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aim: show usefulness of regularization when doing statistical estimation
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Structure

the Stein phenomenon
ill-conditioning
example: the Hunt problem
Phillips-Tikhonov nonparametric regularization
regularization for system identification

some more mathematical details
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the Stein phenomenon
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Quiz time!

yt = θt + et et ∼ N (0, σ2) i.i.d. θt ∈ R y ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

y1
⋮

yN

⎤⎥⎥⎥⎥⎥⎥⎦

θ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

θ1
⋮

θN

⎤⎥⎥⎥⎥⎥⎥⎦

aim: find estimator of θ that minimizes E [∥θ̂ − θ∥2]

idea: use θ̂ML = y Ô⇒ E [∥θ̂ML − θ∥2] = Nσ2 ?

requirement: to be a good estimator of θ, θ̂ should be s.t. θ̂T θ̂ ≈ θT θ

E [θ̂T
MLθ̂ML] = E [yT y] = E [θT θ] +Nσ2

the ML solution overestimates the norm of θ!
5
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The James-Stein estimator

θ̂JS ∶= (1 −
N − 2
yT y

σ2)y

Theorem 1
For N ≥ 3 then

E [∥θ̂JS − θ∥2] < Nσ2 = E [∥θ̂ML − θ∥2] ∀θ ∈ RN

Stein’s phenomenon: when estimating at least 3 parameters simultaneously then ∃
combined estimators with lower MSE than any estimator handling the parameters
separatedly

6
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ill-conditioning
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Some practical estimation problems

u system y

.

.

1 inverse problems (e.g., de-blurring)
2 direct problems (e.g., system identification, machine learning)
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Ill-posedness and ill-conditioning

yt = f (ut) + vt

ill-posed problem (in the Hadamard sense): solution is either not unique or does not
depend continuously on the data

ill-conditioned problem: solution is very sensitive to the data

U F Y
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Example: the Hunt reconstruction problem
continuous-time system with sampled output

u(t) = exp(−( t − 0.4
0.075

)
2
) + exp(−( t − 0.6

0.075
)

2
) g(t) = { 1 if 0 ≤ t ≤ 0.25

0 otherwise,

yn.l.(t) = ∫
+∞

0
g(τ)u(t − τ)dτ y(∆k) = yn.l.(∆k) + v(k)

0 0.5 1
0

1

t

u(t)
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Example: the Hunt reconstruction problem

assumption: u(∆k) piecewise constant Ô⇒

y(∆k) =
N

∑
τ=1

g(∆τ)u(∆k −∆τ) + v(k) dataset: {g(∆k), y(∆k)}k=1,...,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(∆)
y(∆2)
y(∆3)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(∆)
g(∆2) g(∆)
g(∆3) g(∆2) g(∆)
⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(∆)
u(∆2)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

y = Gu + v ûML = G−1y
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Is the Hunt reconstruction problem well defined?

0.5 1
0

1
t

u(t)
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Is the Hunt reconstruction problem well defined?
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Pitfalls of the ML estimator for the Hunt reconstruction problem
⎧⎪⎪⎨⎪⎪⎩

y = Gu + v

ûML = G−1y
Ô⇒ e = u − ûML = G−1v

usually G low pass, and thus usually G−1 high pass!

Analysing the problem through condition numbers = maximum amplification of the
relative error on the output measurements:

∥e∥
∥u∥ ≤

σmax(G)
σmin(G)

∥v∥
∥Gu∥

problems:

the slower g the higher σmax(G)
σmin(G)

the faster ∆ the higher σmax(G)
σmin(G)
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how can we improve our estimates?
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Phillips-Tikhonov nonparametric regularization
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The main ingredients of the nonparametric approach - in words

1 do not fix the structure of the solution a-priori

2 search for approximated solutions and not for perfect data fits

3 include information on the regularity of the estimand

16



The main ingredients of the nonparametric approach - in math
inputs functional: (i.e., input-output transformation)

Lk [u] example: Lk [u] = ∫
+∞

0
g(τ)u(∆k − τ)dτ

loss function: (i.e., adherence to the experimental data)

V (y(∆k) −Lk [u] ) example: V =
(y(∆k) −Lk [u] )

2

σ2
k

regularizer: (i.e., evaluation of the regularity of u)

∥u∥2H example: ∫
T

0
(u(m)(t))

2
dt

regularization parameter: (i.e., trade-off between loss function and regolarizer)
γ ∈ R+

17
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The recipe

û = arg min
u∈H

N

∑
k=1

V (y(∆k) −Lk [u] ) + γ ∥u∥2H

Example:

û = arg min
u∈H

N

∑
k=1

(y(∆k) −Lk [u] )
2

σ2
k

+ γ ∫
T

0
(u(m)(t))

2
dt

Important results:

for γ > 0 the solution ∃!
increasing γ means increasing the bias and diminishing the variance

18
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The recipe for some common practical cases

loss function: depends on the log-likelihood!

vk ∼ N (0, σ2) Ô⇒ (y(∆k) −Lk [u] )
2

vk ∼ L (0, b) Ô⇒ ∣y(∆k) −Lk [u] ∣

vk ∼ exponential family Ô⇒ V = piece-wise linear quadratic

regularizer: corresponds to an opportune prior!
splines Ô⇒ Sobolev spaces
other RKHSs (e.g., stable-splines Kernels)

19
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Reconstructing the Hunt input using a Tikhonov regularization approach
loss function = quadratic:

∥y −Gu∥2

regularizer = energy of 1-st discrete derivative:

uT F T Fu F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(energy of 2-nd discrete derivative = uT F T F T FFu, and so on. . . )
formulation:

û = arg min
u∈RN

∥y −Gu∥2 + γuT F T Fu = (GT G + γF T F )−1
GT y
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û = arg min
u∈RN

∥y −Gu∥2 + γuT F T Fu = (GT G + γF T F )−1
GT y

20



Reconstructing the Hunt input using a Tikhonov regularization approach
loss function = quadratic:

∥y −Gu∥2

regularizer = energy of 1-st discrete derivative:

uT F T Fu F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(energy of 2-nd discrete derivative = uT F T F T FFu, and so on. . . )
formulation:
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Example
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How shall we tune γ?

û = (GT G + γF T F)−1
GT y

PRESS (predicted residual error sum of squares)
GCV (generalized cross-validation)
SURE (Stein unbiased risk estimator)
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regularization for system identification

23



Direct problem ≠ inverse problem

y(t) = ∫
+∞

0
g(τ)u(t − τ)dτ + v(t)

Intuitions:
exponentially stable system Ô⇒ impulse response coefficients should decay
exponentially
impulse response is smooth Ô⇒ neighboring coefficients should have a positive
correlation

Ô⇒ gT F T Fg with F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

not the optimal regularization choice!

24



Direct problem ≠ inverse problem

y(t) = ∫
+∞

0
g(τ)u(t − τ)dτ + v(t)

Intuitions:
exponentially stable system Ô⇒ impulse response coefficients should decay
exponentially
impulse response is smooth Ô⇒ neighboring coefficients should have a positive
correlation

Ô⇒ gT F T Fg with F ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 1 0
0 −1 1 0
⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

not the optimal regularization choice!

24



Direct problem ≠ inverse problem

y(t) = ∫
+∞

0
g(τ)u(t − τ)dτ + v(t)

Intuitions:
exponentially stable system Ô⇒ impulse response coefficients should decay
exponentially
impulse response is smooth Ô⇒ neighboring coefficients should have a positive
correlation

meaningful∗ choice: P (α) = [ αmax i,j ] α = typical exponential decay
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Example - system identification - definition

t

u(t)
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Example - system identification - solution
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g(t)
ĝ(t)
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Summarizing. . .

Stein Ô⇒ ML is not always the best
Hunt Ô⇒ ML may actually be very bad
one potential strategy: regularize
getting good performances requires though having a prior . . .
. . . but even if you don’t have it you can always improve ML (cf. Stein)
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part II: some more mathematical details
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RKHS-based interpretations of regularization as a function estimation
problem

Definition 1 (reproducing kernel Hilbert space)
H ⊂ C0(X ) = RKHS if Hilbert and if

∀x ∈ X ∃Cx < +∞ s.t. ∀f ∈H ∣f(x)∣ ≤ Cx ∥f∥2H

Practical advantage: RKHSs allow rigorous analyses
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Connections between RKHSs and Mercer kernels

Definition 2 (Mercer kernel)
K ∶ X ×X ↦ R that is continuous, symmetric and (semi) positive definite

Theorem 2 (Moore-Aronszajn)
if H is RKHS then ∃! Mercer K s.t.

K(x, ⋅) ∈H ∀x ∈ X
⟨K(x, ⋅), f(⋅)⟩H = f(x) (reproducing property)

if K Mercer then ∃!H RKHS
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From K to H
“Algorithm”

1 take all finite linear combinations g(⋅) =
p

∑
i=1

αiK (xi, ⋅)

2 define the inner product of g1(⋅), g2(⋅) as above as
p

∑
i=1

p

∑
j=1

αiαiK (xi, xj)

3 complete H by adding to it all the Cauchy sequences
(norm defined through the previous inner product)

Implications
f(⋅) ∈H Ô⇒ f(⋅) linear combination of a countable number of kernel sections

Ô⇒ hypothesis space = countable combinations of slices of K

Ô⇒ selecting K = selecting properties of the final estimates
(smoothness and integrability of K reflects on smoothness and integrability of the final
estimate)
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Representer theorem

arg min
f∈H

N

∑
k=1
(yt − f(ut))

2
+ γ ∥f∥2H =

N

∑
t=1

αtK(ut, ⋅)

⎡⎢⎢⎢⎢⎢⎢⎣

α1
⋮

αN

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

K(u1, u1) ⋯ K(u1, uN)
⋮ ⋮

K(uN , u1) ⋯ K(uN , uN)

⎤⎥⎥⎥⎥⎥⎥⎦

+ γI

⎞
⎟⎟
⎠

−1

y

(a.k.a. regularization network)

Non-parametric approach: a priori ∞-dimensional, a posteriori N -dimensional!
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Representer theorem for other types of losses

arg min
f∈H

N

∑
k=1

V (yt −Lt[f]) + γ ∥f∥2H =
N

∑
t=1

αtK(ut, ⋅)

⎡⎢⎢⎢⎢⎢⎢⎣

α1
⋮

αN

⎤⎥⎥⎥⎥⎥⎥⎦

= non-trivial solutions

(may require using numerical optimization tools)
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Bayesian interpretations

f ∼ GP (0, K)
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a brief introduction with examples
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