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Introduction

Focus of this talk:

distributed estimation

of the size S of a network

→ i.e. let the agents know how many they are
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Introduction

Motivations (1/3): network maintenance purposes
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Introduction

Motivations (2/3): smart buildings management
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Introduction

Motivations (3/3): estimation purposes

(also S−1 may be interesting!!)
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Introduction

Problem de�nition

hypotheses

S := network size

S deterministic and constant in time

agents have limited computational /

memory / communication capabilities

network is anonymous

(no IDs or IDs not assured to be unique)

Goal: develop a distributed estimator

Ŝ of S satisfying the constraints
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Introduction

Literature review

network size estimation = not a new problem!!

Deterministic scenario: theoretical limit for anonymous networks

@ algorithm (with bounded average bit complexity) guaranteed to

return the correct answer for every (�nite) execution

Cidon, Shavitt (1995), Information Processing Letters

Stochastic scenario: some existing approaches

random walk strategies

capture-recapture strategies
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Introduction

Random walks

Massoulié, Le Merrer, Kermarrec, Ganesh (2006)

Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing

Algorithm

1 generate a �seed�

2 randomly propagate it

3 # of jumps → statistically

dependent on S

4 variance of the error:

∝ (# of generated seeds)−1
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Introduction

Capture-recapture

Seber (1982)

The estimation of animal abundance and related parameters

London: Charles Gri�n & Co.

Algorithm

1 generate N seeds

2 propagate them

3 capture and infer

4 variance of the error:

∝ # of captured seeds

(polynomially)
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Introduction

Our algorithm

several peculiarities
w.r.t. existing literature

full parallelism → every agent will have an estimate at the same time

easily implementable in anonymous networks

nice mathematical properties

the idea: generate random numbers → combine

them with consensus → exploit statistical inference

Cohen (1997), Journal of Computer and System Sciences,

Size-estimation framework with applications to transitive closure and reachability
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General estimation scheme
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General estimation scheme

Block representation of our strategy
local distributed local

F

F

F

y1,1
y2,1

yS,1

y1,2
y2,2

yS,2

y1,M
y2,M

yS,M

p (·) Ψ Ŝ

(or Ŝ−1)

f1

f2

fM
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General estimation scheme

Block representation of our strategy

the S-tuples {y1,m, . . . , yS,m} are converted into a scalar fm through F

(e.g. F = average, F = max)

local distributed local
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General estimation scheme

Block representation of our strategy

the M-tuple {f1, . . . , fM} is converted into an estimate Ŝ through Ψ

(e.g. Ψ = Maximum Likelihood)

local distributed local

F

F

F

y1,1
y2,1

yS,1

y1,2
y2,2

yS,2

y1,M
y2,M

yS,M

p (·) Ψ Ŝ
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F

F

F
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yS,1

y1,2
y2,2

yS,2

y1,M
y2,M

yS,M

p (·) Ψ Ŝ

(or Ŝ−1)

f1

f2

fM

cost function: J (p,F ,Ψ) := E
[(

S − Ŝ
)2]
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General estimation scheme

An example

Algorithm (M = 1):

local generation

with p = N (0, 1)

F = average consensus

Ψ = Maximum Likelihood Ŝ = y−2
ave

.

.
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An example

y1 ∼ N (0, 1)

y2 ∼ N (0, 1)

y3 ∼ N (0, 1)

y4 ∼ N (0, 1)

y5 ∼ N (0, 1)
Algorithm (M = 1):
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General estimation scheme

An example

y1 →
1

S

S∑
i=1

yi

y2 →
1

S

S∑
i=1

yi

y3 →
1

S

S∑
i=1

yi

y4 →
1

S

S∑
i=1

yi

y5 →
1

S

S∑
i=1

yi

Algorithm (M = 1):

local generation

with p = N (0, 1)

F = average consensus

Ψ = Maximum Likelihood Ŝ = y−2
ave

.

.
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General estimation scheme

An example

yave ∼ N
(
0, 1

S

)yave ∼ N
(
0, 1

S

)
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0, 1

S

)
yave ∼ N
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0, 1

S

)
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(
0, 1

S

)
Algorithm (M = 1):
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.

.

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012 15 / 47



General estimation scheme

An example

yave ∼ N
(
0, 1

S

)yave ∼ N
(
0, 1

S

)
yave ∼ N

(
0, 1

S

)
yave ∼ N

(
0, 1

S

)

yave ∼ N
(
0, 1

S

)
Algorithm (M = 1):

local generation

with p = N (0, 1)

F = average consensus

Ψ = Maximum Likelihood Ŝ = y−2
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General estimation scheme

A formidable in�nite-dimensional problem
local distributed local

F

F

F

y1,1
y2,1

yS,1

y1,2
y2,2

yS,2

y1,M
y2,M

yS,M

p (·) Ψ Ŝ

f1

f2

fM

arg min
p,F ,Ψ

J (p,F ,Ψ) = ?? J (p,F ,Ψ) := E
[(
S − Ŝ

)2]
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General estimation scheme

Our case studies

Case 1:

local distributed local

F = ave.

F = ave.

F = ave.

y1,1
y2,1

yS,1

y1,2
y2,2

yS,2

y1,M
y2,M

yS,M

Gaussian

distribution
Ψ = ML Ŝ

f1

f2

fM
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General estimation scheme

Our case studies

Case 2:

local distributed local

F = max

F = max

F = max

y1,1
y2,1

yS,1

y1,2
y2,2

yS,2

y1,M
y2,M

yS,M

absolutely

continuous

distribution

Ψ = ML Ŝ

f1

f2

fM
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General estimation scheme

Our case studies

Case 3:

local distributed local

F = ave.

F = ave.

F = ave.

y1,1
y2,1

yS,1

y1,2
y2,2

yS,2

y1,M
y2,M

yS,M

Bernoulli

distribution
Ψ = ML Ŝ

f1

f2

fM
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General estimation scheme

An historical case study

The German Tank problem

infer tanks production from serial numbers analysis

(June 1940 → September 1942)

intelligence statisticians actual

1400 256 255

tank217

tank532
...

tank940

battle�eld
F = max ID

& # of tanks
Ψ = MVUE
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Continuous distributions
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Continuous distributions

Case 1: (p Gaussian) + (F = average) + (Ψ = ML)

{y1,m}
{y2,m}

...

{yS,m}

p = N
(
µ, σ2

)
F = ave. cons. Ψ = ML

Ŝ

Results: (1 / 2) (independent of µ and σ2)

Ŝ =

(
1

M

M∑
m=1

y 2
ave,m

)−1

(MS)−1Ŝ ∼ Inv− χ2(M)

E

[
Ŝ

S

]
=

M

M − 2
var

(
Ŝ − S

S

)
≈ 2

M
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Continuous distributions

Case 1: (p Gaussian) + (F = average) + (Ψ = ML)

{y1,m}
{y2,m}

...

{yS,m}

p = N
(
µ, σ2

)
F = ave. cons. Ψ = ML

Ŝ

Results: (2 / 2)(
Ŝ
)−1

= Ŝ−1 and Ŝ−1 is MVUE for S−1

for generic regular p (·) , S ↑ ⇒ 1

S

∑
yi

dist.−−→ N
(
0,

1

S

)
implication: performances tend to become independent of p(·)
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Continuous distributions

Case 2: (p continuous) + (F = max) + (Ψ = ML)

{y1,m}
{y2,m}

...

{yS,m}

absolutely

continuous

distribution

F = max cons. Ψ = ML

Ŝ

Results: independent of p (·)

Ŝ =
(

1
M

∑M

m=1− log (P [yave,m])
)−1

(MS)−1Ŝ ∼ Inv− Γ(M, 1)

E

[
Ŝ

S

]
=

M

M − 1
var

(
Ŝ − S

S

)
≈ 1

M
(×1

2
w.r.t. average)(

Ŝ
)−1

= Ŝ−1 and Ŝ−1 is MVUE for S−1
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Continuous distributions

Case 2: (p continuous) + (F = max) + (Ψ = ML)
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Ŝ

Results: independent of p (·)

Ŝ =
(

1
M

∑M

m=1− log (P [yave,m])
)−1

(MS)−1Ŝ ∼ Inv− Γ(M, 1)

E

[
Ŝ

S

]
=

M

M − 1
var

(
Ŝ − S

S

)
≈ 1

M
(×1

2
w.r.t. average)(

Ŝ
)−1

= Ŝ−1 and Ŝ−1 is MVUE for S−1
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Continuous distributions

A graphical summary

ML Ψ
p

J (p,F = {ave.,max} ,Ψ)

(abs. cont. dist.)

NUL
p

J (p,F = max,Ψ = ML)

(S1)

NUL
p

J (p,F = ave,Ψ = ML)

(S1)

is it possible to do better using discrete distributions?
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Discrete distributions
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Discrete distributions

Example with Bernoulli trials

Algorithm (M = 1):

local generation

with p = B(0.5)

F = average consensus

idea: estimator Ŝ = denominator!

.

.

disclaimer: �nite precision will be handled later
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Discrete distributions

Example with Bernoulli trials

Algorithm (M = 1):

y1 = 1

y2 = 0

y3 = 0

y4 = 1

y5 = 0

local generation

with p = B(0.5)

F = average consensus

idea: estimator Ŝ = denominator!

.

.
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Discrete distributions

Example with Bernoulli trials

Algorithm (M = 1):

y1 →
1

S

S∑
i=1

yi

y2 →
1

S

S∑
i=1

yi

y3 →
1

S

S∑
i=1

yi

y4 →
1

S

S∑
i=1

yi

y5 →
1

S

S∑
i=1

yi

local generation

with p = B(0.5)

F = average consensus

idea: estimator Ŝ = denominator!

.

.
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Discrete distributions

Example with Bernoulli trials

Algorithm (M = 1):

yave =
2

5

yave =
2

5

yave =
2

5

yave =
2

5

yave =
2

5

local generation

with p = B(0.5)

F = average consensus

idea: estimator Ŝ = denominator!

.

.
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Discrete distributions

Example with Bernoulli trials - insights

yave =
2

5

yave =
2

5

yave =
2

5

yave =
2

5

yave =
2

5

.

.
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Discrete distributions

Example with Bernoulli trials - insights

yave =
2

6

yave =
2

6

yave =
2

6

yave =
2

6

yave =
2

6

yave =
2

6

.
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Discrete distributions

Example with Bernoulli trials - insights

yave =
1

3
=

2

6
= . . .

yave =
1

3
=

2

6
= . . .

yave =
1

3
=

2

6
= . . .

yave =
1

3
=

2

6
= . . .

yave =
1

3
=

2

6
= . . .

yave =
1

3
=

2

6
= . . .

.
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Discrete distributions

Example with Bernoulli trials - insights

yave =
1

3

yave =
1

3

yave =
1

3

yave =
1

3

yave =
1

3

yave =
1

3

assumption: agents compute only coprime representations

.

.

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012 26 / 47



Discrete distributions

Example with Bernoulli trials - insights

yave =
1

3

yave =
1

3

yave =
1

3

yave =
1

3

yave =
1

3

yave =
1

3

assumption: agents compute only coprime representations

is denominator a

good estimator?

.

.
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Discrete distributions

Statistical characterization of the estimator

Proposition

Hypotheses:

yi ∼ B (p)

yave =
1

S

S∑
i=1

yi =
k̂

Ŝ
coprime

Thesis:

Ŝ = ML estimate of S for

every p

0 5 10 15 20 25

0

0.1

0.2

S

P
[ Ŝ

;
S
]

Ŝ
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Discrete distributions

Intuition behind the ML property

Ockham's razor (William of Ockham, c. 1288 - c. 1348)

�select from among competing hypotheses the

one that makes the fewest new assumptions�

yave = k̂

Ŝ
= 2k̂

2Ŝ
= 3k̂

3Ŝ
= . . .

.

.
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= 2k̂

2Ŝ
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3Ŝ
= . . .
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Discrete distributions
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Discrete distributions

Intuition behind the ML property

Ockham's razor (William of Ockham, c. 1288 - c. 1348)

�select from among competing hypotheses the

one that makes the fewest new assumptions�

yave = k̂

Ŝ
= 2k̂

2Ŝ
= 3k̂

3Ŝ
= . . .

the simplest network / hypothesis

.

.
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Discrete distributions

An historical and related question

The Newton-Pepys problem (Isaac Newton, 1643 - 1727; Samuel Pepys, 1633 - 1703)

Which one is the most likely event?

1 have at least 1 six when rolling 6 dice

2 have at least 2 sixes when rolling 12 dice

3 have at least 3 sixes when rolling 18 dice

Our result:

P
[
have exactly k sixes when rolling kN dice

]
decreases when increasing k
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Discrete distributions

The nonlinear behavior of the estimator

1
6

1
3

1
2

2
3

5
6

1

assumption:

S known,

S = 6

0
yave
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Discrete distributions

The nonlinear behavior of the estimator

1
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Discrete distributions

Connections with number theory

De�nition: totative of an integer S

a positive integer k ≤ S which is also relatively prime to S

De�nition: Euler's φ-function

φ(S) := number of totatives of S

for our purposes, φ(S) = number of good values

1
6

1
3

1
2

2
3

5
6

10 1
7

2
7

3
7

4
7

5
7

6
7

0
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Discrete distributions

Totatives' characteristics (1/2)

Distribution: ≈ uniform on N

100
S = 10: (40%)

500
S = 50: (40%)

1000
S = 100: (40%)

very important: Bernoulli's p has not key roles

0 100
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Discrete distributions

Totatives' characteristics (2/2)

How many?

φ(S) >
S

eγ log log S +
3

log log S

i.e.

φ(S)

S
> 0.15

∀ S ∈ [2, 1010]

(γ ≈ 0.577, Euler-Mascheroni constant)

an other important result:

at least 15% of the plausible yave are good ones

only 15%??
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Discrete distributions

Extension to the multiple-generations case

y 1: 0 1 0 1 1 0 1 0 0 0

y 2: 1 1 1 0 0 1 1 1 0 1

y 3: 0 0 1 0 0 0 0 1 1 0

y 4: 1 1 0 0 1 1 1 1 1 1

y 5: 0 0 1 1 1 0 0 1 0 0

.

.
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Extension to the multiple-generations case

y 1: 0 1 0 1 1 0 1 0 0 0

y 2: 1 1 1 0 0 1 1 1 0 1

y 3: 0 0 1 0 0 0 0 1 1 0

y 4: 1 1 0 0 1 1 1 1 1 1

y 5: 0 0 1 1 1 0 0 1 0 0

locally generated

(size = M)

.
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Discrete distributions

Extension to the multiple-generations case

y 1: 0 1 0 1 1 0 1 0 0 0

y 2: 1 1 1 0 0 1 1 1 0 1

y 3: 0 0 1 0 0 0 0 1 1 0

y 4: 1 1 0 0 1 1 1 1 1 1

y 5: 0 0 1 1 1 0 0 1 0 0

component-wise consensus

.
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Discrete distributions

Extension to the multiple-generations case
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Discrete distributions

Extension to the multiple-generations case

y 1: 0 1 0 1 1 0 1 0 0 0

y 2: 1 1 1 0 0 1 1 1 0 1

y 3: 0 0 1 0 0 0 0 1 1 0

y 4: 1 1 0 0 1 1 1 1 1 1

y 5: 0 0 1 1 1 0 0 1 0 0

Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝ5 Ŝ6 Ŝ7 Ŝ8 Ŝ9 Ŝ10

Ŝ = LCM

({
Ŝm

})

ML

.

.
varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012 34 / 47



Discrete distributions

Intuition behind the LCM(·) operation
.

.
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Discrete distributions

Estimation performance

Main result

(0.5)SmaxM ≤ P
[
Ŝ 6= S ; M

]
≤ (0.85)M

1 2 3 4 5

1

10−6

10−12

10−18

M

P
[ Ŝ
6=

S
;
M
]

(0.85)M

(0.5)SmaxM

S = 9
S = 11
S = 12
S = 19
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Robustness

Robustness issues

need to take into account several non-idealities

quantization errors

consensus errors

robustness properties of the various

strategies are very di�erent
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Robustness

Robustness: Gaussian + average

Assumptions and de�nitions

y actual

ave
= (1 + δ)y ideal

ave
+ ∆

∆Ŝ

Ŝ
:= relative error btw. ideal case and actual estimate

First-order approximation∣∣∣∣∣∆Ŝ

Ŝ

∣∣∣∣∣ . 2δmax + 2
√
S∆max

well posed map
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Robustness

Robustness: absolutely continuous dist. + max

Assumptions and de�nitions

y actual

ave
= (1 + δ)y ideal

ave
+ ∆

∆Ŝ

Ŝ
:= relative error btw. ideal case and actual estimate

First-order approximation∣∣∣∣∣∆Ŝ

Ŝ

∣∣∣∣∣ . Sδmax + S∆max

tradeo� robustness vs. performance
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Robustness

Robustness: Bernoulli + average

Extremely non-linear map (requires Smax):

.

.
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Ŝ

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012 41 / 47



Robustness

Robustness: Bernoulli + average

Extremely non-linear map (requires Smax):

.

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

yave

Ŝ
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Future directions

Two main directions:

1 dynamic case

(continuously run the previous algorithms and tie the results

� forthcoming at 51st CDC)

2 max-consensus based networks structure identi�cation
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Future directions

structure identi�cation with max-consensus

time

protocol: each agent communicates once per epoch

{ym(t)}

× × × × × t = 0

× × × t = 1

× × t = 2

× × t = 3

× t = 4

× t = 5
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Future directions

Vision

develop algorithms able to detect

network faults

and give indications

for self-recon�guration purposes
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