Control-oriented modelling - what is it?

Damiano Varagnolo

October 2018

Today's presentation

aim: what types of models can we use to operate a system, and how can we obtain them?
path:
(1) what is control?
(2) what are control-oriented models?
(3) how can we get control-oriented models from field measurements?
introducing today's ingredients

Controller types - Feedforward-Feedback

What is a model?

What is a control-oriented model?

How do we represent a control-oriented model?

Definition of state space representation: set of first-order differential equations among a finite set of inputs, outputs and state variables satisfying the separation principle, i.e., the future output depends only on the current state and the future input

How do we represent a control-oriented model?

Definition of state space representation: set of first-order differential equations among a finite set of inputs, outputs and state variables satisfying the separation principle, i.e., the future output depends only on the current state and the future input

Implication: the state summarizes the effect of past inputs on future output (sort of a "memory" of the system)

State space representations - Example

Rechargeable flashlight:

- input $u=$ on / off button
- state $x=$ level of charge of the battery
- output $y=$ how much light is emitted

State space representations

$$
\begin{aligned}
\dot{\boldsymbol{x}} & =\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u} ; \theta) \\
\boldsymbol{y} & =\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{u} ; \theta) \\
\boldsymbol{x}(k+1) & =\boldsymbol{f}(\boldsymbol{x}(k), \boldsymbol{u}(k) ; \theta) \\
\boldsymbol{y}(k) & =\boldsymbol{g}(\boldsymbol{x}(k), \boldsymbol{u}(k) ; \theta)
\end{aligned}
$$

Definition: linear systems

Definition (linearity)

$G(\cdot)$ is linear iff $\forall \alpha_{1}, \alpha_{2}, \boldsymbol{u}_{1}, \boldsymbol{u}_{2}$

$$
\boldsymbol{y}=G\left(\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}\right)=\alpha_{1} G\left(\boldsymbol{u}_{1}\right)+\alpha_{2} G\left(\boldsymbol{u}_{2}\right)=\alpha_{1} \boldsymbol{y}_{1}+\alpha_{2} \boldsymbol{y}_{2}
$$

Definition: nonlinear systems

anything that is not linear

Linear vs. nonlinear state-space systems

$$
\begin{array}{ll}
\dot{\boldsymbol{x}}=A \boldsymbol{x}+B \boldsymbol{u} & \dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u} ; \theta) \\
\boldsymbol{y}=C \boldsymbol{x}+D \boldsymbol{u} & \boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{u} ; \theta)
\end{array}
$$

how can we do control?

Control with linear models (LQR)

$$
\begin{cases}\dot{\boldsymbol{x}} & =A \boldsymbol{x}+B u \quad \text { Idea: } \quad J(y, u)=\rho\|y\|_{2}^{2}+\|u\|_{2}^{2} \quad\|\chi\|_{2}^{2}:=\int_{0}^{+\infty} \chi^{2}(t) d t \\ y=C \boldsymbol{x}\end{cases}
$$

Control with linear models (LQR) - fundamental result

under the simplifying assumption that the systems that we consider are fully controllable
Theorem
If

$$
\left\{\begin{array}{ll}
\dot{\boldsymbol{x}} & =A \boldsymbol{x}+B u \\
y & =C \boldsymbol{x}
\end{array} \quad J(y, u)=\rho\|y\|_{2}^{2}+\|u\|_{2}^{2}\right.
$$

then

$$
\arg \min _{u \in \mathbb{R}_{u}} J(y, u)=-K \boldsymbol{x}
$$

for an opportune K.

Control with linear models (LQR) - fundamental result

under the simplifying assumption that the systems that we consider are fully controllable
Theorem
If

$$
\left\{\begin{array}{ll}
\dot{\boldsymbol{x}} & =A \boldsymbol{x}+B u \\
y & =C \boldsymbol{x}
\end{array} \quad J(y, u)=\rho\|y\|_{2}^{2}+\|u\|_{2}^{2}\right.
$$

then

$$
\arg \min _{u \in \mathbb{R}_{u}} J(y, u)=-K \boldsymbol{x}
$$

for an opportune K.
How can we find K ? Follow the classical algorithms

Control with linear models - from LQR to MPC

What if:

$$
\arg \min _{u \in \mathcal{U}, y \in \mathcal{Y}} J(y, u)=\rho\|y\|_{2}^{2}+\|u\|_{2}^{2} \quad \text { s.t. }\left\{\begin{array}{ll}
\dot{\boldsymbol{x}} & =A \boldsymbol{x}+B u \\
y=C \boldsymbol{x}
\end{array} ?\right.
$$

Control with nonlinear models (NL-MPC)

$$
\begin{array}{ll}
\arg \min _{u} & J(y, u) \\
\text { s.t. } & \begin{cases}\dot{\boldsymbol{x}}=f(\boldsymbol{x}, u, \theta) \\
y & =g(\boldsymbol{x}, u, \theta)\end{cases} \\
& u \in \mathcal{U} \\
& y \in \mathcal{Y}
\end{array}
$$

Main messages up to now

we need a control-oriented

$$
\begin{aligned}
\dot{\boldsymbol{x}} & =f(\boldsymbol{x}, u, \theta) \\
y & =g(\boldsymbol{x}, u, \theta)
\end{aligned}
$$

and we need to have a good guess for $f(\cdot), g(\cdot)$, and θ
how do we create a control-oriented model?

Yet an other way of categorizing models

white box: get structure from physics, get parameters from datasheets
grey box: get structure from physics, get parameters using system identification
black box: get both structure and parameters using system identification

The simplest non-white model: ARX

$$
\begin{gathered}
y(t)+a_{1} y(t-1)+\ldots+a_{n_{a}} y\left(t-n_{a}\right)=b_{1} u(t-1)+\ldots+b_{n_{b}} u\left(t-n_{b}\right)+e(t) \\
\theta=\left[a_{1}, \ldots, a_{n_{a}}, b_{1}, \ldots, b_{n_{b}}\right]^{T} \quad e(t) \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{gathered}
$$

The simplest non-white model: ARX

$$
\begin{gathered}
y(t)+a_{1} y(t-1)+\ldots+a_{n_{a}} y\left(t-n_{a}\right)=b_{1} u(t-1)+\ldots+b_{n_{b}} u\left(t-n_{b}\right)+e(t) \\
\theta=\left[a_{1}, \ldots, a_{n_{a}}, b_{1}, \ldots, b_{n_{b}}\right]^{T} \quad e(t) \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{gathered}
$$

Notation:

- $A(q)=1+a_{1} q^{-1}+\ldots+a_{n_{a}} q^{-n_{a}}$
- $B(q)=b_{1} q^{-1}+\ldots+b_{n_{b}} q^{-n_{b}}$

$$
\Longrightarrow \quad A(q) y(t)=B(q) u(t)+e(t)
$$

Why "ARX"?

$$
A(q) y(t)=B(q) u(t)+e(t)
$$

AR: $A(q) y(t)$ (autoregressive)
X: $B(q) u(t)$ (exogenous)

ARX models - block schematic representation

$$
A(q) y(t)=B(q) u(t)+e(t) \quad \Longrightarrow \quad y(t)=\frac{B(q)}{A(q)} u(t)+\frac{1}{A(q)} e(t)
$$

Towards more complex models: ARMAX

$$
\begin{gathered}
y(t)+a_{1} y(t-1)+\ldots+a_{n_{a}} y\left(t-n_{a}\right)=b_{1} u(t-1)+\ldots+b_{n_{b}} u\left(t-n_{b}\right)+e(t)+c_{1} e(t-1)+\ldots+c_{n_{c}} e\left(t-n_{c}\right) \\
\theta=\left[a_{1}, \ldots, a_{n_{a}}, b_{1}, \ldots, b_{n_{b}}, c_{1}, \ldots, c_{n_{c}}\right]^{T} \quad e(t) \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{gathered}
$$

Towards more complex models: ARMAX

$$
\begin{gathered}
y(t)+a_{1} y(t-1)+\ldots+a_{n_{a}} y\left(t-n_{a}\right)=b_{1} u(t-1)+\ldots+b_{n_{b}} u\left(t-n_{b}\right)+e(t)+c_{1} e(t-1)+\ldots+c_{n_{c}} e\left(t-n_{c}\right) \\
\theta=\left[a_{1}, \ldots, a_{n_{a}}, b_{1}, \ldots, b_{n_{b}}, c_{1}, \ldots, c_{n_{c}}\right]^{T} \quad e(t) \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{gathered}
$$

Notation:

- $A(q)=1+a_{1} q^{-1}+\ldots+a_{n_{a}} q^{-n_{a}}$
- $B(q)=b_{1} q^{-1}+\ldots+b_{n_{b}} q^{-n_{b}}$
- $C(q)=1+c_{1} q^{-1}+\ldots+c_{n_{c}} q^{-n_{c}}$

$$
\Longrightarrow \quad A(q) y(t)=B(q) u(t)+C(q) e(t)
$$

Why "ARMAX"? (name)

$$
A(q) y(t)=B(q) u(t)+C(q) e(t)
$$

AR: $A(q) y(t)$ (autoregressive)
MA: $C(q) e(t)$ (moving-average)
$\mathrm{X}: B(q) u(t)$ (exogenous)

ARMAX models - block schematic representation

$$
A(q) y(t)=B(q) u(t)+C(q) e(t) \quad \Longrightarrow \quad y(t)=\frac{B(q)}{A(q)} u(t)+\frac{C(q)}{A(q)} e(t)
$$

Limitations of ARX and ARMAX models

$$
\begin{gathered}
A(q)=\text { denominator for both transfer functions } \\
\text { (kind of limiting) }
\end{gathered}
$$

Output Error $(O E)=$ simplest digression from ARX and ARMAX

Box-Jenkins $(B J)=$ more sophisticated digression from ARX and ARMAX

Box-Jenkins $(B J)=$ more sophisticated digression from ARX and ARMAX

So: how do we actually create a control-oriented model?

Typical strategy:
(1) collect data
(2) try to identify a linear model (ARX, ARMAX, ...)
(3) see if it has good predictive capabilities
(1) if so, do a linear controller
(3) if not, try nonlinear identification and nonlinear control
how do we identify a system from the data?
(linear or nonlinear, in the next few slides it doesn't matter)

Preliminary step: Least-Squares

i.e., the simplest strategy for estimating parameters from collected data

Assumptions:

data generation model: $\quad y_{t}=f\left(u_{t} ; \theta\right)+v_{t}$
dataset: $\mathcal{D}=\left\{\left(u_{t}, y_{t}\right)\right\}_{t=1, \ldots, N}$
hypothesis space: $\quad \theta \in \Theta$

Preliminary step: Least-Squares

i.e., the simplest strategy for estimating parameters from collected data

Assumptions:

data generation model: $\quad y_{t}=f\left(u_{t} ; \theta\right)+v_{t}$
dataset: $\mathcal{D}=\left\{\left(u_{t}, y_{t}\right)\right\}_{t=1, \ldots, N}$
hypothesis space: $\quad \theta \in \Theta$

Problem: find θ that "best explains" \mathcal{D}

Least-squares: geometrical interpretation

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right] \quad\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{N}
\end{array}\right] \quad\left[\begin{array}{c}
f\left(u_{1} ; \theta\right) \\
\vdots \\
f\left(u_{N} ; \theta\right)
\end{array}\right]
$$

Least-squares: mathematical formulation

$$
\begin{gathered}
y_{t}=f\left(u_{t} ; \theta\right)+v_{t} \quad \mathcal{D}=\left\{\left(u_{t}, y_{t}\right)\right\}_{t=1, \ldots, N} \\
\widehat{\theta}=\arg \min _{\theta \in \Theta}\left\|\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]-\left[\begin{array}{c}
f\left(u_{1} ; \theta\right) \\
\vdots \\
f\left(u_{N} ; \theta\right)
\end{array}\right]\right\|^{2}
\end{gathered}
$$

Least-squares: mathematical formulation

$$
\begin{gathered}
y_{t}=f\left(u_{t} ; \theta\right)+v_{t} \quad \mathcal{D}=\left\{\left(u_{t}, y_{t}\right)\right\}_{t=1, \ldots, N} \\
\widehat{\theta}=\arg \min _{\theta \in \Theta}\left\|\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]-\left[\begin{array}{c}
f\left(u_{1} ; \theta\right) \\
\vdots \\
f\left(u_{N} ; \theta\right)
\end{array}\right]\right\|^{2}=\arg \min _{\theta \in \Theta} \sum_{t=1}^{N}\left(y_{t}-f\left(u_{t} ; \theta\right)\right)^{2}
\end{gathered}
$$

Least-squares example: regression line

$$
y_{t}=\theta_{1}+\theta_{2} u_{t}+v_{t} \quad \mathcal{D}=\left\{\left(u_{t}, y_{t}\right)_{t}\right\}=\{(1,1),(2,2),(3,1)\} \quad \theta \in \mathbb{R}^{2}
$$

$$
\widehat{\theta}=\arg \min _{\theta_{1}, \theta_{2} \in \mathbb{R}}\left(\left(1-\theta_{1}-\theta_{2}\right)^{2}+\left(2-\theta_{1}-2 \theta_{2}\right)^{2}+\left(1-\theta_{1}-3 \theta_{2}\right)^{2}\right)
$$

Main messages from the last few slides

- ARX, ARMAX, OE, BJ are simple control-oriented models
- doing system identification means estimating their parameters
- "estimation" actually means "optimization"

Main messages from the last few slides

- ARX, ARMAX, OE, BJ are simple control-oriented models
- doing system identification means estimating their parameters
- "estimation" actually means "optimization"
how do we identify $A R X, A R M A X, O E, B J$, and all the rest?
parametric estimation as a predictors tuning problem

Parameter estimation methods

Assumption:

$$
\mathcal{M}=\text { selected model structure, e.g., }\left\{\begin{array}{l}
\text { ARX } \\
\text { ARMAX } \\
\text { OE } \\
\ldots
\end{array}\right.
$$

Parameter estimation methods

Assumption:

$$
\mathcal{M}=\text { selected model structure, e.g., }\left\{\begin{array}{l}
\text { ARX } \\
\text { ARMAX } \\
\text { OE } \\
\ldots
\end{array}\right.
$$

main idea: a control-oriented model is as good as it can predict observed data

Parameter estimation methods

Assumption:

$$
\mathcal{M}=\text { selected model structure, e.g., }\left\{\begin{array}{l}
\text { ARX } \\
\text { ARMAX } \\
\text { OE } \\
\ldots
\end{array}\right.
$$

main idea: a control-oriented model is as good as it can predict observed data In the linear case:

$$
\begin{gathered}
y(t)=G(q ; \theta) u(t)+H(q ; \theta) e(t) \\
\Downarrow \\
\widehat{y}(t \mid t-1 ; \theta)=\left[H^{-1}(q ; \theta) G(q ; \theta)\right] u(t)+\left[1-H^{-1}(q ; \theta)\right] y(t)
\end{gathered}
$$

Parameter estimation methods

Assumption:

$$
\mathcal{M}=\text { selected model structure, e.g., }\left\{\begin{array}{l}
\text { ARX } \\
\text { ARMAX } \\
\text { OE } \\
\ldots
\end{array}\right.
$$

main idea: a control-oriented model is as good as it can predict observed data In the linear case:

$$
\begin{gathered}
y(t)=G(q ; \theta) u(t)+H(q ; \theta) e(t) \\
\Downarrow \\
\widehat{y}(t \mid t-1 ; \theta)=\left[H^{-1}(q ; \theta) G(q ; \theta)\right] u(t)+\left[1-H^{-1}(q ; \theta)\right] y(t)
\end{gathered}
$$

$\Longrightarrow \quad$ in general, best $\theta^{*}=$ that θ that "minimizes" $y(t)-\widehat{y}(t \mid t-1 ; \theta)$

Prediction error methods in a nutshell

(and with some simplifications)
prediction errors: $\varepsilon(t ; \theta)=y(t)-\widehat{y}(t \mid t-1 ; \theta)$

Prediction error methods in a nutshell

(and with some simplifications)
prediction errors: $\varepsilon(t ; \theta)=y(t)-\widehat{y}(t \mid t-1 ; \theta)$
loss function: $V(\theta, \mathcal{D})=\frac{1}{N} \sum_{t=1}^{N} \ell\left(\varepsilon_{F}(t ; \theta)\right)$

Prediction error methods in a nutshell

(and with some simplifications)
prediction errors: $\varepsilon(t ; \theta)=y(t)-\widehat{y}(t \mid t-1 ; \theta)$
loss function: $V(\theta, \mathcal{D})=\frac{1}{N} \sum_{t=1}^{N} \ell\left(\varepsilon_{F}(t ; \theta)\right)$

PEM: $\widehat{\theta}=\arg \min _{\theta \in \Theta} V(\theta, \mathcal{D})$

PEM vs. machine learning

Special focus of PEM $=$

- minimize prediction errors
- consider dynamics and effects of feedback loops

PEM in practice through examples: identifying ARMAX models

$$
A(q ; \theta) y(t)=B(q ; \theta) u(t)+C(q ; \theta) e(t)
$$

PEM in practice through examples: identifying ARMAX models

$$
\begin{gathered}
A(q ; \theta) y(t)=B(q ; \theta) u(t)+C(q ; \theta) e(t) \\
\Downarrow \\
\varepsilon(t)=\frac{A(q ; \theta)}{C(q ; \theta)} y(t)-\frac{B(q ; \theta)}{C(q ; \theta)} u(t)
\end{gathered}
$$

PEM in practice through examples: identifying ARMAX models

$$
\begin{gathered}
A(q ; \theta) y(t)=B(q ; \theta) u(t)+C(q ; \theta) e(t) \\
\Downarrow \\
\varepsilon(t)=\frac{A(q ; \theta)}{C(q ; \theta)} y(t)-\frac{B(q ; \theta)}{C(q ; \theta)} u(t) \\
\Downarrow \\
\widehat{\theta}=\arg \min _{\theta \in \Theta} \sum_{t=1}^{N} \ell\left(\frac{A(q ; \theta)}{C(q ; \theta)} y(t)-\frac{B(q ; \theta)}{C(q ; \theta)} u(t)\right)
\end{gathered}
$$

how shall we implement it numerically?

PEM in practice through examples: identifying ARMAX models

 through opportune rewritings:
PEM in practice through examples: identifying ARMAX models

 through opportune rewritings:$$
\begin{aligned}
& \Longrightarrow \varepsilon=\underline{C}^{-1} \underline{A} \boldsymbol{y}-\underline{C}^{-1} \underline{B} \boldsymbol{u}
\end{aligned}
$$

PEM in practice through examples: identifying ARMAX models

 through opportune rewritings:$$
\begin{aligned}
& \Longrightarrow \quad \varepsilon=\underline{C}^{-1} \underline{A} \boldsymbol{y}-\underline{C}^{-1} \underline{B} \boldsymbol{u} \\
& \Longrightarrow \quad \arg \min _{a_{1}, \ldots, a_{n_{a}}} V\left(\underline{C}^{-1} \underline{A} \boldsymbol{y}-\underline{C}^{-1} \underline{B} \boldsymbol{u}\right) \\
& b_{1}, \ldots, b_{n_{b}} \\
& c_{1}, \ldots, c_{n_{c}}
\end{aligned}
$$

Main message from the last few slides

- identifying different model structures \Longrightarrow implementing different optimization schemes
a practical example: modelling air flow overprovisioning / underprovisioning

The ideal air flows distribution

(notation: ideal provisioning $=\Omega_{i}$)

What do we mean with underprovisioning?

$$
\text { (notation: underprovisioning }=\Omega_{u} \text {) }
$$

What do we mean with overprovisioning?

$$
\text { (notation: overprovisioning }=\Omega_{o} \text {) }
$$

Generalizations

ideal provisioning := ventilation system working as planned
underprovisioning := servers receive warmer-than-ideal coolants
overprovisioning := cooling systems receive colder-than-ideal air intakes

Towards data-driven modelling: which evidence is available?

Towards data-driven modelling: which evidence is available?

Towards data-driven modelling: which evidence is available?

Towards data-driven modelling: which evidence is available?

From developing the intuitions to modelling the system

From developing the intuitions to modelling the system

Choices:

- 3 Linear Time Invariant (LTI) models (one for each provisioning region)
- 2 alternative choices for the models configuration:
- Single Input Single Output (SISO)
- Multi Input Single Output (MISO)

Choice of the inputs and outputs

- SISO: $\begin{cases}\text { input: } & \text { CRACs fans speed } \\ \text { output: } & T_{2} \text { (topmost servers' air inlets temperature) }\end{cases}$

Choice of the inputs and outputs

- SISO: $\begin{cases}\text { input: } & \text { CRACs fans speed } \\ \text { output: } & T_{2} \text { (topmost servers' air inlets temperature) }\end{cases}$
- MISO: $\begin{cases}\text { inputs: } & \text { CRACs fans speed, } T_{6}, T_{r} \\ \text { output: } & T_{2} \text { (topmost servers' air inlets temperature) }\end{cases}$ with
- $T_{6}=$ air temperature on the roof
- $T_{r}=\frac{T_{\text {in }}+T_{\text {out }}}{2}$
- $T_{\text {in }}=$ temperature of the CRAC inlet refrigerant
- $T_{\text {out }}=$ temperature of the CRAC outlet refrigerant

Results - capabilities of the SISO model to simulate a validation dataset

overprovisioning

ideal provisioning

$---T_{2} \quad-\widehat{T}_{2} \quad$........ fans

Results - capabilities of the MISO model to simulate a validation dataset
ideal provisioning
ideal provisioning

$---T_{2} \quad-\widehat{T}_{2} \quad$......... fans

Quantitative results

Provisioning region	Model type	Type	Order	Fit
over	SISO	BJ	$[3322]$	81%
	MISO	ARX	$[2222]$	83%
ideal	SISO	BJ	$[2255]$	75%
	MISO	ARX	$[3333]$	69%
under	SISO	BJ	$[2255]$	85%
	MISO	ARX	$[3333]$	88%

Ok, we got some models. So?

Ok, we got some models. So?
\Longrightarrow possibilities for better airflow control

Conclusions

Control-oriented modelling - what is it?

Damiano Varagnolo

October 2018

