications. The library provides among other functions for processing
the images captured by a stereo camera. It has interfaces for both MATLAB and C++ and
it supports Linux. It is supported by ROS by adding it as a dependency and including it
in the build process of the nodes where it is used. Through the Computer Vision Toolbox
MATLAB provides an interface to OpenCV and thus making several functions and methods
available for processing of stereo images and disparity maps.

4.2.4 Disparity maps

Functions for creating disparity maps from stereo matching algorithms is available through
MATLAB’s Computer Vision Toolbox.

The block matching method using SAD for pixel matching is implemented using the
function disparityBM(I1,I2,Name,Value)where I1 and I2 are the left and right
image of a stereo camera [21]. The images need to be rectified before they can be used
as input for the function. When the stereo parameters obtained from the stereo calibration
are known the function [J1,J2] = rectifyStereoImages(I1,
I2, stereoParams) can be utilized in order to obtain the rectified stereo images. The
inputs name and value represents different parameters to be set. To achieve an acceptable
disparity map a proper tuning of the parameters is necessary. The parameters available for
tuning are given in table 4.2.

A method for computing disparity map through Semi-Global Matching, see section
3.1.2, is implemented using the function disparitySGM(I1,I2,Name,Value) [22].
The function requires rectified stereo images as input. First, it calculates the Consensus
Transform of the images. The consensus transform calculates whether a pixel has a smaller
or higher intensity than each of its neighbors. Next the difference in bit position between
pixels of the consensus transform is calculated, the Hamming distance. The disparity
values are calculated based on Semi-Global Matching, see section 2.2.4. The function
requires two parameters to be set. The parameters available for tuning and their interpre-
tation is given in table 4.3.
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Disparity range The range of disparity. Input as vector with two
elements [maxDisparity,minDisparity]

Blocksize
Size of the search block. How big of a neighbour-
hood to consider when finding corresponding pix-
els. Input as an odd integer.

Contrast Threshold
Scalar value in the range of (0, 1]. If a pixels
contrast value is below the range the disparity is
marked as unreliable

Uniqueness Threshold

Specifies how unique the value of the pixel has to
be, how big the computed SAD value has to be.
Input as a integer. Pixels are marked unreliable if
v < SAD×(1+0.01×UniquenessThreshold)
where v is the smallest SAD value of the disparity
range.

Distance Threshold The maximum distance between corresponding
pixels. Input as integer.

Texture threshold
Specifies the minimum texture value a pixel can
have to be reliable. Input as integer. Pixels below
the threshold is marked as unreliable.

Table 4.2: Parameters that can be used as input in the function disparityBM() [21]

Disparity range

The range of disparity. Input as vector with two ele-
ments [maxDisaprity,minDisparity]. The difference
between minDisparity and maxDisparity cannot ex-
ceed 128.

Uniquness Threshold

Specifies how unique the value of the pixel has to be, how
big the computed SAD value has to be. Input as a integer.
Pixels are marked unreliable if v < SAD × (1 + 0.01×
UniquenessThreshold) where v is the smallest SAD
value of the disparity range.

Table 4.3: Parameters that can be used as input in the function disparitySGM() [22]
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Finding the disparity range

To find the disparity range of the scene the distance between the corresponding points in
the two images needs to be known. The distance between corresponding pixels to the
objects closes to the stereo camera corresponds to the maximum disparity value. The
minimum disparity thus corresponds to the distance between corresponding pixels to the
objects furthest away. This distance can be measured by combining the rectified stereo
images in a red-cyan anaglyph.

Figure 4.13: Measure disparity in a stereo pair [21]

Figure 4.13 shows how the disparity can be measured when the rectified images are
combined in a anaglyph.

4.2.5 Comparing depth in two point clouds
In order to compare the depth obtained by the stereo camera with the LiDAR a point cloud
has to be reconstructed from the disparity map. This is done by using functions available
by MATLAB. The depth comparison method presented in section 3.3.1 is implemented by
performing a nearest neighbor search based on the method presented by Muja and Low
in [27]. This requires the point clouds to be given in the same coordinate frame. The
package Click3dPoint by Babak Taati [29] is downloaded for extracting points in a
point cloud by clicking on the desired point. The user can select which points it wants to
compare with the other point cloud, then the corresponding point in the other point cloud is
found by searching for the nearest neighbor. The distance between the points is outputted.

If using the comparison method presented in section 3.3.2 points from both point
clouds is selected using the function ClickA3DPoint(pointCloud) from the
Click3dPoint package. The difference in depth between the corresponding points is
calculated.
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In order to retrieve depth from the stereo camera it needs to be calibrated, i.e. the rigid
body transformation between the two cameras need to be calculated. The stereo camera
is put together by two monocular cameras that needs to be calibrated individually. This
allows for the relation between pixel values and world points to be known and distortion
can be accounted for. For the LiDAR to serve as a ground truth a calibration of the LiDAR
and the stereo camera must be performed.

5.1 Single Camera Calibration

In order to calibrate the monocular cameras MATLAB’s calibration app was used [25]. The
calibration app uses the following workflow

Prepare
Images

Add
Images Calibrate Evaluate Improve Export

Figure 5.1: Workflow of Matlab Camera Calibration

Before adding images into the MATLAB application, the calibration pattern and the
camera setup must satisfy a set of requirements. The calibration application needs images
capturing a checkerboard pattern. The checkerboard used in this project is a 5x7 squared
checkerboard with each square measured to 10.1cm. It is printed on aluminium to min-
imize distortion and imperfections/inaccuracy. To obtain an accurate estimation of the
parameters it is important to capture images of the pattern at different orientations and in
as much of the image frame as possible. The checkerboard should not be angled more than
45 degrees relative to the camera plane. To account for lens distortion it is important that
the pattern appear where the distortion is biggest. The lens used causes barrel distortion,
i.e. distortion is bigger close to the edges. When capturing images it is important to keep
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the pattern in focus, i.e. no autofocus, and keep the camera parameters constant. Changing
the zoom between images results in miscalculated focal length.

Figure 5.2: Poses of checkerboard

When uploading the images to MATLAB the app attempts to detect checkerboards in
each added image and rejects the ones duplicated or with no detected checkerboard. The
browser further displays a list of the images with green circles around detected corners.

Figure 5.3: Detected corners

In figure 5.3 the green circles are shown in addition to the yellow square indicating the
origin. To verify that the corners are detected correctly zoom control is used as illustrated
in the figure.

38



5.1 Single Camera Calibration

Due to the size of the field of view of the lens two radial distortion coefficients is suf-
ficient. The cameras do not deploy any tangential distortion and thus it is not calculated in
the calibration. Some cameras have defects causing the x- and y-axis not to be perpendic-
ular. This can be modeled by a skew parameter. Seeing as though this is not the case for
the cameras used here computing the skew is not necessary.

There are several ways to evaluate calibration accuracy, including calculating the re-
projection errors, the parameter estimation error, viewing the undistorted images and plot-
ting the relative locations of the camera and calibration pattern.

The projection error is the pixel difference between the measured point and the repro-
jected point based on the estimated internal and external parameters of the camera. I.e.
the error depends on the quality of the estimation of the intrinsic and extrinsic parameters,
as well as the quality of the marked (green) points in the image. As a general rule, mean
reprojection errors of less than one pixel are acceptable. The calibration app allows you
to evaluate the mean reprojection error of each image. Large outliers are removed if they
are larger than one or if they don’t contribute with necessary poses of the checkerboard.
Images that adversely contribute to the calibration should not be removed. As mentioned
earlier to obtain a good calibration all poses and positions needs to be covered. To make
sure of this MATLAB’s 3D extrinsic parameter visualization is a useful tool.

Figure 5.4: Extrinsic parameter visualization of the left camera

Figure 5.4 and 5.5 shows the location of the calibration pattern plotted in the camera’s
coordinate system for both the left and the right camera. The camera is displayed in dark
blue. The captured images cover the whole image plane for both the cameras. If this were
not the cases new images of the missing poses would have to be added. The distances from
the cameras to the calibration boards seem accurate, and they are all placed in front of the
cameras.

After the calibration one should be able to produce undistorted images by using the
obtained parameter. Inspecting the undistorted images is thus a good basis for evaluating
the calibration. This is an important step even if the reprojection errors are small. If the
images covers too small areas the distortion estimation might be incorrect even though the
reprojection error is small.

Figure 5.6 shows the resulting undistorted images for both the left and the right camera.
A ruler is used in order to verify the accuracy. In the undistorted images the calibration
board should be displayed with straight lines.
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Figure 5.5: Extrinsic parameter visualization of the right camera

The obtained camera parameters are given in the following equations

Kleft =

1229.37± 0.5 0 618.3702± 0.3
0 1228.70± 0.5 536.6535± 0.2
0 0 1


Kright =

1228.96± 0.7 0 640.1066± 0.2
0 1228.37± 0.7 533.0613± 0.2
0 0 1

 (5.1)

Left cam: k1 = −0.3891± 0.000448, k2 = 0.1732± 0.0011

Right cam: k1 = −0.3875± 0.000472, k2 = 0.1681± 0.000984
(5.2)

The resulting intrinsic parameters and the distortion parameters of both cameras is
stated in equation 5.1 and 5.2 respectively. Even though the cameras and the lenses are the
same the parameters are not identical. This is due to there being some physical difference
even though they are of the same model. It is not possible to produce two identical physical
objects. The focal lengths and the distortion parameters of the two cameras are sufficiently
equal.

The principal points of the cameras are affected by both the lens and the camera itself.
It is influenced by how the lens is screwed on to the camera and what the iris and focus is
set to. Seeing as they are set manually a difference between the two cameras is expected.
The principal points are given in the upper right corner of the intrinsic matrices. One can
see that the principal points differ between the two cameras which is expected.
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(a) Image from the left camera without account-
ing for distortion

(b) Image from the left camera after accounting
for distortion

(c) Image from the right camera without ac-
counting for distortion

(d) Image from the right camera after account-
ing for distortion

Figure 5.6: Images of each camera before and after calibration

5.2 Stereo camera calibration

To find the rigid body transformation between the two cameras the Stereo Camera Cal-
ibrator App is used. The calibration app uses the same workflow as the single camera
calibration app. The same considerations as described for single camera calibration also
need to be made for the stereo calibration in addition to some new ones.

The calibration images should be captured at a distance roughly equal to the operating
distance [24]. The camera setup is build to be optimized on objects distanced 4 meters
away from the camera. Hence, the calibration pattern should be captured at the same
distance. There is a rule of thumb saying that the checkerboard should fill at least 20
percent of the captured image [24]. The checkerboard used in this calibration is of size
0.8x0.6 meters. This is somewhat small considering the field of view of the camera. As
the checkerboard is smaller than desired a lot more photos are necessary to obtain a good
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calibration rather than the suggested number of 10 to 20 by MATLAB. Implementation of
code and hardware is utilized to continuously and simultaneously capture pictures form
both the cameras. With a broad range of pictures the ones noticeably blurry and the ones
where the pattern was captured at an angle above 45 degrees were removed before upload-
ing to MATLAB. When preparing images for the stereo calibration it is crucial to capture
the stereo images at the same time and the pattern has to be fully visible in both images.

Mean Reprojection Error per Image

50 100 150 200 250

Image Pairs

0

0.05

0.1

0.15

0.2

0.25

0.3

M
e

a
n

 E
rr

o
r 

in
 P

ix
e

ls

Camera 1

Camera 2

Overall Mean Error: 0.08 pixels

Figure 5.7: Reprojection Error of Stereo Calibration

In figure 5.7, the final result of the reprojection error is displayed. The blue bars
show the reprojection error of the left camera while the yellow shows the reprojection
error of the right camera. As in single camera calibration the reprojection error needs to
be less than one pixel, but here the difference between the reprojection error of the two
corresponding images needs to be considered. High spikes that correspond to images that
adversely contribute to the calibration are not removed from the calibration. The low mean
reprojection error and the approximately equal error between corresponding image pairs
makes this an overall satisfying result.

In figure 5.8 the location of the calibration pattern is plotted in the camera’s coordinate
system. The cameras are displayed in dark blue and red. The relative positions match what
was expected and there are no obvious problems. The distances from the cameras to the
calibration boards seem accurate, and they are all placed in front of the cameras.

The goal of calibrating the stereo camera is to be able to row-align the image pair.
Looking at the rectified images is thus a good basis for evaluating the calibration. In
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Figure 5.8: Extrinsic parameter visualization of stereo camera

Figure 5.9: Rectified image after stereo calibration

the rectified images pixels of the same world points in the two images should lie along
the same line. This can be measured by eye and it is important to evaluate even if the
reprojection errors are small. Figure 5.9 shows the final result of a selected image pair
after calibrating. One can see that the lines matches points in the two images.

The obtained calculated rotation and translation of the right camera relative to the left
is given by the following equations

R =

 0.9986 −0.00002487 −0.053019
0.000057438 1 0.0006128

0.053019 −0.000615000 0.998593

 (5.3)

t =
[
−260.5121± 0.05 2.239238± 0.07 6.779297± 0.02

]
(5.4)

Considering the stereo setup presented in section 4.1.2 the cameras are not angled
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much towards each other thus the rotation matrix given in 5.3 seems reasonable. The
translation matrix given by equation 5.4 is stated in in millimeters. The measured distance
between the two cameras is 26 cm corresponding to the first entry of the translation matrix.
The second and the third entries represent the difference in height and depth respectively.
Seeing as the cameras are screwed on the metal mount made for the setup a small differ-
ence in both height and depth is to be expected. Overall the final result of the calibration
is reasonable.

5.3 LiDAR - stereo camera calibration

Figure 5.10: LiDAR and camera coordinate frames

To use the LiDAR as ground truth one need to be able to compare a point from the stereo
camera with the corresponding point from the LiDAR. As illustrated in figure 5.10 the
LiDAR and the camera represent 3D world points in different coordinate frames. In the
LiDAR coordinate system the z-axis represents the height, the x-axis the depth and the
y-axis the width of a point. While as for the camera the z-axis is used to represent the
depth and thus the x-axis represents the width and y-axis the height. The comparison is
also dependent on the placement of LiDAR in relation to the camera coordinate frame. It
is thus essential to know the rigid body transformation between the stereo camera and the
LiDAR. In this project a transformation of coordinate systems is made before utilizing the
ICP algorithm described in section 3.2.2 to find the rigid body transformation between the
two sensors.

5.3.1 Calibration setup
To obtain the best possible result from both the LiDAR and the stereo camera a large object
with variable pattern was chosen as the calibration object. The object needs to be large to
ensure enough points are generated by the LiDAR and the appearance needs to be full of
variable patterns such that the correspondence problem of the stereo camera can be easily
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Figure 5.11: Lidar-Stereo camera calibration setup

solved. Considering the sensor setup the object is placed at the distance where the stereo
camera can estimate depth with the most accuracy, approximately 4 meters away from the
sensors. The calibration setup was chosen as in figure 5.11.

Figure 5.12: Disparity map and reconstructed 3D points

To obtain 3D points from the camera a disparity map has to be calculated. After trail
and error it was found that the function

disparitySGM(image1, image2, name, value)

in MATLAB with a disparity range of [68, 116] and a uniqueness threshold of 0.3 produces
the most exact disparity map. The disparity map and the reconstructed 3D points are
illustrated in figure 5.12.

As the object of interest is perpendicular to the sensors the field of view of the LiDAR
is reduced. The resulting point cloud of the LiDAR is shown i figure 5.13. Next, both
point clouds are reduced to only include the object of interest, thus removing noise and
points of floor and walls. The two point clouds can be represented in the same coordinate
frame by performing a transformation on the LiDAR point cloud so that it is represented in
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Figure 5.13: LiDAR point cloud

the camera coordinate frame. This requires a change in axis and a rotation of 180 degrees
about the z-axis in order to represent positive height downwards, as it is in the camera
reference frame. Next, the rigid body transformation between the LiDAR and the stereo
camera is calculated using ICP. Since the camera point cloud is denser than the LiDAR
point cloud two calibration approaches are performed. In one approach the ICP-algorithm
is applied to entire point clouds and in the second it is applied to a few specific points.

5.3.2 ICP on full point clouds

The ICP-algorithm is performed on the two point clouds in their entirety. Applying the
calculated transformation on the camera point cloud and visualizing the two point cloud
together yields the result in figure 5.14. Here the point clouds are plotted using the func-
tion Scatter3(X, Y, Z, S) in MATLAB where S, the circle size, is set to 6 for the
LiDAR in order to better illustrate the difference between the point clouds. The LiDAR
point cloud is plotted in blue and the camera point cloud in green. After careful inspection
of the plot it can be seen that the LiDAR produces more points along the z-axis and thus
produces a point cloud with larger depth than the camera that only observes a flat object.
In spite of this the ICP matches the points along the z-axis quite nicely. On the other hand
the algorithm is not able to match the points of the wheels of the calibration object in the
two point clouds. This results in a mismatch along the y-axis.

To avoid mismatched points a method for outlier rejection can be deployed. For ex-
ample the algorithm Random Sample Consensus (RANSAC) fits a model to experimental
data [8]. It finds the smallest amount of data that can be used to describe a model and adds
on points that are compatible with the model when possible. The points not added to the

46



5.3 LiDAR - stereo camera calibration

(a) Front view (b) Side view

Figure 5.14: Camera point cloud after transformation plotted with LiDAR point cloud

model are labeled as outliers. In this case the calibration target used is of such a simple
from outliers can simply be cut out of the point cloud. The mismatch that occurs here is
due to the wheels on the calibration object. Thus in order to improve the calibration the
wheels are cut out of both point clouds before performing the ICP.

Tcl =


0.9995 0.0309 −0.0018 0
−0.0309 0.9995 0.0004 0
−0.0055 0.0005 1.0000 0
−0.1980 0.0954 0.0570 1

 (5.5)

The obtained transformation is given in equation 5.5. The last column tells us that
no translation is needed which makes sense considering the placement of the cameras
according to the LiDAR. The cameras are placed on each side of the LiDAR thus the
resulting camera frame of the stereo camera will almost coincide with the LiDAR frame.
The small rotation is most likely due to the cameras being angled the way they are.

The results is plotted in figure 5.15. Comparing with figure 5.14 some improvement
in the alignment of the two point clouds can be observed. There will still be some margin
of error due to that the lasers from the LiDAR might not hit exactly at the top of the
calibration object.

5.3.3 ICP algorithm on key points in point clouds
The inaccuracy due to the lasers of the LiDAR not hitting the top of the object can be
reduced by applying the ICP-algorithm on key points of the point clouds. The key points
need to be extracted from the same place of the object in both point clouds. In order to
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(a) Front view
(b) Side view

Figure 5.15: Camera point cloud after transformation plotted with LiDAR point cloud

accurately calculate the transformation of each of the axis at least 3 points is necessary.
The extracting of the key points is performed by utilizing the function
clickA3DPoint(pointCloud) from the package Click3dPoint by Babak Taati
[29].

A challenge here is extracting 3D points from both point clouds generated by the same
place on the object. The LiDAR point cloud key points lie along the edges of the object
while the camera on the other hand struggles with constructing 3D points along edges.
Comparing the objects height and distance from the sensors in the real world and the
vertical resolution of the LiDAR, as described in section 4.1.4, one can assume that the
LiDAR misses approximately 10 centimeters of the top of the object. This is taken into
consideration when extracting the key points.

Tcl =


0.9999 0.0118 −0.0062 0
−0.0119 0.9997 −0.0197 0
0.0059 0.0197 0.9998 0
−0.1849 0.0252 0.0502 1

 (5.6)

The obtained transformation is given in equation 5.6. There is no noticeable big dif-
ference from the transformation obtained in equation 5.5. Looking at the resulting plots
in figure 5.16 some improvement from the calibration done by using the full point cloud
can be seen. The wheels are more accurately aligned and it is visible that the camera point
cloud sees more of the top part of the object than the LiDAR does. We can tolerate some
uncertainty here seeing as it is the depth that is in focus in this project. The plotted side
view shows that the points in the z-axis is not as nicely aligned as they are in both figure
5.14 and 5.15.

After evaluating the different transformations the one obtained by performing ICP on
the full point clouds and cutting out the wheel seems to be the most exact one. To obtain
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(a) Front view (b) Side view

Figure 5.16: Camera point cloud after transformation plotted with LiDAR point cloud

a good ground truth for the depth of the stereo cameras depth is the most important factor
when aligning the two point clouds. Thus the transformation given by equation 5.15 is
utilized further in this project.
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Chapter 6
Experiment and result

6.1 Experimental set up

Figure 6.1: Experimental set up

To evaluate the depth obtained by the stereo camera an experiment is performed. A scene
with three objects placed in different positions and depths according to the camera and
LiDAR was created. The resulting scene is given in figure 6.1. The objects are wrapped
in fabric with variable patterns making it easier for the camera to match pixels in the
two images. The scene is selected due to its noisy background. Having a background
with structure and pattern helps to avoid wrong pixel matches between the object and the
background. The objects are placed at roughly 2, 4 and 6 meters away from the sensors.

Figure 6.2 shows the resulting point cloud of the scene obtained by the LiDAR given
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Figure 6.2: Lidar point cloud of experimental scene given in the camera frame

in the camera frame. The objects are of such a size that they are all visible for the Li-
DAR at the different distances. The distances measured by the LiDAR coincides with the
measurements taken of the scene.

(a) Rectified image from the left camera (b) Rectified image from the right camera

Figure 6.3: Rectified stereo images of the scene

Figure 6.3 shows the images captured by the stereo camera after they have been rec-
tified. The right camera is not able to see the left arm of the first object. Thus the stereo
camera will not be able to perceive the depth of the left arm and it will not appear in the
reconstructed point cloud for either one of the matching approaches.
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6.1.1 3D points from stereo camera
A disparity map using block matching and SAD as cost function is created. To obtain a
good result a parameter tuning must be done.

Disparity range [43, 203]
Blocksize 31
Contrast Threshold 0.3
Uniqueness Threshold 5
Distance Threshold disabled
Texture threshold 0.0002

Table 6.1: Final parameter values for creating disparity map using block matching

Table 6.1 shows the obtained values after tuning the parameters. The minimum and
maximum disparity are set to the distance in pixels between the stereo images of the last
and first object. Thus the wall should not appear in the disparity map. The rest of the
parameters were found by trial and error. The resulting block size is somewhat big and
thus makes the algorithm slower. A smaller block size resulted in more mismatched pixels.
Seeing as the objective is to see how accurate the estimated depth of the stereo camera is
the running time of the algorithm is not prioritised.

(a) Disparity map

(b) Point cloud

Figure 6.4: Disparity map from block matching and the resulting point cloud

The resulting disparity map and the reconstructed point cloud can be seen in figure
6.4. From the point cloud one can see that the algorithm creates a yellow artificial wall.
When pixels are not matched their disparity value is set to the minimum disparity. This
artificial wall can be removed by simply cutting it out of the point cloud. Both the disparity
map and the point cloud are somewhat noisy. The objects can be seen clearly but they are
surrounded by noise. For visualization purposes a median filter is deployed.

The resulting disparity and point cloud after applying a median filter and removing the
artificial wall are given in figure 6.5. A median filter of grid [50, 50] is deployed. For the
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(a) Disparity map

(b) Point cloud

Figure 6.5: Disparity map from block matching and the resulting point cloud

purpose of using the stereo camera on an autonomous ferry this is not feasible due to the
slow running time of filters of that size. It will also become problematic if one wants to
estimate the distance of small objects. From the point cloud in figure 6.4 one can see that
a filter is not necessary in order to make out the objects. The filter is deployed here solely
for visualization purposes.

Disparity range [53, 181]
Uniquness Threshold 20

Table 6.2: Final parameters used for creating disparity map using Semi-Global Matching

A disparity map using Semi-Global Matching is also created. The resulting parameters
used are presented in table 6.2. The disparity range differs from the one used for block
matching. This is due to the restriction on the disparity range by MATLAB’s function
disparitySGM(). The difference between min and max disparity must be less or equal
to 128. This calls for finer tuning of the disparity range due to the objects in the scene being
placed at such different distances.

The resulting disparity map and the reconstructed point cloud is given in figure 6.6.
For visualization purposes the noise above the objects can be cut out of the point cloud.
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(a) Disparity map

(b) Point cloud

Figure 6.6: Disparity map from Semi-Global Matching and the resulting point cloud

6.2 Results and analysis
A comparison of the depth estimate obtained by the matching algorithms with the LiDAR
is made by following the procedure presented in section 3.3. First, for a visual comparison,
the point cloud obtained by the stereo camera is plotted together with the point cloud
obtained by the LiDAR. Next an evaluation of the point clouds is done in order to decide if
a nearest neighborhood approach to finding corresponding points is reasonable. Then the
distance between corresponding points is calculated.

In this section the object placed closest to the sensors is referred to as the first object
(object 1), the object in the middle as the second object (object 2) and the object furthest
away as the third object (object 3). Figure 6.7 illustrates which points are selected from the
LiDAR. The points are selected from different places on the surface of each object. Using
points of different heights and widths makes it possible to ensure that the entire object
surface is estimated to the same depth. The point clouds produced by the stereo camera
are somewhat noisy. The depth of the edges of the objects is not accurately estimated
and thus creates noise in the scene. For this reason points along the edges are avoided.
When using objects that do not have a flat surface it is important to select points of the
different depths of the object. Here the third point on object 3 is selected for that reason.
If the corresponding points are found using the nearest neighborhood approach points are
selected from the LiDAR because it is more sparse than the stereo point cloud. Picking
points from the stereo point cloud and finding the nearest point given by the LiDAR may
result in distances being calculated between two points that are not of the same height.
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Figure 6.7: Points selected from LiDAR point cloud

6.2.1 Depth estimation by block matching
In figure 6.8 the LiDAR point cloud and the point cloud reconstructed by the disparity map
obtained by using block matching are plotted together. The LiDAR point cloud is plotted
in purple and the stereo point cloud in green. The first plot shows the two point clouds
plotted together from the front, and it seems as though they align quite nicely. But for
further inspection the two point clouds are visualized from above in the next figure. Here
it can be observed that on the first object the depth is more or less the same. On the second
object some deviation can be observed. The stereo point cloud is plotted slightly behind
the LiDAR point cloud. On the third and last object a more clear deviation is present. The
depth estimated by the stereo camera is greater than the one estimated by the LiDAR.

Object 1
Point Distance

1 0.0090
2 0.0078
3 0.0067

Object 2
Point Distance

1 0.0275
2 0.0428
3 0.0415

Object 3
Point Distance

1 0.1531
2 0.1404
3 0.1298

Table 6.3: Distance in meters between selected points from LiDAR and points obtained from block
matching

Even though there is some distance between the point clouds finding corresponding
points using a nearest neighborhood search is still reasonable. The stereo point clouds is
flat and noise is not present right behind the objects. The distance between the perceived
depth of the LiDAR and the stereo camera is calculated and given in table 6.3. As observed
in the comparison of the two point clouds the deviation increases for each object. The best
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(a) Front view

(b) View from above

Figure 6.8: Camera point cloud obtained from block matching plotted together with the LiDAR
point cloud

result is gained from the first object. The difference in the distance lies between 0.7 cm
and 0.9 cm. For the second object the difference is around 4 cm and for the third object
the difference is around 14 cm.
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6.2.2 Depth estimation by Semi-Global Matching

(a) Front view

(b) View from above

Figure 6.9: Camera point cloud obtained by Semi-Global Matching plotted together with the LiDAR
point cloud

In figure 6.9 the LiDAR point cloud and the point cloud reconstructed by the disparity
map obtained by Semi-Global Matching are plotted together. The LiDAR point cloud is
plotted in purple and the stereo point cloud in green. The points making out the objects
of the two point clouds seem to align quite well. A deviation can be observed on the third
object. The stereo point cloud does not align with the part of the object that is bent.
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6.3 Discussion

Object 1
Point Distance

1 0.0069
2 0.0192
3 0.0135

Object 2
Point Distance

1 0.0060
2 0.0043
3 0.0092

Object 3
Point Distance

1 0.0284
2 0.0065
3 0.1396

Table 6.4: Distance in meters between selected points from LiDAR and points obtained from Semi-
Global Matching

The distance between the perceived depth of the LiDAR and the stereo camera is cal-
culated and given in table 6.4. The distances are calculated from the same points in the
LiDAR point cloud as they are for block matching. A nearest neighborhood search is used
for finding corresponding points. For the first object the difference in the distance lies
between 0.7 cm and 1.9 cm. The best result is gained from the second object where the
difference lies between 0.4 cm and 0.9 cm. For the third object the difference lies between
0.7 cm and 14 cm which is quite a large gap.

6.3 Discussion

At first glance it seems as though the point cloud obtained from Semi-Global Matching
yields a better result than the one obtained by block matching. In the block matching
approach the deviation from the LiDAR becomes greater for each object. The difference
in distance in the first two objects is in an acceptable range but an error of 15 cm might be
somewhat large. Overall the distances calculated for Semi-Global Matching are smaller.
The second object is observed with the most accurate depth. This is as expected due to the
object being placed in the distance where the stereo setup has its focus. For the third object
a larger deviation is observed as the distance of the third point is calculated as high as 14
cm. This is due to the misalignment with the bent part of the object. This misalignment
most likely occurs due to the restriction in the difference of the disparity range. When
using block matching the minimum disparity is set lower which yields a better result for
the third object. Implementing a Semi-Global Matching with OpenCV in Python or C++
instead of MATLAB one does not have this restriction. OpenCV’s implementation is a
modified version of [17].

The acceptable margin of error depends on the application. If the stereo camera is to
be used for object detection on the autonomous ferry Milliampere for collision avoidance
purposes then an error of 15 cm could be accepted. A slow moving boat will need to adjust
its course early and pass the object with a much greater distance than 15 cm. The problem
for the estimation done by block matching is the increasing error of objects of greater
distance. The actual depth increases by approximately 2 meters between each object. The
error in the estimation increases from first being around 0.8 cm, to 4 cm and in the end
14 cm. From the depth estimates obtained here no clear correlation can be found. If a
correlation can be found when testing on more objects of different depths then the error
can be modeled and accounted for.

The depth estimation of the stereo camera is highly dependent on the tuning of the
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parameters of the matching algorithms. Semi-Global Matching requires fewer parameters
to be tuned which makes it easier to use. The block matching approach might yield a
better result with more tuning. Here one could also try to implement the algorithm using
OpenCV in Python or C++. When using Python or C++ more code is available online
for pre-processing of the images before calculating disparity. This could result in less
noise in the disparity map and the reconstructed point cloud. It is important to take into
consideration how this affects the running time.

The depth estimation is also dependent on the calibration performed on the stereo cam-
era. The calibration performed here yield a reasonable result considering the parameters.
But performing a calibration with a checkerboard covering less than 20 percent of the field
of view is a long and tedious process. An ideal checkerboard should have a width of ap-
proximately 5 meters which is over 4 meters wider than the one used. Since the operating
distance is at 4 meters the resulting calibration included over 250 images. An attempt on
calibrating at approximately 10 meters when the baseline was set to 1.75 meters was done.
Capturing images that cover the whole field of view proved difficult and a high number of
images was required. Obtaining a good calibration proved challenging.

The camera setup is a factor affecting the obtained depth estimate. A more accurate
result could be obtained with a larger baseline and angling the cameras more towards
each other. In theory a higher accuracy is achieved from a larger baseline and a more
angling of the cameras. A small baseline could cause several points to project to the same
pixel. Increasing the baseline could, on the other hand, make the search problem more
difficult. By analyzing the point clouds and the disparity maps one can conclude that both
algorithms are able to solve the problem of finding corresponding pixels in the objects.
Thus switching to a larger baseline could provide a reasonable result.

The result of the depth comparison is dependent on the calibration between the LiDAR
and the stereo camera. Examining the transformation obtained and the visual illustration
of the alignment of the point clouds the calibration yields a reasonable result. The small
misalignment in height does not affect the analysis of the depth estimates. When selecting
points for comparison the edges of the object are avoided due to the noise in the stereo
point cloud. Thus the alignment of the point clouds proves reasonable.

When observing the transformed stereo point cloud together with the LiDAR a good
basis of evaluating the difference in depth is achieved. Calculating the distance between
corresponding points in the point clouds generates a more accurate comparison. From
selected points in the LiDAR point cloud the corresponding points in the stereo point cloud
are found using a nearest neighborhood search. The point clouds produced by the stereo
camera is noisy but the noise mostly occurs above, below and next to the object, while the
objects detected are flat. From this it follows that when finding the nearest neighbour of
the selected points they should correspond to the same point on the object surface in the
stereo point cloud. The distances calculated also correspond with what one can observe
from the plots. Points along the edges of the stereo point cloud may cause large errors
when calculating the distance due to the noise present in the stereo point cloud here. Thus
the comparison is dependent on the points selected. When using the method it is important
to look at several points on the objects and that the points a selected in the LiDAR point
cloud and not the stereo point cloud due to the difference in density.
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Chapter 7
Conclusion and future work

7.1 Conclusion

A procedure for comparing the depth estimate of a stereo camera and a LiDAR has been
implemented. The results and the obtained parameters show that the extrinsic calibration
of the stereo camera and the LiDAR proves to give a reasonable result. The point clouds
obtained from the stereo camera align well with the point cloud from the LiDAR. The vi-
sualization of the point clouds and the calculation of the distance between corresponding
points provide a good measure for evaluating the accuracy of the depth estimation from
the stereo camera. How accurate the corresponding points found are is dependent on how
noisy the stereo point cloud is and which points are selected from the LiDAR. An evalua-
tion of weather the nearest neighborhood search approach to finding corresponding points
will give a reasonable result must be made when visualizing the point clouds together.
When using the procedure some considerations should be taken when selecting points

• The area the points are selected from needs to be visible in both point clouds.

• Points in different heights and widths should be selected.

• If the object surface is not flat points should be selected in the different depths of
the object.

• Try to avoid choosing points along the edges of the objects.

A stereo setup has been implemented and designed. The results show that the Semi-Global
Matching method performed well and only small deviations from the LiDAR are present.
Based on this one can conclude that the stereo camera has the potential to be used for
object detection purposes on long distances. Some of the noisy parts of the point cloud
was cut out for visualization purposes. If taken in use a clustering procedure must be
implemented in order to distinguish objects of interest from the noise.
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7.2 Future work
To get a proper evaluation of the use of depth estimation by the stereo camera on the au-
tonomous ferry Milliampere tests at greater distances must be performed. The stereo setup
designed to be optimal at 60 meters can be utilized. A new calibration of the sensors must
be performed. At greater distances the LiDAR point cloud will become sparser which can
affect the calibration accuracy. Cutting out areas of the point clouds causing mismatches
may prove more difficult. An outlier rejection method such as RANSAC [8] can be imple-
mented to ensure the quality of the calibration.

In order to use the Semi-Global Matching algorithm on a scene including objects with
large variations of depth the implementation should be done by using OpenCV in Python
or C++. The implementation in this project has the restriction of only allowing a difference
of 128 in maximum and minimum disparity. This is not the case in the implementation
in Python and C++. Further Processing of the disparity map should also be performed in
order to remove noise and avoid mismatched point correspondences.

To ensure the quality of the depth estimate tests in different scenes and under different
illuminations should be performed. If the stereo camera is taken in use on Milliampere the
performance must be ensured in a varying environment. The environment around an au-
tonomous ferry is affected by factors like weather conditions and changes in light. When
testing under such circumstances it might be simpler to perform the comparison on a vari-
able scene as opposed to a static one. For this to work a time synchronization of the sensors
should be performed. This could be done by using timestamps available by ROS to label
the messages sent by both the sensors.

When using the depth estimations in real-time systems an evaluation of the running times
of the algorithms should be performed. In the complementary specialization project Stereo
vision using local methods for autonomous ferry by Trine Ødegård Olsen an evaluation of
local matching methods has been conducted. The accuracy and running time of the Semi-
Global Matching method should be compared with the local methods presented here.
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