
Solving ill-posed estimation problems through regularization:

a brief introduction with examples

Damiano Varagnolo

Feb. 8, 2017

Mathematics and its Applications @ LTU

1

aim: show usefulness of regularization when doing statistical estimation

2

Structure

the Stein phenomenon
ill-conditioning
example: the Hunt problem
Phillips-Tikhonov nonparametric regularization
regularization for system identification

some more mathematical details

3

Structure

the Stein phenomenon
ill-conditioning
example: the Hunt problem
Phillips-Tikhonov nonparametric regularization
regularization for system identification

some more mathematical details

3

the Stein phenomenon

4

Quiz time!

yt = θt + et et ∼ N (0, σ2) i.i.d. θt ∈ R y ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

y1
⋮

yN

⎤⎥⎥⎥⎥⎥⎥⎦

θ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

θ1
⋮

θN

⎤⎥⎥⎥⎥⎥⎥⎦

aim: find estimator of θ that minimizes E [∥θ̂ − θ∥2]

idea: use θ̂ML = y Ô⇒ E [∥θ̂ML − θ∥2] = Nσ2 ?

requirement: to be a good estimator of θ, θ̂ should be s.t. θ̂T θ̂ ≈ θT θ

E [θ̂T
MLθ̂ML] = E [yT y] = E [θT θ] +Nσ2

the ML solution overestimates the norm of θ!
5

Quiz time!

yt = θt + et et ∼ N (0, σ2) i.i.d. θt ∈ R y ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

y1
⋮

yN

⎤⎥⎥⎥⎥⎥⎥⎦

θ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

θ1
⋮

θN

⎤⎥⎥⎥⎥⎥⎥⎦

aim: find estimator of θ that minimizes E [∥θ̂ − θ∥2]

idea: use θ̂ML = y Ô⇒ E [∥θ̂ML − θ∥2] = Nσ2 ?

requirement: to be a good estimator of θ, θ̂ should be s.t. θ̂T θ̂ ≈ θT θ

E [θ̂T
MLθ̂ML] = E [yT y] = E [θT θ] +Nσ2

the ML solution overestimates the norm of θ!
5

Quiz time!

yt = θt + et et ∼ N (0, σ2) i.i.d. θt ∈ R y ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

y1
⋮

yN

⎤⎥⎥⎥⎥⎥⎥⎦

θ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

θ1
⋮

θN

⎤⎥⎥⎥⎥⎥⎥⎦

aim: find estimator of θ that minimizes E [∥θ̂ − θ∥2]

idea: use θ̂ML = y Ô⇒ E [∥θ̂ML − θ∥2] = Nσ2 ?

requirement: to be a good estimator of θ, θ̂ should be s.t. θ̂T θ̂ ≈ θT θ

E [θ̂T
MLθ̂ML] = E [yT y] = E [θT θ] +Nσ2

the ML solution overestimates the norm of θ!
5

Quiz time!

yt = θt + et et ∼ N (0, σ2) i.i.d. θt ∈ R y ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

y1
⋮

yN

⎤⎥⎥⎥⎥⎥⎥⎦

θ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

θ1
⋮

θN

⎤⎥⎥⎥⎥⎥⎥⎦

aim: find estimator of θ that minimizes E [∥θ̂ − θ∥2]

idea: use θ̂ML = y Ô⇒ E [∥θ̂ML − θ∥2] = Nσ2 ?

requirement: to be a good estimator of θ, θ̂ should be s.t. θ̂T θ̂ ≈ θT θ

E [θ̂T
MLθ̂ML] = E [yT y] = E [θT θ] +Nσ2

the ML solution overestimates the norm of θ!
5

Quiz time!

yt = θt + et et ∼ N (0, σ2) i.i.d. θt ∈ R y ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

y1
⋮

yN

⎤⎥⎥⎥⎥⎥⎥⎦

θ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

θ1
⋮

θN

⎤⎥⎥⎥⎥⎥⎥⎦

aim: find estimator of θ that minimizes E [∥θ̂ − θ∥2]

idea: use θ̂ML = y Ô⇒ E [∥θ̂ML − θ∥2] = Nσ2 ?

requirement: to be a good estimator of θ, θ̂ should be s.t. θ̂T θ̂ ≈ θT θ

E [θ̂T
MLθ̂ML] = E [yT y] = E [θT θ] +Nσ2

the ML solution overestimates the norm of θ!
5

Quiz time!

yt = θt + et et ∼ N (0, σ2) i.i.d. θt ∈ R y ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

y1
⋮

yN

⎤⎥⎥⎥⎥⎥⎥⎦

θ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

θ1
⋮

θN

⎤⎥⎥⎥⎥⎥⎥⎦

aim: find estimator of θ that minimizes E [∥θ̂ − θ∥2]

idea: use θ̂ML = y Ô⇒ E [∥θ̂ML − θ∥2] = Nσ2 ?

requirement: to be a good estimator of θ, θ̂ should be s.t. θ̂T θ̂ ≈ θT θ

E [θ̂T
MLθ̂ML] = E [yT y] = E [θT θ] +Nσ2

the ML solution overestimates the norm of θ!
5

The James-Stein estimator

θ̂JS ∶= (1 −
N − 2
yT y

σ2)y

Theorem 1
For N ≥ 3 then

E [∥θ̂JS − θ∥2] < Nσ2 = E [∥θ̂ML − θ∥2] ∀θ ∈ RN

Stein’s phenomenon: when estimating at least 3 parameters simultaneously then ∃
combined estimators with lower MSE than any estimator handling the parameters
separatedly

6

The James-Stein estimator

θ̂JS ∶= (1 −
N − 2
yT y

σ2)y

Theorem 1
For N ≥ 3 then

E [∥θ̂JS − θ∥2] < Nσ2 = E [∥θ̂ML − θ∥2] ∀θ ∈ RN

Stein’s phenomenon: when estimating at least 3 parameters simultaneously then ∃
combined estimators with lower MSE than any estimator handling the parameters
separatedly

6

The James-Stein estimator

θ̂JS ∶= (1 −
N − 2
yT y

σ2)y

Theorem 1
For N ≥ 3 then

E [∥θ̂JS − θ∥2] < Nσ2 = E [∥θ̂ML − θ∥2] ∀θ ∈ RN

Stein’s phenomenon: when estimating at least 3 parameters simultaneously then ∃
combined estimators with lower MSE than any estimator handling the parameters
separatedly

6

ill-conditioning

7

Some practical estimation problems

u system y

.

.

1 inverse problems (e.g., de-blurring)
2 direct problems (e.g., system identification, machine learning)

8

Some practical estimation problems

u system y

.

.

?

1 inverse problems (e.g., de-blurring)
2 direct problems (e.g., system identification, machine learning)

8

Some practical estimation problems

u system y

.

.

0 1 2 3
0
2
4

t

u
(t
)

0 1 2 3
0
2
4

t

y
(t
)

?

1 inverse problems (e.g., de-blurring)
2 direct problems (e.g., system identification, machine learning)

8

Ill-posedness and ill-conditioning

yt = f (ut) + vt

ill-posed problem (in the Hadamard sense): solution is either not unique or does not
depend continuously on the data

ill-conditioned problem: solution is very sensitive to the data

U F Y

9

Ill-posedness and ill-conditioning

yt = f (ut) + vt

ill-posed problem (in the Hadamard sense): solution is either not unique or does not
depend continuously on the data

ill-conditioned problem: solution is very sensitive to the data

U F Y

9

Ill-posedness and ill-conditioning

yt = f (ut) + vt

ill-posed problem (in the Hadamard sense): solution is either not unique or does not
depend continuously on the data

ill-conditioned problem: solution is very sensitive to the data

U F Y

9

Ill-posedness and ill-conditioning

yt = f (ut) + vt

ill-posed problem (in the Hadamard sense): solution is either not unique or does not
depend continuously on the data

ill-conditioned problem: solution is very sensitive to the data

U F Y

9

Example: the Hunt reconstruction problem
continuous-time system with sampled output

u(t) = exp(−(t − 0.4
0.075

)
2
) + exp(−(t − 0.6

0.075
)

2
) g(t) = { 1 if 0 ≤ t ≤ 0.25

0 otherwise,

yn.l.(t) = ∫
+∞

0
g(τ)u(t − τ)dτ y(∆k) = yn.l.(∆k) + v(k)

0 0.5 1
0

1

t

u(t)

10

Example: the Hunt reconstruction problem
continuous-time system with sampled output

u(t) = exp(−(t − 0.4
0.075

)
2
) + exp(−(t − 0.6

0.075
)

2
) g(t) = { 1 if 0 ≤ t ≤ 0.25

0 otherwise,

yn.l.(t) = ∫
+∞

0
g(τ)u(t − τ)dτ y(∆k) = yn.l.(∆k) + v(k)

0 0.5 1
0

1

t

u(t)
g(t)

10

Example: the Hunt reconstruction problem
continuous-time system with sampled output

u(t) = exp(−(t − 0.4
0.075

)
2
) + exp(−(t − 0.6

0.075
)

2
) g(t) = { 1 if 0 ≤ t ≤ 0.25

0 otherwise,

yn.l.(t) = ∫
+∞

0
g(τ)u(t − τ)dτ y(∆k) = yn.l.(∆k) + v(k)

0 0.5 1
0

1

t

u(t)
g(t)
yn.l.(t)

10

Example: the Hunt reconstruction problem
continuous-time system with sampled output

u(t) = exp(−(t − 0.4
0.075

)
2
) + exp(−(t − 0.6

0.075
)

2
) g(t) = { 1 if 0 ≤ t ≤ 0.25

0 otherwise,

yn.l.(t) = ∫
+∞

0
g(τ)u(t − τ)dτ y(∆k) = yn.l.(∆k) + v(k)

0 0.5 1
0

1

t

u(t)
g(t)
yn.l.(t)
y(∆k)

10

Example: the Hunt reconstruction problem

assumption: u(∆k) piecewise constant Ô⇒

y(∆k) =
N

∑
τ=1

g(∆τ)u(∆k −∆τ) + v(k) dataset: {g(∆k), y(∆k)}k=1,...,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(∆)
y(∆2)
y(∆3)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(∆)
g(∆2) g(∆)
g(∆3) g(∆2) g(∆)
⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(∆)
u(∆2)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

y = Gu + v ûML = G−1y

11

Example: the Hunt reconstruction problem

assumption: u(∆k) piecewise constant Ô⇒

y(∆k) =
N

∑
τ=1

g(∆τ)u(∆k −∆τ) + v(k) dataset: {g(∆k), y(∆k)}k=1,...,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(∆)
y(∆2)
y(∆3)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(∆)
g(∆2) g(∆)
g(∆3) g(∆2) g(∆)
⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(∆)
u(∆2)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

y = Gu + v ûML = G−1y

11

Example: the Hunt reconstruction problem

assumption: u(∆k) piecewise constant Ô⇒

y(∆k) =
N

∑
τ=1

g(∆τ)u(∆k −∆τ) + v(k) dataset: {g(∆k), y(∆k)}k=1,...,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(∆)
y(∆2)
y(∆3)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(∆)
g(∆2) g(∆)
g(∆3) g(∆2) g(∆)
⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(∆)
u(∆2)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

y = Gu + v ûML = G−1y

11

Example: the Hunt reconstruction problem

assumption: u(∆k) piecewise constant Ô⇒

y(∆k) =
N

∑
τ=1

g(∆τ)u(∆k −∆τ) + v(k) dataset: {g(∆k), y(∆k)}k=1,...,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(∆)
y(∆2)
y(∆3)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(∆)
g(∆2) g(∆)
g(∆3) g(∆2) g(∆)
⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(∆)
u(∆2)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

y = Gu + v ûML = G−1y

11

Is the Hunt reconstruction problem well defined?

0.5 1
0

1
t

u(t)

12

Is the Hunt reconstruction problem well defined?

0.5 1
0

1
t

u(t)
u(∆k) N = 100

12

Is the Hunt reconstruction problem well defined?

0.5 1
0

1
t

u(t)
u(∆k) N = 100
ûML(∆k)

12

Is the Hunt reconstruction problem well defined?

0.5 1
0

1
t

u(t)
u(∆k) N = 200
ûML(∆k)

12

Is the Hunt reconstruction problem well defined?

0.5 1
0

1
t

u(t)
u(∆k) N = 1000
ûML(∆k)

12

Is the Hunt reconstruction problem well defined?

0.5 1
0

100

t

u(t)
u(∆k) N = 1000
ûML(∆k)

12

Pitfalls of the ML estimator for the Hunt reconstruction problem
⎧⎪⎪⎨⎪⎪⎩

y = Gu + v

ûML = G−1y
Ô⇒ e = u − ûML = G−1v

usually G low pass, and thus usually G−1 high pass!

Analysing the problem through condition numbers = maximum amplification of the
relative error on the output measurements:

∥e∥
∥u∥ ≤

σmax(G)
σmin(G)

∥v∥
∥Gu∥

problems:

the slower g the higher σmax(G)
σmin(G)

the faster ∆ the higher σmax(G)
σmin(G)

13

Pitfalls of the ML estimator for the Hunt reconstruction problem
⎧⎪⎪⎨⎪⎪⎩

y = Gu + v

ûML = G−1y
Ô⇒ e = u − ûML = G−1v

usually G low pass, and thus usually G−1 high pass!

Analysing the problem through condition numbers = maximum amplification of the
relative error on the output measurements:

∥e∥
∥u∥ ≤

σmax(G)
σmin(G)

∥v∥
∥Gu∥

problems:

the slower g the higher σmax(G)
σmin(G)

the faster ∆ the higher σmax(G)
σmin(G)

13

Pitfalls of the ML estimator for the Hunt reconstruction problem
⎧⎪⎪⎨⎪⎪⎩

y = Gu + v

ûML = G−1y
Ô⇒ e = u − ûML = G−1v

usually G low pass, and thus usually G−1 high pass!

Analysing the problem through condition numbers = maximum amplification of the
relative error on the output measurements:

∥e∥
∥u∥ ≤

σmax(G)
σmin(G)

∥v∥
∥Gu∥

problems:

the slower g the higher σmax(G)
σmin(G)

the faster ∆ the higher σmax(G)
σmin(G)

13

Pitfalls of the ML estimator for the Hunt reconstruction problem
⎧⎪⎪⎨⎪⎪⎩

y = Gu + v

ûML = G−1y
Ô⇒ e = u − ûML = G−1v

usually G low pass, and thus usually G−1 high pass!

Analysing the problem through condition numbers = maximum amplification of the
relative error on the output measurements:

∥e∥
∥u∥ ≤

σmax(G)
σmin(G)

∥v∥
∥Gu∥

problems:

the slower g the higher σmax(G)
σmin(G)

the faster ∆ the higher σmax(G)
σmin(G)

13

how can we improve our estimates?

14

Phillips-Tikhonov nonparametric regularization

15

The main ingredients of the nonparametric approach - in words

1 do not fix the structure of the solution a-priori

2 search for approximated solutions and not for perfect data fits

3 include information on the regularity of the estimand

16

The main ingredients of the nonparametric approach - in math
inputs functional: (i.e., input-output transformation)

Lk [u] example: Lk [u] = ∫
+∞

0
g(τ)u(∆k − τ)dτ

loss function: (i.e., adherence to the experimental data)

V (y(∆k) −Lk [u]) example: V =
(y(∆k) −Lk [u])

2

σ2
k

regularizer: (i.e., evaluation of the regularity of u)

∥u∥2H example: ∫
T

0
(u(m)(t))

2
dt

regularization parameter: (i.e., trade-off between loss function and regolarizer)
γ ∈ R+

17

The main ingredients of the nonparametric approach - in math
inputs functional: (i.e., input-output transformation)

Lk [u] example: Lk [u] = ∫
+∞

0
g(τ)u(∆k − τ)dτ

loss function: (i.e., adherence to the experimental data)

V (y(∆k) −Lk [u]) example: V =
(y(∆k) −Lk [u])

2

σ2
k

regularizer: (i.e., evaluation of the regularity of u)

∥u∥2H example: ∫
T

0
(u(m)(t))

2
dt

regularization parameter: (i.e., trade-off between loss function and regolarizer)
γ ∈ R+

17

The main ingredients of the nonparametric approach - in math
inputs functional: (i.e., input-output transformation)

Lk [u] example: Lk [u] = ∫
+∞

0
g(τ)u(∆k − τ)dτ

loss function: (i.e., adherence to the experimental data)

V (y(∆k) −Lk [u]) example: V =
(y(∆k) −Lk [u])

2

σ2
k

regularizer: (i.e., evaluation of the regularity of u)

∥u∥2H example: ∫
T

0
(u(m)(t))

2
dt

regularization parameter: (i.e., trade-off between loss function and regolarizer)
γ ∈ R+

17

The main ingredients of the nonparametric approach - in math
inputs functional: (i.e., input-output transformation)

Lk [u] example: Lk [u] = ∫
+∞

0
g(τ)u(∆k − τ)dτ

loss function: (i.e., adherence to the experimental data)

V (y(∆k) −Lk [u]) example: V =
(y(∆k) −Lk [u])

2

σ2
k

regularizer: (i.e., evaluation of the regularity of u)

∥u∥2H example: ∫
T

0
(u(m)(t))

2
dt

regularization parameter: (i.e., trade-off between loss function and regolarizer)
γ ∈ R+

17

The main ingredients of the nonparametric approach - in math
inputs functional: (i.e., input-output transformation)

Lk [u] example: Lk [u] = ∫
+∞

0
g(τ)u(∆k − τ)dτ

loss function: (i.e., adherence to the experimental data)

V (y(∆k) −Lk [u]) example: V =
(y(∆k) −Lk [u])

2

σ2
k

regularizer: (i.e., evaluation of the regularity of u)

∥u∥2H example: ∫
T

0
(u(m)(t))

2
dt

regularization parameter: (i.e., trade-off between loss function and regolarizer)
γ ∈ R+

17

The recipe

û = arg min
u∈H

N

∑
k=1

V (y(∆k) −Lk [u]) + γ ∥u∥2H

Example:

û = arg min
u∈H

N

∑
k=1

(y(∆k) −Lk [u])
2

σ2
k

+ γ ∫
T

0
(u(m)(t))

2
dt

Important results:

for γ > 0 the solution ∃!
increasing γ means increasing the bias and diminishing the variance

18

The recipe

û = arg min
u∈H

N

∑
k=1

V (y(∆k) −Lk [u]) + γ ∥u∥2H

Example:

û = arg min
u∈H

N

∑
k=1

(y(∆k) −Lk [u])
2

σ2
k

+ γ ∫
T

0
(u(m)(t))

2
dt

Important results:

for γ > 0 the solution ∃!
increasing γ means increasing the bias and diminishing the variance

18

The recipe

û = arg min
u∈H

N

∑
k=1

V (y(∆k) −Lk [u]) + γ ∥u∥2H

Example:

û = arg min
u∈H

N

∑
k=1

(y(∆k) −Lk [u])
2

σ2
k

+ γ ∫
T

0
(u(m)(t))

2
dt

Important results:

for γ > 0 the solution ∃!
increasing γ means increasing the bias and diminishing the variance

18

The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u])
2

vk ∼ L(0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19

The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u])
2

vk ∼ L(0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19

The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u])
2

vk ∼ L(0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19

The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u])
2

vk ∼ L(0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19

The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u])
2

vk ∼ L(0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19

The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u])
2

vk ∼ L(0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19

The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u])
2

vk ∼ L(0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19

The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u])
2

vk ∼ L(0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19

Reconstructing the Hunt input using a Tikhonov regularization approach
loss function = quadratic:

∥y −Gu∥2

regularizer = energy of 1-st discrete derivative:

uT F T Fu F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(energy of 2-nd discrete derivative = uT F T F T FFu, and so on. . .)
formulation:

û = arg min
u∈RN

∥y −Gu∥2 + γuT F T Fu = (GT G + γF T F)−1
GT y

20

Reconstructing the Hunt input using a Tikhonov regularization approach
loss function = quadratic:

∥y −Gu∥2

regularizer = energy of 1-st discrete derivative:

uT F T Fu F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(energy of 2-nd discrete derivative = uT F T F T FFu, and so on. . .)
formulation:

û = arg min
u∈RN

∥y −Gu∥2 + γuT F T Fu = (GT G + γF T F)−1
GT y

20

Reconstructing the Hunt input using a Tikhonov regularization approach
loss function = quadratic:

∥y −Gu∥2

regularizer = energy of 1-st discrete derivative:

uT F T Fu F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(energy of 2-nd discrete derivative = uT F T F T FFu, and so on. . .)
formulation:

û = arg min
u∈RN

∥y −Gu∥2 + γuT F T Fu = (GT G + γF T F)−1
GT y

20

Reconstructing the Hunt input using a Tikhonov regularization approach
loss function = quadratic:

∥y −Gu∥2

regularizer = energy of 1-st discrete derivative:

uT F T Fu F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(energy of 2-nd discrete derivative = uT F T F T FFu, and so on. . .)
formulation:

û = arg min
u∈RN

∥y −Gu∥2 + γuT F T Fu = (GT G + γF T F)−1
GT y

20

Example

0.5 1
0

1

t

u(t)

21

Example

0.5 1
0

1

t

u(t)
u(∆k) N = 100

21

Example

0.5 1
0

1

t

u(t)
u(∆k) N = 100
ûRLS(∆k)

21

Example

0.5 1
0

1

t

u(t)
u(∆k) N = 200
ûRLS(∆k)

21

Example

0.5 1
0

1

t

u(t)
u(∆k) N = 1000
ûRLS(∆k)

21

How shall we tune γ?

û = (GT G + γF T F)−1
GT y

PRESS (predicted residual error sum of squares)
GCV (generalized cross-validation)
SURE (Stein unbiased risk estimator)

22

How shall we tune γ?

û = (GT G + γF T F)−1
GT y

PRESS (predicted residual error sum of squares)
GCV (generalized cross-validation)
SURE (Stein unbiased risk estimator)

22

regularization for system identification

23

Direct problem ≠ inverse problem

y(t) = ∫
+∞

0
g(τ)u(t − τ)dτ + v(t)

Intuitions:
exponentially stable system Ô⇒ impulse response coefficients should decay
exponentially
impulse response is smooth Ô⇒ neighboring coefficients should have a positive
correlation

Ô⇒ gT F T Fg with F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

not the optimal regularization choice!

24

Direct problem ≠ inverse problem

y(t) = ∫
+∞

0
g(τ)u(t − τ)dτ + v(t)

Intuitions:
exponentially stable system Ô⇒ impulse response coefficients should decay
exponentially
impulse response is smooth Ô⇒ neighboring coefficients should have a positive
correlation

Ô⇒ gT F T Fg with F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

not the optimal regularization choice!

24

Direct problem ≠ inverse problem

y(t) = ∫
+∞

0
g(τ)u(t − τ)dτ + v(t)

Intuitions:
exponentially stable system Ô⇒ impulse response coefficients should decay
exponentially
impulse response is smooth Ô⇒ neighboring coefficients should have a positive
correlation

meaningful∗ choice: P (α) = [αmax i,j] α = typical exponential decay

solution: ĝ = (UT U + γP (α))−1
UT y

25

Direct problem ≠ inverse problem

y(t) = ∫
+∞

0
g(τ)u(t − τ)dτ + v(t)

Intuitions:
exponentially stable system Ô⇒ impulse response coefficients should decay
exponentially
impulse response is smooth Ô⇒ neighboring coefficients should have a positive
correlation

meaningful∗ choice: P (α) = [αmax i,j] α = typical exponential decay

solution: ĝ = (UT U + γP (α))−1
UT y

25

Direct problem ≠ inverse problem

y(t) = ∫
+∞

0
g(τ)u(t − τ)dτ + v(t)

Intuitions:
exponentially stable system Ô⇒ impulse response coefficients should decay
exponentially
impulse response is smooth Ô⇒ neighboring coefficients should have a positive
correlation

meaningful∗ choice: P (α) = [αmax i,j] α = typical exponential decay

solution: ĝ = (UT U + γP (α))−1
UT y

25

Example - system identification - definition

t

u(t)

26

Example - system identification - definition

t

u(t)
g(t)

26

Example - system identification - definition

t

u(t)
g(t)
yn.l.(t)

26

Example - system identification - definition

t

u(t)
g(t)
yn.l.(t)
y(∆k)

26

Example - system identification - solution

t

g(t)
ĝ(t)

27

Summarizing. . .

Stein Ô⇒ ML is not always the best
Hunt Ô⇒ ML may actually be very bad
one potential strategy: regularize
getting good performances requires though having a prior . . .
. . . but even if you don’t have it you can always improve ML (cf. Stein)

28

Summarizing. . .

Stein Ô⇒ ML is not always the best
Hunt Ô⇒ ML may actually be very bad
one potential strategy: regularize
getting good performances requires though having a prior . . .
. . . but even if you don’t have it you can always improve ML (cf. Stein)

28

Summarizing. . .

Stein Ô⇒ ML is not always the best
Hunt Ô⇒ ML may actually be very bad
one potential strategy: regularize
getting good performances requires though having a prior . . .
. . . but even if you don’t have it you can always improve ML (cf. Stein)

28

Summarizing. . .

Stein Ô⇒ ML is not always the best
Hunt Ô⇒ ML may actually be very bad
one potential strategy: regularize
getting good performances requires though having a prior . . .
. . . but even if you don’t have it you can always improve ML (cf. Stein)

28

Summarizing. . .

Stein Ô⇒ ML is not always the best
Hunt Ô⇒ ML may actually be very bad
one potential strategy: regularize
getting good performances requires though having a prior . . .
. . . but even if you don’t have it you can always improve ML (cf. Stein)

28

Bibliography

Pillonetto, Dinuzzo, Chen, De Nicolao, Ljung

Kernel methods in system identification,
machine learning and function estimation: A survey

Automatica 2014

29

part II: some more mathematical details

30

RKHS-based interpretations of regularization as a function estimation
problem

Definition 1 (reproducing kernel Hilbert space)
H ⊂ C0(X) = RKHS if Hilbert and if

∀x ∈ X ∃Cx < +∞ s.t. ∀f ∈ H ∣f(x)∣ ≤ Cx ∥f∥2H

Practical advantage: RKHSs allow rigorous analyses

31

RKHS-based interpretations of regularization as a function estimation
problem

Definition 1 (reproducing kernel Hilbert space)
H ⊂ C0(X) = RKHS if Hilbert and if

∀x ∈ X ∃Cx < +∞ s.t. ∀f ∈ H ∣f(x)∣ ≤ Cx ∥f∥2H

Practical advantage: RKHSs allow rigorous analyses

31

Connections between RKHSs and Mercer kernels

Definition 2 (Mercer kernel)
K ∶ X × X ↦ R that is continuous, symmetric and (semi) positive definite

Theorem 2 (Moore-Aronszajn)
if H is RKHS then ∃! Mercer K s.t.

K(x, ⋅) ∈ H ∀x ∈ X
⟨K(x, ⋅), f(⋅)⟩H = f(x) (reproducing property)

if K Mercer then ∃!H RKHS

32

Connections between RKHSs and Mercer kernels

Definition 2 (Mercer kernel)
K ∶ X × X ↦ R that is continuous, symmetric and (semi) positive definite

Theorem 2 (Moore-Aronszajn)
if H is RKHS then ∃! Mercer K s.t.

K(x, ⋅) ∈ H ∀x ∈ X
⟨K(x, ⋅), f(⋅)⟩H = f(x) (reproducing property)

if K Mercer then ∃!H RKHS

32

Connections between RKHSs and Mercer kernels

Definition 2 (Mercer kernel)
K ∶ X × X ↦ R that is continuous, symmetric and (semi) positive definite

Theorem 2 (Moore-Aronszajn)
if H is RKHS then ∃! Mercer K s.t.

K(x, ⋅) ∈ H ∀x ∈ X
⟨K(x, ⋅), f(⋅)⟩H = f(x) (reproducing property)

if K Mercer then ∃!H RKHS

32

From K to H
“Algorithm”

1 take all finite linear combinations g(⋅) =
p

∑
i=1

αiK (xi, ⋅)

2 define the inner product of g1(⋅), g2(⋅) as above as
p

∑
i=1

p

∑
j=1

αiαiK (xi, xj)

3 complete H by adding to it all the Cauchy sequences
(norm defined through the previous inner product)

Implications
f(⋅) ∈ H Ô⇒ f(⋅) linear combination of a countable number of kernel sections

Ô⇒ hypothesis space = countable combinations of slices of K

Ô⇒ selecting K = selecting properties of the final estimates
(smoothness and integrability of K reflects on smoothness and integrability of the final
estimate)

33

From K to H
“Algorithm”

1 take all finite linear combinations g(⋅) =
p

∑
i=1

αiK (xi, ⋅)

2 define the inner product of g1(⋅), g2(⋅) as above as
p

∑
i=1

p

∑
j=1

αiαiK (xi, xj)

3 complete H by adding to it all the Cauchy sequences
(norm defined through the previous inner product)

Implications
f(⋅) ∈ H Ô⇒ f(⋅) linear combination of a countable number of kernel sections

Ô⇒ hypothesis space = countable combinations of slices of K

Ô⇒ selecting K = selecting properties of the final estimates
(smoothness and integrability of K reflects on smoothness and integrability of the final
estimate)

33

From K to H
“Algorithm”

1 take all finite linear combinations g(⋅) =
p

∑
i=1

αiK (xi, ⋅)

2 define the inner product of g1(⋅), g2(⋅) as above as
p

∑
i=1

p

∑
j=1

αiαiK (xi, xj)

3 complete H by adding to it all the Cauchy sequences
(norm defined through the previous inner product)

Implications
f(⋅) ∈ H Ô⇒ f(⋅) linear combination of a countable number of kernel sections

Ô⇒ hypothesis space = countable combinations of slices of K

Ô⇒ selecting K = selecting properties of the final estimates
(smoothness and integrability of K reflects on smoothness and integrability of the final
estimate)

33

From K to H
“Algorithm”

1 take all finite linear combinations g(⋅) =
p

∑
i=1

αiK (xi, ⋅)

2 define the inner product of g1(⋅), g2(⋅) as above as
p

∑
i=1

p

∑
j=1

αiαiK (xi, xj)

3 complete H by adding to it all the Cauchy sequences
(norm defined through the previous inner product)

Implications
f(⋅) ∈ H Ô⇒ f(⋅) linear combination of a countable number of kernel sections

Ô⇒ hypothesis space = countable combinations of slices of K

Ô⇒ selecting K = selecting properties of the final estimates
(smoothness and integrability of K reflects on smoothness and integrability of the final
estimate)

33

From K to H
“Algorithm”

1 take all finite linear combinations g(⋅) =
p

∑
i=1

αiK (xi, ⋅)

2 define the inner product of g1(⋅), g2(⋅) as above as
p

∑
i=1

p

∑
j=1

αiαiK (xi, xj)

3 complete H by adding to it all the Cauchy sequences
(norm defined through the previous inner product)

Implications
f(⋅) ∈ H Ô⇒ f(⋅) linear combination of a countable number of kernel sections

Ô⇒ hypothesis space = countable combinations of slices of K

Ô⇒ selecting K = selecting properties of the final estimates
(smoothness and integrability of K reflects on smoothness and integrability of the final
estimate)

33

From K to H
“Algorithm”

1 take all finite linear combinations g(⋅) =
p

∑
i=1

αiK (xi, ⋅)

2 define the inner product of g1(⋅), g2(⋅) as above as
p

∑
i=1

p

∑
j=1

αiαiK (xi, xj)

3 complete H by adding to it all the Cauchy sequences
(norm defined through the previous inner product)

Implications
f(⋅) ∈ H Ô⇒ f(⋅) linear combination of a countable number of kernel sections

Ô⇒ hypothesis space = countable combinations of slices of K

Ô⇒ selecting K = selecting properties of the final estimates
(smoothness and integrability of K reflects on smoothness and integrability of the final
estimate)

33

Representer theorem

arg min
f∈H

N

∑
k=1
(yt − f(ut))

2
+ γ ∥f∥2H =

N

∑
t=1

αtK(ut, ⋅)

⎡⎢⎢⎢⎢⎢⎢⎣

α1
⋮

αN

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

K(u1, u1) ⋯ K(u1, uN)
⋮ ⋮

K(uN , u1) ⋯ K(uN , uN)

⎤⎥⎥⎥⎥⎥⎥⎦

+ γI

⎞
⎟⎟
⎠

−1

y

(a.k.a. regularization network)

Non-parametric approach: a priori ∞-dimensional, a posteriori N -dimensional!

34

Representer theorem

arg min
f∈H

N

∑
k=1
(yt − f(ut))

2
+ γ ∥f∥2H =

N

∑
t=1

αtK(ut, ⋅)

⎡⎢⎢⎢⎢⎢⎢⎣

α1
⋮

αN

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

K(u1, u1) ⋯ K(u1, uN)
⋮ ⋮

K(uN , u1) ⋯ K(uN , uN)

⎤⎥⎥⎥⎥⎥⎥⎦

+ γI

⎞
⎟⎟
⎠

−1

y

(a.k.a. regularization network)

Non-parametric approach: a priori ∞-dimensional, a posteriori N -dimensional!

34

Representer theorem for other types of losses

arg min
f∈H

N

∑
k=1

V (yt −Lt[f]) + γ ∥f∥2H =
N

∑
t=1

αtK(ut, ⋅)

⎡⎢⎢⎢⎢⎢⎢⎣

α1
⋮

αN

⎤⎥⎥⎥⎥⎥⎥⎦

= non-trivial solutions

(may require using numerical optimization tools)

35

Bayesian interpretations

f ∼ GP (0, K)

36

Solving ill-posed estimation problems through regularization:

a brief introduction with examples

damiano.varagnolo@ltu.se

staff.www.ltu.se/∼damvar

en
tir

ely
written

in
LATEX2ε usin

g

Beamer and Tik Z licensed under the Creative Commons CC-BY 4.0 License
37

https://creativecommons.org/licenses/by/4.0/

appendix

38

	the Stein phenomenon
	ill-conditioning
	Phillips-Tikhonov nonparametric regularization
	regularization for system identification
	part II: some more mathematical details
	appendix

