Distributed optimization through Newton-Raphson consensus

Damiano Varagnolo

joint work with Luca Schenato and Filippo Zanella

School of Electrical Engineering - KTH Royal Institute of Technology

June 7, 2012 - Netcon Meeting

Distributed optimization

Problem formulation

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x)$$
convexitys.t. $g(x) \le 0$ assumptions $x \in \mathcal{X}$ $x \in \mathcal{X}$

Multi-agents scenario

cooperation to find the optimum

Our position in literature

- primal based
- unconstrained convex
- uses second-order approximations
- uses strong assumptions on the cost functions (all other algorithms can work under our hypotheses)

our contribute: better convergence speed for primal methods

Illustrative example: quadratic local cost functions

Simplified scalar scenario

$$f_i(x) = \frac{1}{2}a_i(x-b_i)^2 + c_i$$
 $a_i > 0$

Corresponding solution

$$x^{*} = \frac{\sum_{i=1}^{N} a_{i}b_{i}}{\sum_{i=1}^{N} a_{i}} = \frac{\frac{1}{N}\sum_{i=1}^{N} a_{i}b_{i}}{\frac{1}{N}\sum_{i=1}^{N} a_{i}}$$

i.e. parallel of 2 average consensus!

And for generic convex local cost functions?

... so let's check

$$x^* \stackrel{?}{=} \frac{\frac{1}{N} \sum_{i=1}^{N} (f_i''(x_i) x_i - f_i'(x_i))}{\frac{1}{N} \sum_{i=1}^{N} f_i''(x_i)}$$

$$x^{*} = \frac{\frac{1}{N} \sum_{i=1}^{N} a_{i}b_{i}}{\frac{1}{N} \sum_{i=1}^{N} a_{i}} = \frac{\frac{1}{N} \sum_{i=1}^{N} (f_{i}''(x_{i})x_{i} - f_{i}'(x_{i}))}{\frac{1}{N} \sum_{i=1}^{N} f_{i}''(x_{i})}$$

(intuition: it is a Newton-Raphson approximation)

The complete algorithm – synchronous case

Q quadratic approximations update:

•
$$g_i(k) := f_i''(x_i(k))x_i(k) - f_i'(x_i(k))$$

•
$$h_i(k) := f_i''(x_i(k))$$

Quadratic approximations mixing (av. consensus, P doubly stochastic):

9 guesses updates (_____ component-wise):

•
$$\mathbf{x}(k+1) = (1-\varepsilon)\mathbf{x}(k) + \varepsilon \frac{\mathbf{y}(k+1)}{\mathbf{z}(k+1)}$$

Towards an asynchronous version ...

Towards an asynchronous version

Towards an asynchronous version

The complete algorithm – asynchronous case

quadratic approximations update:

•
$$g_i(k) := f_i''(x_i(k))x_i(k) - f_i'(x_i(k))$$

•
$$h_i(k) := f_i''(x_i(k))$$

2 quadratic approximations mixing:

•
$$\mathbf{y}(k+1) = P(k) \left[\mathbf{y}(k) + E(k) (\mathbf{g}(k) - \mathbf{g}(k-1)) \right]$$

• $\mathbf{z}(k+1) = P(k) \left[\mathbf{z}(k) + E(k) (\mathbf{h}(k) - \mathbf{h}(k-1)) \right]$

guesses updates:

•
$$\mathbf{x}(k+1) = \mathbf{x}(k) + \boldsymbol{\varepsilon} N(k) \left(\frac{\mathbf{y}(k+1)}{\mathbf{z}(k+1)} - \mathbf{x}(k) \right)$$

Block schematic representation

 $g_i(k) = f_i''(x_i(k))x_i(k) - f_i'(x_i(k))$ $h_i(k) = f_i''(x_i(k))$ $x_i(k+1) = (1-\varepsilon)x_i(k) + \varepsilon \frac{y_i(k+1)}{z_i(k+1)}$

need just uniformly exponentially converging av. consensus

Hypotheses on the local costs

- $f_i \in C^2(\mathbb{R})$
- f'_i and f''_i bounded
- f_i strictly convex

Theorem

uniform activation⁽¹⁾ \Rightarrow global convergence⁽²⁾

Theorem

uniform activation⁽¹⁾ \Rightarrow global convergence⁽²⁾

(1): on the long run all the nodes are activated the same number of times

Theorem

uniform activation⁽¹⁾ \Rightarrow global convergence⁽²⁾

(1): on the long run all the nodes are activated the same number of times

(2): for every open ball B_r centered in x^*

Theorem

uniform activation⁽¹⁾ \Rightarrow global convergence⁽²⁾

(1): on the long run all the nodes are activated the same number of times

(2): for every open ball B_r centered in \mathbf{x}^* exists $\overline{\varepsilon}_r > 0$ s.t.

Theorem

uniform activation⁽¹⁾ \Rightarrow global convergence⁽²⁾

(1): on the long run all the nodes are activated the same number of times

```
(2): for every open ball B_r centered in \mathbf{x}^*
exists \overline{\varepsilon}_r > 0 s.t.
for all \varepsilon < \overline{\varepsilon}_r
```

Theorem

uniform activation⁽¹⁾ \Rightarrow global convergence⁽²⁾

(1): on the long run all the nodes are activated the same number of times

(2): for every open ball B_r centered in \mathbf{x}^* exists $\overline{\varepsilon}_r > 0$ s.t. for all $\varepsilon < \overline{\varepsilon}_r$ exist $c_r, \gamma_{\varepsilon} > 0$ s.t.

$$\|\boldsymbol{x}_k - \boldsymbol{x}^*\| \le \|\boldsymbol{x}_0 - \boldsymbol{x}^*\| \cdot c_r e^{-\gamma_{\varepsilon}k} \qquad \forall \boldsymbol{x}_0 \in B_r$$

Theorem

persistent activation⁽¹⁾ \Rightarrow local convergence⁽²⁾

Theorem

persistent activation⁽¹⁾ \Rightarrow local convergence⁽²⁾

(1): bounded intercommunication intervals

Theorem

persistent activation⁽¹⁾ \Rightarrow local convergence⁽²⁾

(1): bounded intercommunication intervals

(2): exists an open ball B_0 centered in x^* s.t.

Theorem

persistent activation⁽¹⁾ \Rightarrow local convergence⁽²⁾

(1): bounded intercommunication intervals

(2): exists an open ball B_0 centered in \mathbf{x}^* s.t. exists $\overline{\varepsilon} > 0$ s.t.

Theorem

persistent activation⁽¹⁾ \Rightarrow local convergence⁽²⁾

(1): bounded intercommunication intervals

(2): exists an open ball B_0 centered in \mathbf{x}^* s.t. exists $\overline{\varepsilon} > 0$ s.t. for all $\varepsilon < \overline{\varepsilon}$

Theorem

persistent activation⁽¹⁾ \Rightarrow local convergence⁽²⁾

(1): bounded intercommunication intervals

(2): exists an open ball B_0 centered in \mathbf{x}^* s.t. exists $\overline{\varepsilon} > 0$ s.t. for all $\varepsilon < \overline{\varepsilon}$ exist $c, \gamma_{\varepsilon} > 0$ s.t. $\|\mathbf{x}_k - \mathbf{x}^*\| \le \|\mathbf{x}_0 - \mathbf{x}^*\| \cdot c e^{-\gamma_{\varepsilon} k} \quad \forall \mathbf{x}_0 \in B_0$

Sketch of the proofs

rewrite the algorithm to highlight two-time scales dynamics

 analyze separately fast and slow dynamics (discrete version of standard singular perturbation analysis)

analysis of boundary layer:

- requires an exponentially convergent average consensus
- use discrete converse Lyapunov theorems
- analysis of reduced system:
 - exploit averaging to remove the dependency on N(k)'s
 - massage av. consensus equations + exploit smoothness assumptions on the *f_i*'s to obtain a Lyapunov function

Properties

Good:

- easy implementation
- "small" computational requirements
- inherits qualities of consensus:
 - small topological knowledge requirements
 - robust to numerical errors and communication noise

Bad:

strong assumptions:

- $f_i \in \mathcal{C}^2(\mathbb{R})$
- f_i strictly convex
- f'_i and f''_i bounded

Experiments description

Comparisons with a Distributed Subgradient

Nedić Ozdaglar Dist. subgr. meth. for multi-agent opt. (2009)

$$\mathbf{x}^{(c)}(k) = P\mathbf{x}(k)$$
 (consensus step)

$$x_i(k+1) = x_i^{(c)}(k) - \frac{\rho}{k} f_i'(x_i^{(c)}(k))$$

(local gradient descent)

Numerical comparison

Comparisons with (an) ADMM

Bertsekas Tsitsiklis, Parall. and Dist. Computation (1997)

$$\begin{split} \mathcal{L}_{\rho} &:= \sum_{i} \left[\begin{array}{c} f_{i}\left(x_{i}\right) + y_{i}^{(\ell)}\left(x_{i} - z_{i-1}\right) + y_{i}^{(c)}\left(x_{i} - z_{i}\right) + y_{i}^{(r)}\left(x_{i} - z_{i+1}\right) \right. \\ & \left. + \frac{\delta}{2} \left|x_{i} - z_{i-1}\right|^{2} + \frac{\delta}{2} \left|x_{i} - z_{i}\right|^{2} + \frac{\delta}{2} \left|x_{i} - z_{i+1}\right|^{2} \right] \end{split}$$

Numerical comparison

Conclusions and future works

The algorithm we proposed ...

- $\bullet\,$ is a distributed Newton-Raphson strategy (+)
- $\bullet\,$ requires really minimal network topology knowledge (+)
- requires really minimal agents synchronization (+)
- $\bullet\,$ is simple to be implemented (+)
- $\bullet\,$ converges to global optimum under convexity and smoothness assumptions (+ / -)
- ullet is numerically faster than subgradients (+)
- is numerically slower than ADMMs (-)

Conclusions and future works

Principal open problems

- analytically characterize the convergence speeds for specific functions and graphs (with comparisons to other methods)
- relax the assumptions (strict convexity, C^2 , ...)
- tune ε on-line

K. C. Kiwiel (2004)

Convergence of approximate and incremental subgradient methods for convex optimization

SIAM Journal on Optimization

D. P. Bertsekas (1982)

Constrained Optimization and Lagrange Multiplier Methods Academic Press

- D. P. Bertsekas and J. N. Tsitsiklis (1997) Parallel and Distributed Computation: Numerical Methods Athena Scientific
- A. Nedić and A. Ozdaglar (2009)
 Distributed subgradient methods for multi-agent optimization
 IEEE Transactions on Automatic Control
 - B. Johansson (2008) On Distributed Optimization in Networked Systems Ph.D. Thesis, KTH

A. Nedić and A. Ozdaglar (2007)

On the Rate of Convergence of Distributed Subgradient Methods for Multi-agent Optimization CDC

- S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein (2010) Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers Foundations and Trends in Machine Learning
- M. Zargham, A. Ribeiro, A. Ozdaglar, A. Jadbabaie (2011) Accelerated Dual Descent for Network Optimization ACC

D. P. Bertsekas (2011)

Centralized and Distributed Newton Methods for Network Optimization and Extensions Technical Report LIDS 2866

H. K. Khalil (2002)

Nonlinear Systems Prentice Hall

Distributed optimization through Newton-Raphson consensus

Damiano Varagnolo

joint work with Luca Schenato and Filippo Zanella

School of Electrical Engineering - KTH Royal Institute of Technology

June 7, 2012 - Netcon Meeting

licensed under the Creative Commons BY-NC-SA 2.5 Italy License:

