Fast graph discovering in anonymous networks

Damiano Varagnolo

KTH Royal Institute of Technology

October 19, 2012

Thanks to. . .

This talk

Smart objects...

... for a distributed world? (cf. the Metcalfe law)

An example: the transportation system

Distributed systems: requirements

- easy implementability
- sufficiently fast convergence
- contained bandwidth requirements
- robustness w.r.t. failures
- robustness w.r.t. churn
- scalability
- . . .

Topology Matters

Examples of (high-level) applications

Graph discovering literature - some dichotomies

- static networks vs dynamic networks
- identity-based vs privacy-aware algorithms
- information-aggregation vs information-propagation algorithms

Graph discovering literature - some dichotomies

- static networks *vs* dynamic networks
- identity-based vs privacy-aware algorithms
- information-aggregation vs information-propagation algorithms

Examples:

- construction of graph views
- random walks
- capture-recapture

what can we estimate?

what can we estimate?

• without any constraint \Rightarrow infer the whole graph perfectly

what can we estimate?

- without any constraint \Rightarrow infer the whole graph perfectly
- with anonymity constraints \Rightarrow infer the whole graph w.h.p.

Today's niche

time & consensus & scalability constraints

(i.e., highly dynamic networks where convergence speed is crucial)

 \Rightarrow analyze **max-consensus**

i.i.d. local generation

 $y_{5} \sim \mathcal{U}[0,1]$ $y_{2} \sim \mathcal{U}[0,1]$ $y_{3} \sim \mathcal{U}[0,1]$ $y_{4} \sim \mathcal{U}[0,1]$

 $y_{\rm max}$

Performance characterization

(under no-quantization issues)

Generalizations:

- perform *M* independent trials in parallel
- $y_{i,m} \sim F(\cdot)$ (absolutely continuous distribution)

$$\Rightarrow \text{ ML estimator: } \widehat{S} = \left(-\frac{1}{M} \sum_{m=1}^{M} \log \left(F(y_{\max,m})\right)\right)^{-1}$$
$$\Rightarrow \frac{\widehat{S}}{SM} \sim \text{Inv-Gamma}(M, 1)$$
$$\Rightarrow \mathbb{E}\left[\frac{\widehat{S}}{S}\right] = \frac{M}{M-1}$$
$$\Rightarrow \text{ var } \left(\frac{\widehat{S}-S}{S}\right) \approx \frac{1}{M}$$
$$\Rightarrow \left(\widehat{S}\right)^{-1} = \widehat{S^{-1}} \quad and \quad \widehat{S^{-1}} \text{ is MVUE for } S^{-1}$$

Extension 1 – neighborhoods size estimation

 \Rightarrow induces well-defined *k*-steps neighborhoods:

Extension 2 - number of links estimation

Assumption:

- every agent knows its in- and out-degrees
- ⇒ agents can *pretend* the behavior of an equivalent number of agents:

Extension 2 - number of links estimation

Assumption:

- every agent knows its in- and out-degrees
- ⇒ agents can *pretend* the behavior of an equivalent number of agents:

Remarks

- estimates *twice* the number of links
- can estimate the number of links between k-steps neighbors

Definition

$$e(i) := \max_{i \in \mathcal{V}} \operatorname{dist}(i, j)$$

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

$$t = 0$$

y_i(t): 0.3
0.6
0.1
0.4

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

$$t = 0 \quad 1$$

$$y_i(t): \quad \begin{array}{c} 0.3 & 0.7 \\ 0.6 & 0.6 \\ 0.1 & 0.8 \\ 0.4 & 0.4 \end{array}$$

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

$$t = \begin{array}{c} 0 & 1 & 2 \\ \hline 0.3 & 0.7 & 0.7 \\ \hline 0.6 & 0.6 & 0.6 \\ \hline 0.1 & 0.8 & 0.8 \\ \hline 0.4 & 0.4 & 0.4 \end{array}$$

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

t = 0		1	2	3	4	5
y _i (t):	0.3	0.7	0.7	0.7	0.7	0.7
	0.6	0.6	0.6	0.9	0.9	0.9
	0.1	0.8	0.8	0.8	0.8	0.8
	0.4	0.4	0.4	0.4	0.4	0.4

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

t = 0		1	2	3	4	5	6
y _i (t):	0.3	0.7	0.7	0.7	0.7	0.7	0.7
	0.6	0.6	0.6	0.9	0.9	0.9	0.9
	0.1	0.8	0.8	0.8	0.8	0.8	0.8
	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

t =	0	1	2	3	4	5	6	
	0.3	0.7	0.7	0.7	0.7	0.7	0.7	
$\gamma_{i}(t)$	0.6	0.6	0.6	0.9	0.9	0.9	0.9	$\rightarrow \hat{a}(i) - 3$
<i>y</i> _i (<i>t</i>).	0.1	0.8	0.8	0.8	0.8	0.8	0.8	$\rightarrow e(1) = 3$
	0.4	0.4	0.4	0.4	0.4	0.4	0.4	

Definition

$$e(i) := \max_{j \in \mathcal{V}} \operatorname{dist}(i, j)$$

(i.e., longest shortest path starting from *i*)

t =	0	1	2	3	4	5	6	
	0.3	0.7	0.7	0.7	0.7	0.7	0.7	
$\gamma_{i}(t)$	0.6	0.6	0.6	0.9	0.9	0.9	0.9	$\rightarrow \hat{a}(i) - 3$
<i>y</i> ₁ (<i>t</i>).	0.1	0.8	0.8	0.8	0.8	0.8	0.8	$\rightarrow e(1) = 3$
	0.4	0.4	0.4	0.4	0.4	0.4	0.4	

remark: statistical properties may depend on the actual graph

Extension 4 - estimation of radii and diameters

Definitions

$$r := \min_{i \in \mathcal{V}} e(i)$$
 $d := \max_{i \in \mathcal{V}} e(i)$

⇒ under synchronous communications assumptions one can distributedly estimate r, d through

$$\widehat{r} = \min_{i \in \mathcal{V}} \widehat{e}(i)$$
 $\widehat{d} = \max_{i \in \mathcal{V}} \widehat{e}(i)$

Application 1 - change detection

Implemented INRIA SensLab Strasbourg

GLR approach

$$\begin{cases} \mathcal{H}_0: \ S(i) \ge \overline{S} \text{ for all } i \in \{t - T, \dots, t\} \\ \mathcal{H}_1: \text{ exists } i \in \{t - T, \dots, t\} \text{ s.t. } S(i) < \overline{S} \end{cases}$$

 \Rightarrow accept \mathcal{H}_0 or \mathcal{H}_1 depending on the relative likelihood

Application 2 - transportation systems

Idea: estimate

• how many cars per meter per road's segment & lane

• traffic behavior per segment

(average speed / acceleration, variances, ...)

Uses:

- speed control
- early warning
- . . .

what can we estimate using max consensus?

what can we estimate using max consensus?

statistical strategies require

statistical identifiability characterizations

Statistical identifiability

Notation

- local values: $x_1 \sim p_{x_1}(\cdot), \ldots, x_S \sim p_{x_S}(\cdot)$
- graph-dependent map: $y = f_{\mathcal{G}}(x_1, \ldots, x_S) = f_{\mathcal{G}}(\boldsymbol{x})$
- parameter of interest: θ

Definition

 $\boldsymbol{\theta}$ is said statistically identifiable if

$$\mathcal{G}_1, \mathcal{G}_2 ext{ s.t. } \theta_1 \neq \theta_2 \quad \Rightarrow \quad \mathbb{P}\left[oldsymbol{x} \in f_{\mathcal{G}_1}^{-1}(y)
ight] \neq \mathbb{P}\left[oldsymbol{x} \in f_{\mathcal{G}_2}^{-1}(y)
ight]$$

for some y

A first characterization

Theorem

Hypotheses:

- $p_{x_i} = p_x$ (i.e., agents are equal)
- θ statistically not identifiable from p_{x}
- $f(\mathbf{x})$ anonymously computable and independent on $\mathcal G$
- $f(\mathbf{x})$ is a *consensus*

Thesis:

 \bullet unique statistically identifiable θ is the network size

A first characterization

Theorem

Hypotheses:

- $p_{x_i} = p_x$ (i.e., agents are equal)
- θ statistically not identifiable from $p_{\rm X}$
- $f(\mathbf{x})$ anonymously computable and independent on $\mathcal G$
- $f(\mathbf{x})$ is a *consensus*

Thesis:

 \bullet unique statistically identifiable θ is the network size

Implication:

 under theorem's assumptions and "at most d communications" one can infer just the network size

- <u>memory</u> enough to have time counters
 - memory
- network size **not** enough to share graph views
- what can be computed with "max-consensus + time-counters"?

- memory network size
 enough to have time counters
 - memory
- network size **not** enough to share graph views
- what can be computed with "max-consensus + time-counters"?
- can we prove that "max-consensus + time-counters" are the fastest?

- $\frac{\text{memory}}{\text{network size}}$ enough to have time counters
 - memory
- network size **not** enough to share graph views
- what can be computed with "max-consensus + time-counters"?
- can we prove that "max-consensus + time-counters" are the fastest?
- are they also "unique"?

Why should we do max-consensus on reals?

I.e., is it better to use discrete or "continuous" r.v.s?

Two simple and open problems

Assumptions:

- memory = 50 bits (example)
- $\bullet \ \exists$ upper bound on the number of agents
- metric: statistical estimation performance

Two simple and open problems

Assumptions:

- memory = 50 bits (example)
- \exists upper bound on the number of agents
- metric: statistical estimation performance

Scheme A: do as before (quantize real values)

- divide the 50 bits in M scalars (how?)
- quantize opportunely (how?)

Two simple and open problems

Assumptions:

- memory = 50 bits (example)
- \exists upper bound on the number of agents
- metric: statistical estimation performance

Scheme A: do as before (quantize real values)

- divide the 50 bits in M scalars (how?)
- quantize opportunely (how?)

Scheme B: each bit = Bernoulli

- compute the ML estimator (how?)
- set the success probability optimally (how?)

Summary: what do we know

Summary: what do we know

Summarizing ...

- Varagnolo, Pillonetto, Schenato (20??) Distributed size estimation in anonymous networks IEEE Transactions on Automatic Control
 - Garin, Varagnolo, Johansson (2012) Distributed estimation of diameter, radius and eccentricities in anonymous networks NecSys

Fast graph discovering in anonymous networks

Damiano Varagnolo

KTH Royal Institute of Technology

October 19, 2012

damiano@kth.se

