Stochastic control of HVAC systems: a learning-based approach

Damiano Varagnolo

Something about me

Something about me

Post-Doc at KTH Post-Doc at U. Padova Visiting Scholar at UC Berkeley Ph.D. Student at U. Padova Software Engineer at Tecnogamma MS. Student at U. Padova

Heating, Venting and Air Conditioning

reduce energy consumption

reduce energy consumption

maintain quality indexes

reduce energy consumption

maintain quality indexes

space conditioning: 10 - 20 % of global final energy consumption

A typical HVAC system

use buildings thermal capacity 🖘

Example

Model (*u* inputs, *w* disturbances)

$$x(k+1) = Ax(k) + Bu(k) + Ew(k)$$
$$y(k) = Cx(k)$$

Predicted evolution (given u and w)

$$\mathbf{Y} = \mathbf{C}(\mathbf{A}x_0 + \mathbf{B}\mathbf{U} + \mathbf{E}\mathbf{W})$$

Model Predictive Control (MPC)

$$\begin{array}{ll} \min_{\boldsymbol{U}} \quad \boldsymbol{c}^{\mathsf{T}}\boldsymbol{U} \\ \text{s.t.} \quad \boldsymbol{C}(\boldsymbol{A}\boldsymbol{x}_0 + \boldsymbol{B}\boldsymbol{U} + \boldsymbol{E}\boldsymbol{W}) \in \text{comfort bounds} \end{array}$$

Literature review

Ma et al. (2012)

Fast stochastic MPC with optimal risk allocation applied to building control systems

Conference on Decision and Control

Oldewurtel et al. (2012)

Use of model predictive control and weather forecasts for energy efficient building climate control

Energy and Buildings

Salsbury et al. (2012)

Predictive control methods to improve energy efficiency and reduce demand in buildings

Computers and Chemical Engineering

Mady et al. (2011)

Stochastic model predictive controller for the integration of building use and temperature regulation

Conference on Artificial Intelligence

Contributions

A. Ebadat, G. Bottegal, D. Varagnolo, B. Wahlberg, K.H. Johansson Estimation of building occupancy levels through environmental signals deconvolution

ACM Workshop On Embedded Systems For Energy-Efficient Buildings, 2013

A. Parisio, D. Varagnolo, D. Risberg, G. Pattarello, M. Molinari, K.H. Johansson

Randomized Model Predictive Control for HVAC Systems ACM Workshop On Embedded Systems For Energy-Efficient Buildings, 2013

- A. Parisio, M. Molinari, D. Varagnolo, K.H. Johansson

A Scenario-based Predictive Control Approach to Building HVAC Management Systems

IEEE Conference on Automation Science and Engineering, 2013

Contributions

robustness

robustness through *learning* the uncertainties

Contributions – Main Directions

Contributions – Main Directions

Roadmap

Roadmap

Problem Ben-Tal, Nemirovsky, El Ghaoui, ...

$$\begin{array}{ll} \min_{\theta \in \Theta} & c^{\mathcal{T}}\theta \\ \text{s.t.} & f(\theta, \delta) \leq 0 \qquad \forall \delta \in \Delta \end{array}$$

where

- $\theta \in \Theta$, with Θ closed and convex
- $\delta \in \Delta$, with Δ generic
- $f(heta,\delta)$ continuous and convex in heta for any fixed $\delta\in\Delta$

(1)

Worst-case Robust Optimization in HVAC systems

 $C(Ax_0 + BU + EW) \in \text{comfort bounds} \quad \forall W \in \Delta$

Question: how to compute Δ ?

Worst-case Robust Optimization in HVAC systems

 $C(Ax_0 + BU + EW) \in \text{comfort bounds} \quad \forall W \in \Delta$

Question: how to compute Δ ?

Worst-case Robust Optimization in HVAC systems

 $C(Ax_0 + BU + EW) \in \text{comfort bounds} \quad \forall W \in \Delta$

Question: how to compute Δ ?

Problem (Vajda, Prekopa, ...)

$$\begin{array}{l} \min_{\theta \in \Theta} \quad c^{T}\theta \\ \text{s.t.} \quad \mathbb{P}\left[\delta \in \Delta \text{ s.t. } f(\theta, \delta) \leq 0\right] \geq 1 - \alpha \end{array} \tag{2}$$

Problem (Campi, Calafiore, ...)

$$\min_{\substack{\theta \in \Theta \\ \text{s.t.}}} c^{\mathsf{T}} \theta \\ \forall i \in \{1, \dots, N\}$$
 (3)

with:

(constraints may be substituted with $\max_i (f(\theta, \delta^{(i)})) \leq 0$)

Chance-Constrained: $\mathbb{P}\left[\delta \in \Delta \text{ s.t. } f(\theta, \delta) \leq 0\right] \geq 1 - \alpha$

Comparisons Theorems (Calafiore Campi 2006)

- Scenario-Constrained infeasible \Rightarrow Worst-Case infeasible
- Scenario-Constrained feasible \Rightarrow
 - c^Tθ^{*}_{SC} ≤ c^Tθ^{*}_{WC} (solution of Scenario-Constrained is not worse than Worst-Case)

•
$$\mathbb{P}\left[c^{T}\theta_{CC}^{*}(\alpha) \leq c^{T}\theta_{SC}^{*}\right] \geq 1-\beta$$

• $\mathbb{P}\left[c^{T}\theta_{SC}^{*} \leq c^{T}\theta_{CC}^{*}(\alpha')\right] \geq 1 - \beta$ with $\alpha' = \phi(\alpha, \beta) < \alpha$ (w.h.p. solution of Scenario-Constrained is not better than Scenario-Constrained but also not too worse)

•
$$\mathbb{P}\left[\mathbb{P}\left[\delta \in \Delta \text{ s.t. } f(\theta_{SC}^*, \delta) \leq 0 \right] \geq 1 - \alpha \right] \geq 1 - \beta$$

(may happen that solution of Scenario-Constrained is not feasible for Scenario-Constrained)

Chance-Constrained: $\mathbb{P}\left[\delta \in \Delta \text{ s.t. } f(\theta, \delta) \leq 0\right] \geq 1 - \alpha$

Roadmap

Sources of uncertainties

Sources of uncertainties

Our approach in deriving their distributions

plant : use nonparametric system identification tools

d : use copulas-based learning schemes

Roadmap

Nonparametric PEM approach:

$$\widehat{y}_{t|t-1} = \sum_{i=1}^{\infty} h'_i u_{t-i} + \sum_{i=1}^{\infty} h''_i y_{t-i}$$

System Identification = Regularized Function Estimation:

$$h^{*} = \arg\min_{h \in \mathbf{X}} \sum_{t} \left(y_{t} - \widehat{y}_{t|t-1} \right)^{2} + \gamma \left\| h \right\|_{\mathbf{X}}^{2}$$

Theorem (Pillonetto De Nicolao 2010) Let $K(x_1, x_2) = W\left(e^{-\beta x_1}, e^{-\beta x_2}\right)$ $W(s,t) = \left\{ egin{array}{c} rac{s^2}{2}\left(t-rac{s}{3}
ight) & ext{if } s \leq t \ rac{t^2}{2}\left(s-rac{t}{3}
ight) & ext{if } s > t \end{array}
ight.$ If $h \sim \mathcal{GP}(0, K)$ then $\mathbb{P}\left[h = \text{imp. resp. of LTI BIBO stable system}\right] = 1$

$$\min_{h \in \mathcal{H}_{\mathcal{K}}} \sum_{t} \left(y_t - \widehat{y}_{t|t-1} \right)^2 + \gamma \left\| h \right\|_{\mathcal{K}}^2$$

returns:

- h^* , conditional expectation
- K^* , conditional autocovariance

$$\min_{h \in \mathcal{H}_{\mathcal{K}}} \sum_{t} \left(y_t - \widehat{y}_{t|t-1} \right)^2 + \gamma \left\| h \right\|_{\mathcal{K}}^2$$

returns:

- h^* , conditional expectation
- K*, conditional autocovariance
- \Rightarrow full probabilistic estimate:

 $\mathcal{GP}(h^*, K^*)$

$$\Rightarrow$$
 can extract i.i.d. samples $h^{(i)}$

Roadmap

next step: learn the probability distribution of the disturbances

approach: use copulas-based learning techniques

Gaussian

Describing Probabilities Using Copulas (Sklar, Zimmer)

$$\mathbb{F}_{\boldsymbol{w}}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_K) = \mathbb{C}\left(\mathbb{F}_{w_1}(\boldsymbol{a}_1),\ldots,\mathbb{F}_{w_K}(\boldsymbol{a}_K)\right) \qquad \mathbb{C}:[0,1]^K \mapsto [0,1]$$

In words, Joint distribution = Copula + Marginal distributions

Describing Probabilities Using Copulas (Sklar, Zimmer)

$$\mathbb{F}_{\boldsymbol{w}}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_K) = \mathbb{C}\left(\mathbb{F}_{w_1}(\boldsymbol{a}_1),\ldots,\mathbb{F}_{w_K}(\boldsymbol{a}_K)\right) \qquad \mathbb{C}:[0,1]^K \mapsto [0,1]$$

In words, Joint distribution = Copula + Marginal distributions

*Pros*completely generic separated modeling / learning of marginals / dependencies

Describing Probabilities Using Copulas (Sklar, Zimmer)

$$\mathbb{F}_{\boldsymbol{w}}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_K) = \mathbb{C}\left(\mathbb{F}_{w_1}(\boldsymbol{a}_1),\ldots,\mathbb{F}_{w_K}(\boldsymbol{a}_K)\right) \qquad \mathbb{C}:[0,1]^K \mapsto [0,1]$$

In words, Joint distribution = Copula + Marginal distributions

Roadmap

The controlled HVAC system

Necessity: model should be accurate and computationally tractable Our choice: RC-network (R \leftrightarrow thermal resistance, C \leftrightarrow thermal capacitance)

Wall model

Building model

Validation against IDA-ICE

- simpler than commercial SW exploiting more complex libraries
- captures the most important buildings dynamics' characteristics

Scenario-based MPC

Scenario-based MPC

Thanks to the linear models, linear programs

$$\begin{array}{ll} \min_{\boldsymbol{U}} & \boldsymbol{c}^{T} \boldsymbol{U} \\ \text{s.t.} & \max_{i=1,\ldots,N} \left(\boldsymbol{G}_{u}^{(i)} \boldsymbol{U} + \boldsymbol{G}_{w}^{(i)} \boldsymbol{W}^{(i)} - \boldsymbol{g}^{(i)} \right) \leq 0 \\ & \boldsymbol{F} \boldsymbol{U} \leq \boldsymbol{f} \end{array}$$

Room (hvac.ee.kth.se):

Actuation on a Real System

aim: improve HVAC control through robustness

requires scenario-based control plus learning

results indicate noticeable savings

- learning from networks of buildings
- integration of smart-grid concepts
- global network of open HVAC testbeds

Stochastic control of HVAC systems: a learning-based approach

Damiano Varagnolo

damiano@kth.se hvac.ee.kth.se

licensed under the Creative Commons BY-NC-SA 2.5 European License: