Stein unbiased risk estimators for tuning hyperparameters of distributed regression algorithms

Damiano Varagnolo, ITK

Purposes of this seminar

(1) discuss about a useful tool
(2) connect with you

Roadmap

- Stein's lemma
- Stein's unbiased risk estimator (SURE)
- Model selection through SURE
(will follow "Stein's Unbiased Risk Estimate, Statistical Machine Learning 2015, Tibshirani \& Wasserman")
- RKHS-based regression
- average-consensus algorithms
- SURE in our distributed regression context

Stein's lemma

Stein's univariate lemma

If:

$$
\begin{equation*}
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f: \mathbb{R} \mapsto \mathbb{R} \text { absolutely continuous } \tag{2}
\end{equation*}
$$

f^{\prime} exists and is s.t. $\mathbb{E}\left[\left|f^{\prime}(X)\right|\right]<+\infty$

Stein's univariate lemma

If:

$$
\begin{equation*}
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f: \mathbb{R} \mapsto \mathbb{R} \text { absolutely continuous } \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime} \text { exists and is s.t. } \mathbb{E}\left[\left|f^{\prime}(X)\right|\right]<+\infty \tag{3}
\end{equation*}
$$

then:

$$
\begin{equation*}
\mathbb{E}[(X-\mu) f(X)]=\sigma^{2} \mathbb{E}\left[f^{\prime}(X)\right] \tag{4}
\end{equation*}
$$

Implications

(with $\sigma^{2}=1$ for notational simplicity)

$$
\begin{equation*}
\mathbb{E}[(X-\mu) f(X)]=\operatorname{cov}(X, f(X))=\mathbb{E}\left[f^{\prime}(X)\right] \tag{5}
\end{equation*}
$$

Implications

(with $\sigma^{2}=1$ for notational simplicity)

$$
\begin{equation*}
\mathbb{E}[(X-\mu) f(X)]=\operatorname{cov}(X, f(X))=\mathbb{E}\left[f^{\prime}(X)\right] \tag{5}
\end{equation*}
$$

- if f is an estimator of μ, then estimating $\operatorname{cov}(X, f(X))$ through $\mathbb{E}[(X-\mu) f(X)]$ requires knowing $\mu \Longrightarrow$ not a feasible path!

Implications

(with $\sigma^{2}=1$ for notational simplicity)

$$
\begin{equation*}
\mathbb{E}[(X-\mu) f(X)]=\operatorname{cov}(X, f(X))=\mathbb{E}\left[f^{\prime}(X)\right] \tag{5}
\end{equation*}
$$

- if f is an estimator of μ, then estimating $\operatorname{cov}(X, f(X))$ through $\mathbb{E}[(X-\mu) f(X)]$ requires knowing $\mu \Longrightarrow$ not a feasible path!
- alternative strategy: estimate $\operatorname{cov}(X, f(X))$ through computing $\widehat{\mathbb{E}}\left[f^{\prime}(X)\right]$

Stein's multivariate lemma

If:

$$
\begin{equation*}
X \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \tag{6}
\end{equation*}
$$

$f: \mathbb{R}^{n} \mapsto \mathbb{R}$ almost differentiable, i.e.:
$f\left(\cdot, x_{-i}\right): \mathbb{R} \mapsto \mathbb{R}$ absolutely continuous for a.e. $x_{i} \in \mathbb{R}^{n-1}$ and $i=1, \ldots, n$

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}} \text { exists and is s.t. } \mathbb{E}\left[\left|\frac{\partial f}{\partial x_{i}}(X)\right|\right]<+\infty \text { for each } i=1, \ldots, n \tag{7}
\end{equation*}
$$

Stein's multivariate lemma

If:

$$
\begin{equation*}
X \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \tag{6}
\end{equation*}
$$

$f: \mathbb{R}^{n} \mapsto \mathbb{R}$ almost differentiable, i.e.:

$$
\begin{equation*}
f\left(\cdot, x_{-i}\right): \mathbb{R} \mapsto \mathbb{R} \text { absolutely continuous for a.e. } x_{i} \in \mathbb{R}^{n-1} \text { and } i=1, \ldots, n \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}} \text { exists and is s.t. } \mathbb{E}\left[\left|\frac{\partial f}{\partial x_{i}}(X)\right|\right]<+\infty \text { for each } i=1, \ldots, n \tag{8}
\end{equation*}
$$

then:

$$
\begin{equation*}
\mathbb{E}[(X-\mu) f(X)]=\sigma^{2} \mathbb{E}[\nabla f(X)] \tag{9}
\end{equation*}
$$

Stein's multivariate lemma (2)

$$
\begin{gather*}
X \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \quad f=\left[f_{1}, \ldots, f_{n}\right] \tag{10}\\
\Longrightarrow \quad \mathbb{E}\left[(X-\mu) f_{i}(X)\right]=\sigma^{2} \mathbb{E}\left[\nabla f_{i}(X)\right] \tag{11}
\end{gather*}
$$

Stein's multivariate lemma (2)

$$
\begin{align*}
X & \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \quad f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \quad f=\left[f_{1}, \ldots, f_{n}\right] \tag{10}\\
& \Longrightarrow \quad \mathbb{E}\left[(X-\mu) f_{i}(X)\right]=\sigma^{2} \mathbb{E}\left[\nabla f_{i}(X)\right] \tag{11}\\
& \Longrightarrow \quad \sum_{i=1}^{n} \operatorname{cov}\left(X_{i}, f_{i}(X)\right)=\sigma^{2} \mathbb{E}\left[\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}(X)\right] \tag{12}
\end{align*}
$$

From Stein's multivariate lemma
to Stein's unbiased risk estimate (SURE)

$$
\begin{equation*}
y \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \quad \widehat{\mu}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \quad \widehat{\mu}(y)=\text { estimate of } \mu \text { at } y \tag{13}
\end{equation*}
$$

From Stein's multivariate lemma
to Stein's unbiased risk estimate (SURE)

$$
\begin{align*}
& y \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \quad \widehat{\mu}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \quad \widehat{\mu}(y)=\text { estimate of } \mu \text { at } y \tag{13}\\
& R=\mathbb{E}\left[\|\mu-\widehat{\mu}\|_{2}^{2}\right]
\end{align*}
$$

From Stein's multivariate lemma
to Stein's unbiased risk estimate (SURE)

$$
\begin{aligned}
y \sim \mathcal{N} & \left(\mu, \sigma^{2} I\right) \quad \widehat{\mu}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \quad \widehat{\mu}(y)=\text { estimate of } \mu \text { at } y \\
R & =\mathbb{E}\left[\|\mu-\widehat{\mu}\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\|\mu-y+y-\widehat{\mu}\|_{2}^{2}\right]
\end{aligned}
$$

From Stein's multivariate lemma
to Stein's unbiased risk estimate (SURE)

$$
\begin{align*}
y \sim \mathcal{N} & \left(\mu, \sigma^{2} I\right) \quad \widehat{\mu}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \quad \widehat{\mu}(y)=\text { estimate of } \mu \text { at } y \tag{13}\\
R & =\mathbb{E}\left[\|\mu-\widehat{\mu}\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\|\mu-y+y-\widehat{\mu}\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\|\mu-y\|_{2}^{2}\right]+\mathbb{E}\left[\|y-\widehat{\mu}\|_{2}^{2}\right]+2 \mathbb{E}\left[(\mu-y)^{T}(y-\widehat{\mu})\right]
\end{align*}
$$

From Stein's multivariate lemma
to Stein's unbiased risk estimate (SURE)

$$
\begin{align*}
y \sim \mathcal{N} & \left(\mu, \sigma^{2} I\right) \quad \widehat{\mu}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \quad \widehat{\mu}(y)=\text { estimate of } \mu \text { at } y \tag{13}\\
R & =\mathbb{E}\left[\|\mu-\widehat{\mu}\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\|\mu-y+y-\widehat{\mu}\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\|\mu-y\|_{2}^{2}\right]+\mathbb{E}\left[\|y-\widehat{\mu}\|_{2}^{2}\right]+2 \mathbb{E}\left[(\mu-y)^{T}(y-\widehat{\mu})\right] \\
& =n \sigma^{2}+\mathbb{E}\left[\|y-\widehat{\mu}\|_{2}^{2}\right]+2 \mathbb{E}\left[(\mu-y)^{T}(y-\widehat{\mu})\right]
\end{align*}
$$

From Stein's multivariate lemma
to Stein's unbiased risk estimate (SURE)

$$
\begin{align*}
y \sim \mathcal{N} & \left(\mu, \sigma^{2} I\right) \quad \widehat{\mu}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \quad \widehat{\mu}(y)=\text { estimate of } \mu \text { at } y \tag{13}\\
R & =\mathbb{E}\left[\|\mu-\widehat{\mu}\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\|\mu-y+y-\widehat{\mu}\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\|\mu-y\|_{2}^{2}\right]+\mathbb{E}\left[\|y-\widehat{\mu}\|_{2}^{2}\right]+2 \mathbb{E}\left[(\mu-y)^{T}(y-\widehat{\mu})\right] \tag{14}\\
& =n \sigma^{2}+\mathbb{E}\left[\|y-\widehat{\mu}\|_{2}^{2}\right]+2 \mathbb{E}\left[(\mu-y)^{T}(y-\widehat{\mu})\right] \\
& =-n \sigma^{2}+\mathbb{E}\left[\|y-\widehat{\mu}\|_{2}^{2}\right]+2 \sum_{i=1}^{n} \operatorname{cov}\left(y_{i}, \widehat{\mu}_{i}\right)
\end{align*}
$$

From Stein's multivariate lemma
to Stein's unbiased risk estimate (SURE)

$$
R=\mathbb{E}\left[\|\mu-\widehat{\mu}\|_{2}^{2}\right]=-n \sigma^{2}+\mathbb{E}\left[\|y-\widehat{\mu}\|_{2}^{2}\right]+2 \sum_{i=1}^{n} \operatorname{cov}\left(y_{i}, \widehat{\mu}_{i}\right)
$$

From Stein's multivariate lemma
to Stein's unbiased risk estimate (SURE)

$$
\begin{gather*}
R=\mathbb{E}\left[\|\mu-\widehat{\mu}\|_{2}^{2}\right]=-n \sigma^{2}+\mathbb{E}\left[\|y-\widehat{\mu}\|_{2}^{2}\right]+2 \sum_{i=1}^{n} \operatorname{cov}\left(y_{i}, \widehat{\mu}_{i}\right) \tag{15}\\
\Longrightarrow \widehat{R}=-n \sigma^{2}+\|y-\widehat{\mu}\|_{2}^{2}+2 \sigma^{2} \sum_{i=1}^{n} \frac{\partial \widehat{\mu}_{i}}{\partial y_{y}}(y) \\
\text { with } \mathbb{E}[\widehat{R}]=R \tag{16}
\end{gather*}
$$

Model selection through SURE in general

Model selection through SURE in general

$$
\begin{equation*}
\widehat{\mu} \mapsto \widehat{\mu}_{\lambda} \tag{17}
\end{equation*}
$$

Model selection through SURE in general

$$
\begin{equation*}
\widehat{\mu} \mapsto \widehat{\mu}_{\lambda} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\widehat{R}_{\lambda}=-n \sigma^{2}+\left\|y-\widehat{\mu}_{\lambda}\right\|_{2}^{2}+2 \sigma^{2} \sum_{i=1}^{n} \frac{\partial \widehat{\mu}_{\lambda, i}}{\partial y_{i}}(y) \tag{18}
\end{equation*}
$$

Model selection through SURE in general

$$
\begin{gather*}
\widehat{\mu} \mapsto \widehat{\mu}_{\lambda} \tag{17}\\
\widehat{R}_{\lambda}=-n \sigma^{2}+\left\|y-\widehat{\mu}_{\lambda}\right\|_{2}^{2}+2 \sigma^{2} \sum_{i=1}^{n} \frac{\partial \widehat{\mu}_{\lambda, i}}{\partial y_{i}}(y) \tag{18}\\
\lambda^{*}=\arg \min _{\lambda \in \Lambda}\left\|y-\widehat{\mu}_{\lambda}\right\|_{2}^{2}+2 \sigma^{2} \sum_{i=1}^{n} \frac{\partial \widehat{\mu}_{\lambda, i}}{\partial y_{i}}(y) \tag{19}
\end{gather*}
$$

requires:

- to verify that $\widehat{\mu}_{\lambda}$ is almost differentiable

Model selection through SURE in general

$$
\begin{gather*}
\widehat{\mu} \mapsto \widehat{\mu}_{\lambda} \tag{17}\\
\widehat{R}_{\lambda}=-n \sigma^{2}+\left\|y-\widehat{\mu}_{\lambda}\right\|_{2}^{2}+2 \sigma^{2} \sum_{i=1}^{n} \frac{\partial \widehat{\mu}_{\lambda, i}}{\partial y_{i}}(y) \tag{18}\\
\lambda^{*}=\arg \min _{\lambda \in \Lambda}\left\|y-\widehat{\mu}_{\lambda}\right\|_{2}^{2}+2 \sigma^{2} \sum_{i=1}^{n} \frac{\partial \widehat{\mu}_{\lambda, i}}{\partial y_{i}}(y) \tag{19}
\end{gather*}
$$

requires:

- to verify that $\widehat{\mu}_{\lambda}$ is almost differentiable
- to compute the divergence of $\widehat{\mu}_{\lambda}$, i.e., $\frac{\partial \widehat{\mu}_{\lambda, i}}{\partial y_{i}}(y)$

Model selection through SURE: the linear case

If:

$$
\begin{equation*}
y=\mu+e \quad \mu \text { deterministic } \tag{20}
\end{equation*}
$$

$y^{*}=\mu+e^{*}$ future measurements on the same input locations
e, e^{*} uncorrelated, zero mean, with covariance Σ

$$
\begin{equation*}
\widehat{y}=S y \text { linear estimator of } y^{*} \tag{23}
\end{equation*}
$$

Model selection through SURE: the linear case

If:

$$
\begin{gather*}
y=\mu+e \quad \mu \text { deterministic } \tag{20}\\
y^{*}=\mu+e^{*} \text { future measurements on the same input locations } \tag{21}
\end{gather*}
$$

$$
\begin{equation*}
e, e^{*} \text { uncorrelated, zero mean, with covariance } \Sigma \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\widehat{y}=S y \text { linear estimator of } y^{*} \tag{23}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\|y-\widehat{y}\|^{2}+2 \operatorname{tr}(S \Sigma) \text { is an unbiased estimator of the risk } \mathbb{E}\left[\left\|y^{*}-\widehat{y}\right\|_{2}^{2}\right] \tag{24}
\end{equation*}
$$

Model selection through SURE: examples of literature

literature on other cases:

- Li (1985), From Stein's unbiased risk estimates to the method of generalized cross-validation, Annals of Statistics
- Li (1986), Asymptotic optimality of c_{l} and generalized cross-validation in ridge regression with application to spline smoothing, Annals of Statistics
- Johnstone (1986), On imadmissibility of some unbiased estimates of loss, technical report
- Kneip (1994), Ordered linear smoothers, Annals of Statistics
- Donoho \& Johnstone (1995), Adapting to unknown smoothness via wavelet shrinkage, Journal of the American Statistical Association
- Efron et al. (2004), Least angle regression, Annals of Statistics
- Zou et al. (2007), On the degrees of freedom of the lasso, Annals of Statistics
- Tibshirani \& Taylor (2011), The solution path of the generalized lasso, Annals of Statistics
- Tibshirani \& Taylor (2012), Degrees of freedom in lasso problems, Annals of Statistics

Model selection through SURE for a specific case

The original practical problem: function estimation

$$
\begin{gather*}
f: \mathcal{X} \rightarrow \mathbb{R} \tag{25}\\
y_{m}=f\left(x_{m}\right)+\nu_{m} \quad m=1, \ldots, M \tag{26}\\
x_{m} \sim \mu(\mathcal{X}) \text { i.i.d. } \quad \nu_{m} \sim \mathcal{N}\left(0, \sigma_{\nu}^{2}\right) \quad m=1, \ldots, M \tag{27}\\
\left\{x_{m}\right\}_{m=1}^{M} \quad\left\{\nu_{m}\right\}_{m=1}^{M} \quad \text { mutually independent } \tag{28}
\end{gather*}
$$

The original practical problem: function estimation

$$
\begin{gather*}
f: \mathcal{X} \rightarrow \mathbb{R} \tag{25}\\
y_{m}=f\left(x_{m}\right)+\nu_{m} \quad m=1, \ldots, M \tag{26}\\
x_{m} \sim \mu(\mathcal{X}) \text { i.i.d. } \quad \nu_{m} \sim \mathcal{N}\left(0, \sigma_{\nu}^{2}\right) \quad m=1, \ldots, M \tag{27}\\
\left\{x_{m}\right\}_{m=1}^{M} \quad\left\{\nu_{m}\right\}_{m=1}^{M} \quad \text { mutually independent } \tag{28}\\
\text { Problem: estimate } f \text { starting from }\left\{x_{m}, y_{m}\right\}
\end{gather*}
$$

Nonparametric approach (cast the problem as a Gaussian regression)

$$
f \sim \mathcal{N}(0, K) \quad K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad \text { so that } \quad \mathbb{E}\left[f(x) f\left(x^{\prime}\right)\right]=K\left(x, x^{\prime}\right)
$$

Nonparametric approach (cast the problem as a Gaussian regression)

$$
\begin{equation*}
f \sim \mathcal{N}(0, K) \quad K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad \text { so that } \quad \mathbb{E}\left[f(x) f\left(x^{\prime}\right)\right]=K\left(x, x^{\prime}\right) \tag{29}
\end{equation*}
$$

Examples:

- Brownian motion: $K\left(x, x^{\prime}\right)=\min \left(x, x^{\prime}\right) \quad \mathcal{X}=[0,1]$
- Radial basis: $K\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2}\right) \quad \mathcal{X} \subseteq \mathbb{R}^{m}$

Maximum a posteriori estimator

$$
\widehat{f}_{\mathrm{MAP}}(x)=\mathbb{E}\left[f(x) \mid\left\{x_{m}, y_{m}\right\}\right] \quad \text { (also MV) }
$$

Maximum a posteriori estimator

$$
\begin{align*}
\widehat{f}_{\mathrm{MAP}}(x) & =\mathbb{E}\left[f(x) \mid\left\{x_{m}, y_{m}\right\}\right] \quad \text { (also MV) } \\
& =\sum_{m=1}^{M} K\left(x, x_{m}\right) c_{m} \quad \text { (a.k.a. regularization network) } \tag{30}
\end{align*}
$$

Maximum a posteriori estimator

$$
\begin{align*}
& \widehat{f}_{\mathrm{MAP}}(x)= \mathbb{E}\left[f(x) \mid\left\{x_{m}, y_{m}\right\}\right] \quad \text { (also MV) } \\
&= \sum_{m=1}^{M} K\left(x, x_{m}\right) c_{m} \quad \text { (a.k.a. regularization network) } \tag{30}\\
& {\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{M}
\end{array}\right]=H_{\mathrm{MAP}}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{M}
\end{array}\right] } \tag{31}\\
& H_{\mathrm{MAP}}:=\left(\left[\begin{array}{ccc}
K\left(x_{1}, x_{1}\right) & \cdots & K\left(x_{1}, x_{M}\right) \\
\vdots & & \vdots \\
K\left(x_{M}, x_{1}\right) & \cdots & K\left(x_{M}, x_{M}\right)
\end{array}\right]+\sigma_{\nu}^{2} I\right)^{-1} \tag{32}
\end{align*}
$$

Gaussian regression - practical issues associated to the MAP

$$
\begin{align*}
\widehat{f}_{\mathrm{MAP}}(x)= & {\left[\begin{array}{llc}
K\left(x, x_{1}\right) & \ldots & K\left(x, x_{M}\right)
\end{array}\right] H_{\mathrm{MAP}}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{M}
\end{array}\right] } \tag{33}\\
H_{\mathrm{MAP}}:= & \left(\left[\begin{array}{ccc}
K\left(x_{1}, x_{1}\right) & \cdots & K\left(x_{1}, x_{M}\right) \\
\vdots & & \vdots \\
K\left(x_{M}, x_{1}\right) & \cdots & K\left(x_{M}, x_{M}\right)
\end{array}\right]+\sigma_{\nu}^{2} I\right)^{-1} \tag{34}\\
& \text { computational cost } O\left(M^{3}\right)
\end{align*}
$$

How may we tackle the $O\left(M^{3}\right)$ computational cost issue?

$$
H_{\mathrm{MAP}}:=\left(\left[\begin{array}{ccc}
K\left(x_{1}, x_{1}\right) & \cdots & K\left(x_{1}, x_{M}\right) \tag{35}\\
\vdots & & \vdots \\
K\left(x_{M}, x_{1}\right) & \cdots & K\left(x_{M}, x_{M}\right)
\end{array}\right]+\sigma_{\nu}^{2} I\right)^{-1}
$$

Typical approaches: low-rank / sparsification approximations

Smola \& Schölkopf (2000)
Sparse greedy matrix approximations for machine learningQuiñonero-Candela \& Rasmussen (2005)
A unifying view of sparse approximate Gaussian process regressionBach \& Jordan (2005)
Predictive low-rank decompositions for kernel methods
Snelson \& Ghahramani (2006)
Sparse Gaussian processes using pseudo inputsCulis et al. (2006)
Learning low-rank kernel matricesZhang \& Kwok (2010)
Clustered Nyström method for large scale manifold learning and dimension reductionAmbikasaran et al. (2016)
Fast direct methods for Gaussian processes

Our approach: Karhunen-Loève expansions

$$
f(x)=\sum_{e=1}^{+\infty} \alpha_{e} \phi_{e}(x)
$$

Our approach: Karhunen-Loève expansions

$$
\begin{equation*}
f(x)=\sum_{e=1}^{+\infty} \alpha_{e} \phi_{e}(x)=\underbrace{\sum_{e=1}^{E} a_{e} \phi_{e}(x)}_{=: \text {interesting }}+\underbrace{\sum_{e=1}^{+\infty} b_{e} \phi_{E+e}(x)}_{=: \text {remainder }} \tag{36}
\end{equation*}
$$

Our approach: Karhunen-Loève expansions

$$
\begin{gather*}
f(x)=\sum_{e=1}^{+\infty} \alpha_{e} \phi_{e}(x)=\underbrace{\sum_{e=1}^{E} a_{e} \phi_{e}(x)}_{==\text {interesting }}+\underbrace{\sum_{e=1}^{+\infty} b_{e} \phi_{E+e}(x)}_{=: \text {remainder }} \tag{36}\\
\lambda_{e} \phi_{e}(x)=\int_{\mathcal{X}} K\left(x, x^{\prime}\right) \phi_{e}\left(x^{\prime}\right) d \mu\left(x^{\prime}\right) \quad \lambda_{1} \geq \lambda_{2} \ldots>0 \tag{37}\\
K\left(x, x^{\prime}\right)=\sum_{e=1}^{+\infty} \lambda_{e} \phi_{e}(x) \phi_{e}\left(x^{\prime}\right) \quad \int_{\mathcal{X}} \phi_{i}(x) \phi_{j}(x) d \mu(x)=\delta_{i j} \tag{38}
\end{gather*}
$$

Our approach: Karhunen-Loève expansions

$$
\begin{gather*}
f(x)=\sum_{e=1}^{+\infty} \alpha_{e} \phi_{e}(x)=\underbrace{\sum_{e=1}^{E} a_{e} \phi_{e}(x)}_{=: \text {interesting }}+\underbrace{\sum_{e=1}^{+\infty} b_{e} \phi_{E+e}(x)}_{=: \text {remainder }} \tag{36}\\
\lambda_{e} \phi_{e}(x)=\int_{\mathcal{X}} K\left(x, x^{\prime}\right) \phi_{e}\left(x^{\prime}\right) d \mu\left(x^{\prime}\right) \quad \lambda_{1} \geq \lambda_{2} \ldots>0 \tag{37}\\
K\left(x, x^{\prime}\right)=\sum_{e=1}^{+\infty} \lambda_{e} \phi_{e}(x) \phi_{e}\left(x^{\prime}\right) \quad \int_{\mathcal{X}} \phi_{i}(x) \phi_{j}(x) d \mu(x)=\delta_{i j} \tag{38}\\
a_{e} \sim \mathcal{N}\left(0, \lambda_{e}\right), e=1, \ldots, E \quad b_{e} \sim \mathcal{N}\left(0, \lambda_{E+e}\right), e=1,2, \ldots
\end{gather*}
$$

圊 Zhu et al. (1998)
Gaussian regression and optimal finite dimensional linear models

Our approach: Karhunen-Loève expansions

$$
\begin{equation*}
f(x)=\underbrace{\sum_{e=1}^{E} a_{e} \phi_{e}(x)}_{=: \text {interesting }}+\underbrace{\sum_{e=1}^{+\infty} b_{e} \phi_{E+e}(x)}_{=: \text {remainder }} \quad \lambda_{e} \phi_{e}(x)=\int_{\mathcal{X}} K\left(x, x^{\prime}\right) \phi_{e}\left(x^{\prime}\right) d \mu\left(x^{\prime}\right) \tag{40}
\end{equation*}
$$

$\Longrightarrow \quad$ first $E \phi_{e}{ }^{\text {'s }}=$ best a-priori E-dimensional approximation in a MSE sense

Our approach: Karhunen-Loève expansions

$$
\boldsymbol{y}:=\left[y_{1}, \ldots, y_{M}\right]^{T} \quad \boldsymbol{\nu}:=\left[\nu_{1}, \ldots, \nu_{M}\right]^{T} \quad \boldsymbol{a}:=\left[a_{1}, \ldots, a_{E}\right]^{T} \quad \boldsymbol{b}:=\left[b_{1}, b_{2}, \ldots\right]^{T} \quad \text { (41) }
$$

Our approach: Karhunen-Loève expansions

$$
\left.\begin{array}{c}
y:=\left[\begin{array}{lll}
\left.y_{1}, \ldots, y_{M}\right]^{T} & \nu:=\left[\nu_{1}, \ldots, \nu_{M}\right.
\end{array}\right]^{T}
\end{array} \quad a:=\left[\begin{array}{lll}
a_{1}, \ldots, a_{E}
\end{array}\right]^{T} \quad b:=\left[b_{1}, b_{2}, \ldots\right]^{T}\right] ~\left[\begin{array}{ccc}
T & \\
G:=\left[\begin{array}{ccc}
\phi_{1}\left(x_{1}\right) & \ldots & \phi_{E}\left(x_{1}\right) \\
\vdots \\
\phi_{1}\left(x_{M}\right) & \ldots & \phi_{E}\left(x_{M}\right)
\end{array}\right] \quad Z:=\left[\begin{array}{ccc}
\phi_{E+1}\left(x_{1}\right) & \phi_{E+2}\left(x_{1}\right) & \ldots \\
\vdots \\
\phi_{E+1}\left(x_{M}\right) & \phi_{E+2}\left(x_{M}\right) & \ldots
\end{array}\right] \tag{42}
\end{array}\right.
$$

Our approach: Karhunen-Loève expansions

$$
\begin{align*}
& \boldsymbol{y}:=\left[\begin{array}{ccc}
\left.y_{1}, \ldots, y_{M}\right]^{T} & \boldsymbol{\nu}:=\left[\nu_{1}, \ldots, \nu_{M}\right.
\end{array}\right]^{T} \quad \boldsymbol{a}:=\left[a_{1}, \ldots, a_{E}\right]^{T} \quad \boldsymbol{b}:=\left[b_{1}, b_{2}, \ldots\right]^{T} \tag{41}\\
& G:=\left[\begin{array}{ccc}
\phi_{1}\left(x_{1}\right) & \ldots & \phi_{E}\left(x_{1}\right) \\
\vdots & & \vdots \\
\phi_{1}\left(x_{M}\right) & \ldots & \phi_{E}\left(x_{M}\right)
\end{array}\right] \quad Z:=\left[\begin{array}{ccc}
\phi_{E+1}\left(x_{1}\right) & \phi_{E+2}\left(x_{1}\right) & \ldots \\
\vdots & & \vdots \\
\phi_{E+1}\left(x_{M}\right) & \phi_{E+2}\left(x_{M}\right) & \ldots
\end{array}\right] \tag{42}\\
& \boldsymbol{y}=G \boldsymbol{a}+Z \boldsymbol{b}+\boldsymbol{\nu} \tag{43}
\end{align*}
$$

Our approach: Karhunen-Loève expansions

$$
\begin{align*}
& \boldsymbol{y}:=\left[y_{1}, \ldots, y_{M}\right]^{T} \quad \boldsymbol{\nu}:=\left[\nu_{1}, \ldots, \nu_{M}\right]^{T} \quad \boldsymbol{a}:=\left[a_{1}, \ldots, a_{E}\right]^{T} \quad \boldsymbol{b}:=\left[b_{1}, b_{2}, \ldots\right]^{T} \tag{41}\\
& G:=\left[\begin{array}{ccc}
\phi_{1}\left(x_{1}\right) & \ldots & \phi_{E}\left(x_{1}\right) \\
\vdots & & \vdots \\
\phi_{1}\left(x_{M}\right) & \ldots & \phi_{E}\left(x_{M}\right)
\end{array}\right] \quad Z:=\left[\begin{array}{ccc}
\phi_{E+1}\left(x_{1}\right) & \phi_{E+2}\left(x_{1}\right) & \ldots \\
\vdots & & \vdots \\
\phi_{E+1}\left(x_{M}\right) & \phi_{E+2}\left(x_{M}\right) & \ldots
\end{array}\right] \tag{42}\\
& \boldsymbol{y}=G \boldsymbol{a}+Z \boldsymbol{b}+\boldsymbol{\nu} \tag{43}\\
& \widehat{f_{E}}(x):=\left[\begin{array}{lll}
\phi_{1}(x) & \cdots & \phi_{E}(x)
\end{array}\right] \widehat{\boldsymbol{a}} \quad \widehat{\boldsymbol{a}}=H \boldsymbol{y} \quad H:=\left(\frac{G^{T} G}{M}+\frac{\sigma_{\nu}^{2}}{M} \Lambda_{E}^{-1}\right)^{-1} \frac{G^{T}}{M} \tag{44}
\end{align*}
$$

Summary

$$
\begin{equation*}
\boldsymbol{y}=G \boldsymbol{a}+Z \boldsymbol{b}+\boldsymbol{\nu} \tag{45}
\end{equation*}
$$

$$
\widehat{f}_{E}(x):=\left[\begin{array}{lll}
\phi_{1}(x) & \cdots & \phi_{E}(x) \tag{46}
\end{array}\right] H \boldsymbol{y} \quad H:=\left(\frac{G^{T} G}{M}+\frac{\sigma_{\nu}^{2}}{M} \Lambda_{E}^{-1}\right)^{-1} \frac{G^{T}}{M}
$$

computational cost: $O\left(E^{3}\right)$

Summary

$$
\begin{equation*}
\boldsymbol{y}=G \boldsymbol{a}+Z \boldsymbol{b}+\boldsymbol{\nu} \tag{45}
\end{equation*}
$$

$$
\widehat{f}_{E}(x):=\left[\begin{array}{lll}
\phi_{1}(x) & \cdots & \phi_{E}(x) \tag{46}
\end{array}\right] H \boldsymbol{y} \quad H:=\left(\frac{G^{T} G}{M}+\frac{\sigma_{\nu}^{2}}{M} \Lambda_{E}^{-1}\right)^{-1} \frac{G^{T}}{M}
$$

computational cost: $O\left(E^{3}\right)$
interesting for us because $\quad \frac{G^{T} G}{M}=\frac{1}{M} \sum_{m=1}^{M} G_{m}^{T} G_{m} \quad \frac{G^{T} \boldsymbol{y}}{M}=\frac{1}{M} \sum_{m=1}^{M} G_{m}^{T} y_{m} \quad$ (47)

Average consensus

(i.e., how to compute an average in a distributed fashion?)
synchronous communications
synchronous consensus: $\boldsymbol{x}(k+1)=P \boldsymbol{x}(k)$ (with P doubly stochastic) (Markov chains ('60s), Seneta 2006, ...)
synchronous communications
synchronous consensus: $\boldsymbol{x}(k+1)=P \boldsymbol{x}(k)$ (with P doubly stochastic) (Markov chains ('60s), Seneta 2006, ...)
asynchronous communications with perfect channel feedback ratio consensus (Bénézit et al. 2010)
synchronous communications
synchronous consensus: $\boldsymbol{x}(k+1)=P \boldsymbol{x}(k)$ (with P doubly stochastic) (Markov chains ('60s), Seneta 2006, ...)
asynchronous communications with perfect channel feedback ratio consensus (Bénézit et al. 2010)
asynchronous communications without perfect channel feedback robust ratio consensus (Dominguez-Garcia et al. 2011)

Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right.
$$

Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \left\{\begin{array}{l}
x_{i}(k) \rightarrow \beta_{i}(k) \sum_{j} x_{i}(0) \\
y_{i}(k) \rightarrow \beta_{i}(k) \sum_{j} y_{i}(0)
\end{array}\right.
\end{aligned}
$$

Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \left\{\begin{array}{c}
x_{i}(k) \rightarrow \beta_{i}(k) \sum_{j} x_{i}(0) \\
y_{i}(k) \rightarrow \beta_{i}(k) \sum_{j} y_{i}(0)
\end{array} \longrightarrow z_{i}(k):=\frac{x_{i}(k)}{y_{i}(k)} \rightarrow \frac{\sum_{i} x_{i}(0)}{\sum_{i} y_{i}(0)}=\frac{1}{N} \sum_{i} \theta_{i}\right.
\end{aligned}
$$

Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right.
$$

Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}: j$'s local estimate of $b_{i, x}$

Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}: j$'s local estimate of $b_{i, x}$

Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}: j$'s local estimate of $b_{i, x}$

Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}: j$'s local estimate of $b_{i, x}$

Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
z_{i}(k)=\frac{x_{i}(k)}{y_{i}(k)} \rightarrow \frac{1}{N} \sum_{j} \theta_{i}
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}: j$'s local estimate of $b_{i, x}$

SURE in our distributed regression settings

Recap: KL + average consensus

$$
\begin{equation*}
\boldsymbol{y}=G \boldsymbol{a}+Z \boldsymbol{b}+\boldsymbol{\nu} \tag{48}
\end{equation*}
$$

$$
\begin{array}{rll}
\widehat{f_{E}}(x):=\left[\begin{array}{lll}
\phi_{1}(x) & \cdots & \phi_{E}(x)
\end{array}\right] H \boldsymbol{y} & H:=\left(\frac{G^{T} G}{M}+\lambda \frac{\sigma_{\nu}^{2}}{M} \Lambda_{E}^{-1}\right)^{-1} \frac{G^{T}}{M} \\
\frac{G^{T} G}{M}=\frac{1}{M} \sum_{m=1}^{M} G_{m}^{T} G_{m} & \frac{G^{T} \boldsymbol{y}}{M}=\frac{1}{M} \sum_{m=1}^{M} G_{m}^{T} y_{m} \tag{50}
\end{array}
$$

Recap: KL + average consensus

$$
\begin{gather*}
\boldsymbol{y}=G \boldsymbol{a}+Z \boldsymbol{b}+\boldsymbol{\nu} \tag{48}\\
\widehat{f}_{E}(x):=\left[\begin{array}{lll}
\phi_{1}(x) & \cdots & \phi_{E}(x)
\end{array}\right] H \boldsymbol{y} \quad H:=\left(\frac{G^{T} G}{M}+\lambda \frac{\sigma_{\nu}^{2}}{M} \Lambda_{E}^{-1}\right)^{-1} \frac{G^{T}}{M} \tag{49}\\
\frac{G^{T} G}{M}=\frac{1}{M} \sum_{m=1}^{M} G_{m}^{T} G_{m} \quad \frac{G^{T} \boldsymbol{y}}{M}=\frac{1}{M} \sum_{m=1}^{M} G_{m}^{T} y_{m} \tag{50}
\end{gather*}
$$

Questions:

- how shall we tune E ?
- how shall we tune λ ?

Tuning of E (not in this presentation)

$b_{c}: O\left(M^{3}\right)$ comput., $O(M)$ transm.
$b_{r}: O\left(E^{3}\right)$ comput., $O\left(E^{2}\right)$ transm.

Tuning of λ : a SURE-based approach

Recall:

$$
\begin{equation*}
\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|^{2}+2 \operatorname{tr}(S \Sigma) \text { is an unbiased estimator of the risk } \mathbb{E}\left[\left\|\boldsymbol{y}^{*}-\widehat{\boldsymbol{y}}\right\|_{2}^{2}\right] \text { with } \widehat{\boldsymbol{y}}=S \boldsymbol{y} \tag{51}
\end{equation*}
$$

Tuning of λ : a SURE-based approach

Recall:

$$
\begin{equation*}
\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|^{2}+2 \operatorname{tr}(S \Sigma) \text { is an unbiased estimator of the risk } \mathbb{E}\left[\left\|\boldsymbol{y}^{*}-\widehat{\boldsymbol{y}}\right\|_{2}^{2}\right] \text { with } \widehat{\boldsymbol{y}}=S \boldsymbol{y} \tag{51}
\end{equation*}
$$

In our case:

$$
\begin{gather*}
S=\frac{G^{T} G}{M}\left(\frac{G^{T} G}{M}+\frac{\gamma \sigma_{\nu}^{2}}{M} \Lambda_{E}^{-1}\right)^{-1} \tag{52}\\
\Sigma=\sigma_{\nu}^{2} \frac{G^{T} G}{M^{2}} . \tag{53}
\end{gather*}
$$

Tuning of λ : a SURE-based approach

Recall:

$$
\begin{equation*}
\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|^{2}+2 \operatorname{tr}(S \Sigma) \text { is an unbiased estimator of the risk } \mathbb{E}\left[\left\|\boldsymbol{y}^{*}-\widehat{\boldsymbol{y}}\right\|_{2}^{2}\right] \text { with } \widehat{\boldsymbol{y}}=S \boldsymbol{y} \tag{51}
\end{equation*}
$$

In our case:

$$
\begin{gather*}
S=\frac{G^{T} G}{M}\left(\frac{G^{T} G}{M}+\frac{\gamma \sigma_{\nu}^{2}}{M} \Lambda_{E}^{-1}\right)^{-1} \tag{52}\\
\Sigma=\sigma_{\nu}^{2} \frac{G^{T} G}{M^{2}} . \tag{53}
\end{gather*}
$$

Important consideration: the original process was $\boldsymbol{y}=G \boldsymbol{a}+Z \boldsymbol{b}+\boldsymbol{\nu}$, but this SURE approach considers only $G \boldsymbol{a}+\boldsymbol{\nu}$!

Tuning of λ : a SURE-based approach

Recall:

$$
\begin{equation*}
\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|^{2}+2 \operatorname{tr}(S \Sigma) \text { is an unbiased estimator of the risk } \mathbb{E}\left[\left\|\boldsymbol{y}^{*}-\widehat{\boldsymbol{y}}\right\|_{2}^{2}\right] \text { with } \widehat{\boldsymbol{y}}=S \boldsymbol{y} \tag{51}
\end{equation*}
$$

In our case:

$$
\begin{gather*}
S=\frac{G^{T} G}{M}\left(\frac{G^{T} G}{M}+\frac{\gamma \sigma_{\nu}^{2}}{M} \Lambda_{E}^{-1}\right)^{-1} \tag{52}\\
\Sigma=\sigma_{\nu}^{2} \frac{G^{T} G}{M^{2}} . \tag{53}
\end{gather*}
$$

Important consideration: the original process was $\boldsymbol{y}=G \boldsymbol{a}+Z \boldsymbol{b}+\boldsymbol{\nu}$, but this SURE approach considers only $G \boldsymbol{a}+\boldsymbol{\nu}$! However, for large $M, G^{T} Z \boldsymbol{b}$ vanishes \Longrightarrow SURE score above is an asymptotically unbiased estimator of the actual risk

Does this work? Analysis on synthetic data

Does this work? Analysis on synthetic data

- $M=10000,1000$ Monte-Carlo runs, $K=$ splines or exponential
- $\Lambda=50$ potential $\lambda \mathrm{s}$, log-spaced in $\left[10^{-3}, 10^{3}\right]$
- \exists "oracle" that knows f and thus what is the best λ

Does this work? Analysis on synthetic data

- $M=10000,1000$ Monte-Carlo runs, $K=$ splines or exponential
- $\Lambda=50$ potential $\lambda \mathrm{s}$, log-spaced in $\left[10^{-3}, 10^{3}\right]$
- \exists "oracle" that knows f and thus what is the best λ

MSEs with $K=$ splines

MSEs with $K=$ exponential

Does this work? Analysis on field data

Does this work? Analysis on field data

- "Colorado rain" UCI dataset
- $K\left(x, x^{\prime}\right)=\exp \left(-10\left\|x-x^{\prime}\right\|_{2}^{2}\right)$ fixed, Λ as before
- 1000 Monte-Carlo runs, each with 2 random months of data as training set and 1 random month as test

Does this work? Analysis on field data

- "Colorado rain" UCI dataset
- $K\left(x, x^{\prime}\right)=\exp \left(-10\left\|x-x^{\prime}\right\|_{2}^{2}\right)$ fixed, Λ as before
- 1000 Monte-Carlo runs, each with 2 random months of data as training set and 1 random month as test

Some brief concluding remarks

Some brief concluding remarks

- SURE approaches can be valid alternatives to other model selection strategies
- seem to be suitable for distributed average-consensus based settings

Some brief concluding remarks

- SURE approaches can be valid alternatives to other model selection strategies
- seem to be suitable for distributed average-consensus based settings

What now?

- time-varying estimation
- generalizations for other distributed estimation settings \& big data (not discussed in this presentation)

Purposes of this seminar

(1) discuss about a useful tool
(2) connect with you

