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Abstract. This paper discusses a general algorithm for the discovery
of motif combinations. From a large number of input motifs, discovered
by any single motif discovery tool, our algorithm discovers sets of motifs
that occur together in sequences from a positive data set. Generality
is achieved by working on occurrence sets of the motifs. The output of
the algorithm is a Pareto front of composite motifs with respect to both
support and significance. We have used our method to discover composite
motifs for the AlkB family of homologues. Some of the returned motifs
confirm previously known conserved patterns, while other sets of strongly
conserved patterns may characterize subfamilies of AlkB.

1 Introduction

Motif discovery in DNA and protein sequences is an important field in bioin-
formatics. Unique motifs found in a set of related sequences are often associ-
ated with the biological activity of the sequences. Motifs representing active site
residues in enzymes (proteins) or transcription factor binding sites in genomes
(DNA) are typical examples. Such motifs can also be used for classification of
novel sequences or sequences outside the original training set. Both probabilistic
and deterministic approaches are used. Arguably, deterministic approaches give
the most easily interpretable results, as they represent motifs e.g. by subsets of
regular expressions that either match a given sequence or not.

There are many different algorithms for motif discovery, including manual
approaches. The earliest algorithms had very limited expressibility and could
only discover substrings of amino acid symbols. PROSITE[1], a database of
manually annotated motifs, in many ways set the standard for expressibility
of deterministic motifs for proteins. In addition to exact symbols, PROSITE
patterns also consist of fixed gaps, flexible gaps and ambigous symbols. Most
automated motif discovery tools are only able to discover motifs consisting of a
subset of these components.

The discovery of motif combinations is an area of active research, for which
both probabilistic and combinatorial approaches are used. Gibbs sampler[2] and
PRINTS[3] are two well-known probabilistic approaches. Most combinatorial
approaches discover spaced dyads[4][5] or ordered sets of motifs with strong
distance constraints[6]. Brazma et al.[7] are among the few methods that discover
unordered sets of motifs.

A set of single motifs is a general starting point for composite motif discovery.
Many advanced methods exist for the discovery of single motifs, and none are
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superior in all respects[8]. We have therefore chosen to develop an algorithm for
the discovery of motif combinations that can use single motifs generated by any
deterministic motif discovery tool.

GCMD (Generalized Composite Motif Discovery)1, exhaustively identifies
the most significant combinations of a set of precomputed motifs. It can be set
to discover both ordered and unordered motifs, with or without distance con-
straints. In addition to being flexible with regards to both single and composite
motif model, and exhaustive in search for combinations, two properties clearly
distinguish our algorithm from previous approaches: we model the problem as
a two-goal optimization with the optimal Pareto front as output, and we auto-
matically discover potential subfamilies.

GCMD is here discussed mainly in terms of protein sequence motifs. However,
the tool itself is general and can also be applied to motifs from DNA sequences.

2 The Generalized Composite Motif Discovery Tool

In broad terms, GCMD takes as input a set of single motifs and exhaustively
discovers the optimal motif combinations with respect to both support and sig-
nificance. This is more thoroughly explained in the following sections.

2.1 Vocabulary

The set of sequences that have at least one occurrence of a given motif, is called
the occurrence set of the motif. The cardinality of the occurrence set is referred
to as support.

We use the term single motifs to denote the motifs that are input to the
GCMD algorithm, and composite motifs to denote the discovered motifs that
are sets of single motifs. The term component is used to denote one of the single
motifs that makes up a composite motif.

We also use the terms Pareto domination and Pareto front in multiple criteria
optimization. A motif is Pareto dominated if there exists another motif having
equal or higher values of both support and significance, where one of the values
is strictly higher. Since support is a discrete value, this means that a motif is
Pareto dominated if there exist another motif with equal or higher support,
and strictly higher significance. The Pareto front is the set of all non-dominated
motifs. In our case this is the most significant motif for each value of support.

2.2 Motif Representations

The first step in using GCMD is to discover deterministic single motifs with
a separate motif discovery tool. For tools that discover probabilistic motifs, a
threshold may be used to make them deterministic. A bitstring is then con-
structed for each motif, where the i’th bit is 1 if the motif has an occurrence in

1 The code is available upon request to first author



Generalized Composite Motif Discovery 765

the i’th sequence, and 0 otherwise[7]. A composite motif occurs in a sequence if,
and only if, every single motif in the set occurs in the sequence. This leads to a
basic representation of a composite motif as a set of indexes to its component
motifs, as well as an occurrence set calculated by taking the intersection of the
occurrence sets of all component motifs.

2.3 Significance Evaluation

Significance of motifs is measured as negative log-likelihoods, using the same
calculations as the motif discovery method Splash[9]. More specifically, the sig-
nificance of a single motif is the negative log-likelihood of observing the motif
in a random background sequence with the same amino acid distribution as the
input sequences. As single motifs usually are short compared to sequence length,
the log-likelihood of a composite motif is in general well approximated as the
sum of log-likelihoods of its components.

2.4 Significance vs Support

Both significance as well as support is important when evaluating motifs, and
it is not easy to make the right trade-off between these properties when doing
automated motif discovery. Most algorithms require a threshold on support,
and this threshold is often user specified. Using a very strict value may lead to
loss of significant motifs that are characteristic of subfamilies of sequences. On
the other hand, a too permissive threshold may lead to searches dominated by
motifs with high statistical significance in subsets of sequences, and one may lose
less significant motifs representing weak commonalities characteristic of larger
sequence families.

By formulating the motif discovery problem as a two goal optimization, we
can explore a very large search space of interesting motifs, and return information
about this in a condensed form as a Pareto front. The user gets a diverse set of
motifs, and can readily see the tradeoff between significance and support as the
number of sequences taken into consideration increases. This removes the need
to set explisit thresholds on support or significance.

2.5 Pruning of Search Space

GCMD traverses the search space exhaustively and returns the set of Pareto
optimal composite motifs. The size of the search space is

(
n
c

)
, where n is the

number of single motifs used as input to GCMD, and c is the desired number
of components in the composite motifs. Many algorithms exist for the mining
of frequent item sets. Brazma et al.[7] uses the algorithm of Toivonen[10] to
discover unordered sets of motifs. As this algorithm do pruning only based on
support, it can not handle the large number of input motifs and low values of
support that we are interested in.

We have developed a branch-and-bound algorithm, tailored to our two goal
optimization problem, that is very efficient on real biological data. Since our
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goal is to find an optimal Pareto front with respect to support and significance,
we need to determine upper bounds on both of these values. An upper bound
on support is simply the minimum support of the current components of the
composite motif. To introduce an upper bound on significance, we ensure that
when a composite motif is expanded, the new component has a lower significance
value than all other components of the motif. Note that this does not reduce the
set of composite motifs we are able to discover, it only excludes all but one of the
n! permutations that corresponds to the same combination of n single motifs.
For a given motif ci, this leads to a straightforward upper significance bound on
any expansions of ci with n components :
s(cn) ≤ s(ci) + (n − i) ∗ s(ci(i)), where ci is a motif with i components, ci(i) is
the i’th component of motif ci, and s(c) is the significance of motif c.

With these upper bounds in place we can make a recursive function that takes
as parameter a composite motif c that is to be expanded. For each single motif
s with significance lower than all current component significances of the motif,
we check whether the resulting upper bounds on support and significance are
dominated by the current Pareto front. If not, a new composite motif is formed
from c, with the single motif s as an added component. The resulting motif is
stored in the Pareto front if it has reached the desired number of components,
otherwise it is again expanded recursively.

In order to reduce the number of explored composite motifs even further,
we explore the expansions of a given composite motif in order of decreasing
significance of single motifs. Note that the support of the composite motif before
any new expansion is an upper bound on support. As the upper bounds are
monotonically decreasing, we can stop exploring new expansions of a composite
motif as soon as the upper bounds on support and significance are dominated
by the Pareto front.

2.6 Automated Subfamily Discovery

The Pareto front of composite motifs for a family may contain significant motifs
with relatively low values of support. It is natural to ask whether such a motif
characterize a subfamily of the data set. One may therefore try to discover new
motifs in the sequences that are not in the occurrence set of the first composite
motif. Since the goal is to find motifs that are common to as many sequences
as possible, we have restricted automated subfamily discovery to only two sub-
families and also demand that one of the motifs belong to the Pareto front of
the whole family. Significance values of motifs are log-likelihoods, and a two-
subfamily-motif occur in a given sequence if either of the one-subfamily-motifs
occur in the sequence. Therefore, the significance of a 2-subfamily-motif c is well
approximated as: s(c) = log2(2s(ca) + 2s(cb) + 2s(ca)+s(cb)), where ca and cb are
the one-subfamily-motifs.

3 Results and Discussion

The family of AlkB homologues (ABHs) was used as a test case for composite mo-
tif discovery. The ABHs are members of the 2-oxoglutarate and Fe2+-dependent
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(2OG-Fe(II)) oxygenase superfamily[11]. They have been shown to be involved
in repair of methylation damage of DNA and RNA through a direct reversal
mechanism, where the methyl group is oxidised and spontaneously released as
formaldehyde[12]. Recent screening of databases using sensitive search methods
has shown that ABH-like sequences are widespread in bacteria and eukaryotes,
see Drabløs et al.[13] for a review.

The degree of sequence conservation in the ABH family seems to be very
low, basically just a H.D motif, an isolated H and a R.....R motif (using single-
letter amino acid symbols) is completely conserved in most ABH alignments.
All except the final R are involved in coordination of the Fe2+ ion, the final R is
probably involved in substrate binding as it seems to be relatively unique to the
ABH family of this superfamily[11]. However, there may be subfamilies within
the ABH family with more extensive conservation, and there may be additional
conserved patterns in sequence regions that are difficult to align correctly by
traditional methods. The ABH family is therefore an interesting test case with
practical implications.

A set of 82 AHB-like sequences, previously investigated in [13], was used for
the analysis. Teiresias[14] was used to generate 50.000 single motifs from the
input sequences, and GCMD was used to identify the Pareto front for compos-
ite motifs with 2 and 4 components, using chemical equivalence sets for residue
types (Fig. 1(a)). The significance of the composite motifs is higher for most
support values compared to single motifs. However, here GCMD is used mainly
to identify interesting composite motifs and correlate this with biological sig-
nificance. The dominating single motif, which is used in most of the composite

(a) Pareto front of single and compos-
ite motifs for ABH. Significance is the
negative log2-likelihood of a motif

(b) ROC of the discovered motifs for
ABH. Recall is TP/(TP + FN) and
precision is TP/(TP + FP ))

Fig. 1.

motifs, is [ILMV]..H.[DE]. This corresponds to the first Fe2+ binding motif in
the ABH sequences. In particular for composite motifs with high support this
is mainly combined with variants of the motif [KR]..[ILMV]..[KR], which cor-
responds to the Fe2+ and possibly substrate binding R groups. This shows that
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the most interesting motifs identified by GCMD also have biological relevance,
and that GCMD is able to identify such motifs from a large and complex set of
input data.

However, it is evident that there are subfamilies of ABH-like sequences in
the data set, and depending on the selected threshold for support several such
subfamilies may be identified. One example is the composite motif
(L..G.[ILMV][ILMV].M....[QN]) & ([FY]....[DE].[ILMV]..H.D), which
seems to be characteristic of the hABH2/hABH3 subfamily (human ABH type
2 and 3). This subfamily has been extensively studied experimentally[15]. As
the detailed 3D structure of the ABH family still has not been experimentally
determined, a detailed investigation of the biological relevance of these motifs
probably has to be postponed until such data are available. However, this test
shows that the GCMD method is able to identify biologically interesting sub-
families in a complex data set.

Although GCMD has not been developed as a classification tool, the classi-
fication performance may still serve to validate that the discovered motifs are
indeed characteristic for a given family. Fig. 1(b) shows the receiver operating
characteristic with respect to recall and precision when using the set of motifs
in the Pareto front for classification. The introduction of subfamily motifs leads
to a significant improvement in recall, and a larger fraction of the motifs have a
high precision, compared to general composite motifs.

The performance of GCMD was also tested on 5 selected families from the
PROSITE database. These PROSITE families are assumed to be difficult test
cases, as the existing PROSITE patterns give low values for precision and recall.
We used TEIRESIAS for single motif discovery. The Pareto front of composite
motifs showed an average log-likelihood improvement of 20.4 compared to single
motifs. The composite motifs in the Pareto front were used to classify the full
set of SWISS-PROT[16] entries. For two of the five families (PS00485, PS00690)
we were able to improve both precision and recall as compared to PROSITE, for
two families we got comparable performance (PS00732, PS01048), and for the
last family the PROSITE motif performed better (PS00187).

4 Conclusion

In our work we have built directly on previous work and focused on finding
interesting combinations of single deterministic motifs discovered by separate
motif discovery tools. Tests show that our tool is able to identify unique and
biologically relevant composite motifs in very large data sets of single motifs.

Future directions of research include expanding the expressibility of deter-
ministic motifs even further, as well as using the tool on other motif discovery
problems, like for instance the discovery of transcription factor binding sites.
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