
Distributed convex optimization: a
consensus-based Newton-Raphson approach

Damiano Varagnolo
joint work with A. Cenedese, G. Pillonetto, L. Schenato, F. Zanella

Department of Information Engineering - University of Padova

July 5th, 2011

Damiano Varagnolo (DEI - UniPd) Distrib. Newton-Raphson optimization July 5th, 2011 1 / 45



This talk

distributed
optimization
examples

state of
the art

proposed
algorithm

comparisons
with state
of the art

Damiano Varagnolo (DEI - UniPd) Distrib. Newton-Raphson optimization July 5th, 2011 2 / 45



This talk

distributed
optimization
examples

state of
the art

proposed
algorithm

comparisons
with state
of the art

Damiano Varagnolo (DEI - UniPd) Distrib. Newton-Raphson optimization July 5th, 2011 3 / 45



Introduction

Distributed optimization and its importance

Problem formulation

minimize f (x) =
∑N

i=1 fi(x)

subject to g(x) ≤ 0
x ∈ X

under
convexity
assumptions

Multi-agents scenario

Networked system
where neighbors

cooperate to find the
optimum

f1

f2

f3
f4

f5

f6

f7
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Introduction

Distribution optimization - Example 1

Regression in sensor networks
(e.g. when estimation = optimization of a cost function)

Residuals minimization

minθ
∑N

i=1 φ(yi − ŷi)

s.t. ŷi = θTxi

φ(r) = |r |2 (least squares)
φ(r) = |r | (least abs. deviations)

φ(r) =

{
0 if |r | < 1
|r | − 1 otherwise

(Vapnik)

φ(r) =

{ |r |2 if |r | < 1
2(|r | − 1) otherwise

(Huber)
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Introduction

Distribution optimization - Example 2

Classification in sensor networks
(e.g. when classification = optimization of a cost function)

Support Vector Machine Classification

min
w ,w0

N∑
i=1

[
1− yi (wxi + w0)

]
+

+ λ ‖w‖2

↓ (smooth approximation)

min
w ,w0

N∑
i=1

log
[
1 + e−yi (wxi+w0)

]
+ λ ‖w‖2
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Introduction

Distribution optimization - Example 3

Resource allocation in wireless systems
(e.g. when optimal allocation = optimization of a cost function)

Links capacity allocation [Johansson 2008]

suboptimal allocation optimal allocation

's width = allocated link capacity
's width = data �ux
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State of the art

State of the art

Distributed optimization methods: 3 main categories

Primal decompositions methods
(e.g. distributed subgradients)

Dual decompositions methods
(e.g. alternating direction method of multipliers)

Heuristic methods
(e.g. swarm optimization, genetic algorithms)
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State of the art

Primal decomposition methods (centralized)

Subgradient methods [Kiwiel 2004]

xk+1 = PX [xk + αk · g (xk)]

with

g (xk) := subgradient of f (·) at xk

αk := stepsize

PX [·] := projector on X

Convergence properties
αk typically needs to be diminishing for non-smooth f

g(·) may be required to be bounded

. . .
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State of the art

Primal decomposition methods (distributed)

Distributed subgradient methods [Nedić Ozdaglar 2009]

xi(k + 1) = PX
[

N∑
j=1

aij(k)xj(k) + αi(k)gi
(
xi(k)

)]
with∑N

j=1 aij(k)xj(k) := aver. consensus step on local estimates xj(k)

gi
(
xi(k)

)
:= local subgradient of local cost fi(·) at xi(k)

αi(k) := local stepsize

Convergence properties [Nedić Ozdaglar (2007)]

E.g., for bounded subgradients and αi(k) = α then

lim inf
k→+∞

f
(
xi(k)

)
= f ∗ + small constant

Damiano Varagnolo (DEI - UniPd) Distrib. Newton-Raphson optimization July 5th, 2011 11 / 45



State of the art

Dual decomposition methods (centralized)

Method of Multipliers [Bertsekas 1982]

Primal reformulation: minimize f (x) + ρ
2 ‖Ax − b‖22

subject to Ax = b

yelds to
1 xk+1 = argminx

(
f (x) + λT

k (Ax − b) + ρ
2 ‖Ax − b‖22

)
2 yk+1 = yk + ρ(Axk − b)

Convergence properties
convergence to the optimum under mild assumptions (milder
than for original dual ascent [Boyd et al. (2010)])

Damiano Varagnolo (DEI - UniPd) Distrib. Newton-Raphson optimization July 5th, 2011 12 / 45



State of the art

Dual decomposition methods (distributed)

Alternating Direction Method of Multipliers [Bertsekas Tsitsiklis 1997]

minimize f1(x1) + f2(x2)

subject to A1x1 + A2x2 − b = 0

Augmented
Lagrangian:

Lρ(x1, x2, λ) := f1(x1) + f2(x2)

+λT (A1x1 + A2x2 − b)

+ρ
2 ‖A1x1 + A2x2 − b‖22

Algorithm
1 x1(k + 1) = argminx1 Lρ

(
x1, x2(k), λ(k)

)
2 x2(k + 1) = argminx2 Lρ

(
x1(k + 1), x2, λ(k)

)
3 λ(k + 1) = λ(k) + ρ (A1x1 + A2x2 − b)
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State of the art

Dual decomposition methods (distributed)

Second-order dual descents [Bertsekas (2011)]

idea: use Newton-like procedures in the dual ascent step

usually involve graphs’ Laplacian

Algorithms
Strategies to estimate Laplacians:
(usually based on matrices splitting strategies)

[Zargham et al. (2011)] → Taylor expansions of Hessians

[Jadbabaie et al. (2009)] → consensus-based iterative scheme
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State of the art

Drawbacks of the considered algorithms

Primal based strategies
may be slow

may not converge to the optimum

Dual based strategies
may be computationally expensive

require topological knowledge

implementation to handle time-varying graphs, time delays, etc.
may require effort

Damiano Varagnolo (DEI - UniPd) Distrib. Newton-Raphson optimization July 5th, 2011 15 / 45



Motivations

Motivations for our method

The algorithm that we want:

1 easy to be implemented

2 with small computational requirements

3 does not require synchronization or topology knowledge

4 assured to converge to global optimum

5 inheriting good properties of standard consensus
convergence proofs, robustness, . . .
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The main algorithm

Our position in literature

How the proposed algorithm relates to other techniques?

primal decomposition method

unconstrained convex optimization

uses second-order approximations

strong assumptions on the cost functions
(all other algorithms can work under our hypotheses)

our contribute: better convergence speed
for primal methods
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The main algorithm

Illustrative example: quadratic local cost functions
Derivation of the algorithm - step 1 on 3

Simplified scalar scenario

fi(x) =
1
2
ai (x − bi)

2 + ci ai > 0

Corresponding solution

x∗ =

N∑
i=1

aibi

N∑
i=1

ai

=

1
N

N∑
i=1

aibi

1
N

N∑
i=1

ai

i.e. parallel of 2 average consensi!
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The main algorithm

Illustrative example: quadratic local cost functions
Derivation of the algorithm - step 1 on 3 - graphical interpretation

ftot

f1 = 1
2a1(x − b1)

2 + c1

f2 = 1
2a2(x − b2)

2 + c2

x∗
2 =

a2b2

a2 x∗
1 =

a1b1

a1

x∗ =
0.5a1b1 + 0.5a2b2

0.5a1 + 0.5a2

0 1 2 3 4

−1
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The main algorithm

And for generic convex local cost functions?
Derivation of the algorithm - step 1 on 3

f1

f2

ftot

f ∗

x∗

−1 −0.5 0 0.5 1

0

1

2

3

4
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The main algorithm

And for generic convex local cost functions?
Derivation of the algorithm - step 1 on 3

q1

q2

qtot

q∗

x∗
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The main algorithm

The initial idea
Derivation of the algorithm - step 2 on 3

For quadratics . . .

x∗ =
1
N

∑N
i=1 aibi

1
N

∑N
i=1 ai

with

aibi = f ′′i (xi)xi − f ′i (xi)

ai = f ′′i (xi)

Does it imply that, for generic functions, . . . ??

x∗ =
1
N

∑N
i=1 (f ′′i (xi)xi − f ′i (xi))

1
N

∑N
i=1 f ′′i (xi)
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The main algorithm

The initial idea
Derivation of the algorithm - step 2 on 3

The algorithm with the previous intuitions
1 initialize as before:

yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0))
zi (0) := f ′′i (xi (0))

2 run 2 average consensi (P doubly stochastic):

yi (k + 1) = Pyi (k)

zi (k + 1) = Pzi (k)

3 locally compute xi (k) =
yi (k)

zi (k)

remember: for quadratics x∗ =
1
N

PN
i=1(f ′′

i (xi )xi−f ′
i (xi ))

1
N

PN
i=1 f ′′

i (xi )
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The main algorithm

The initial idea
Derivation of the algorithm - step 3 on 3

Is this the algorithm?
yi(k + 1) = Pyi(k)

zi(k + 1) = Pzi(k)

xi(k) =
yi(k)

zi(k)

{
yi(0) := f ′′i (xi(0))xi(0)− f ′i (xi(0))

zi(0) := f ′′i (xi(0))

No, must provide 2 little modifications:

xi changes ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi(k) =
yi(k)

zi(k)
too aggressive!! Should make it milder
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The main algorithm

The complete algorithm

Definitions
gi(xi(k)) = f ′′i (xi(k))xi(k)− f ′i (xi(k))

hi(xi(k)) = f ′′i (xi(k))

bold font = vectorization

Main procedure
y(k + 1) = PM

[
y(k) + g(x(k))− g(x(k − 1))

]
z(k + 1) = PM

[
z(k) + h(x(k))− h(x(k − 1))

]
x(k + 1) = (1− ε)x(k) + ε

y(k + 1)

z(k + 1)

Initialization
x(0) = y(0) = z(0) = g(x(−1)) = h(x(−1)) = 0
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The main algorithm

Convergence property

Hypotheses

fi ∈ C2 (R)

f ′i and f ′′i bounded

fi strictly convex

x∗ 6= ±∞
null initial conditions

Thesis
there is a positive ε̄ s.t. if ε < ε̄ then, exponentially,

lim
k→+∞

x(k) = x∗1
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The main algorithm

Robustness property

Additional hypothesis
not-null initial conditions, but s.t.

α := 1T (v(0)− y(0))

β := 1T (w(0)− z(0))

Thesis

there are positive ε̄, ᾱ, β̄ s.t. if ε < ε̄, α < ᾱ, β < β̄ then,
exponentially,

lim
k→+∞

x(k) = φ(α, β)1

where φ(α, β) is continuous and φ(0, 0) = x∗
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Sketch of the proof

Sketch of the proof

importance of the proof:
gives insights on key properties

1 transform the algorithm in a continuous-time system

2 recognize the existence of a two-time scales dynamical system

3 analyze separately fast and slow dynamics
(standard singular perturbation model analysis approach
[Khalil (2002)])
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Sketch of the proof

1) transformation in a continuous-time system


y(k + 1) = PM

[
y(k) + g(x(k))− g(x(k − 1))

]
z(k + 1) = PM

[
z(k) + h(x(k))− h(x(k − 1))

]
x(k + 1) = (1− ε)x(k) + εy(k+1)

z(k+1)

↓ M = 1 P := I − K

εv̇(t) = −v(t) + g (x(t))

εẇ(t) = −w(t) + h (x(t))

εẏ(t) = −Ky(t) + (I − K ) [g (x(t))− v(t)]

εż(t) = −Kz(t) + (I − K ) [h (x(t))−w(t)]

ẋ(t) = −x(t) + y(t)
z(t)
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Sketch of the proof
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εẇ(t) = −w(t) + h (x(t))
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Sketch of the proof

2) two-time scales dynamical system

εv̇(t) = −v(t) + g (x(t))

εẇ(t) = −w(t) + h (x(t))

εẏ(t) = −Ky(t) + (I − K ) [g (x(t))− v(t)]

εż(t) = −Kz(t) + (I − K ) [h (x(t))−w(t)]

ẋ(t) = −x(t) +
y(t)

z(t)

Intuition: if ε is sufficiently small . . .
first subsystem is much faster than second one

first subsystem is globally exponentially stable
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Sketch of the proof

3) analysis of the fast dynamics (ε→ 0)


εv̇(t) = −v(t) + g (x(t))

εẇ(t) = −w(t) + h (x(t))

εẏ(t) = −Ky(t) + (I − K ) [g (x(t))− v(t)]

εż(t) = −Kz(t) + (I − K ) [h (x(t))−w(t)]

{
1T ẏ(t) = 1T v̇(t)

1T ż(t) = 1T ẇ(t)



v(t) → g (x(t))

w(t) → h (x(t))

y(t) →
[

1
N

∑N
i=1 gi (xi(t))

]
1

z(t) →
[

1
N

∑N
i=1 hi (xi(t))

]
1
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Sketch of the proof

3) analysis of the fast dynamics (ε→ 0)
The tracking mechanism


y(t) →

[
1
N

N∑
i=1

gi (xi(t))

]
1

z(t) →
[
1
N

N∑
i=1

hi (xi(t))

]
1

means 
y(t) →

[
1
N

N∑
i=1

f ′′i (xi(t)) xi(t)− f ′i (xi(t))

]
1

z(t) →
[
1
N

N∑
i=1

f ′′i (xi(t))

]
1
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Sketch of the proof

And the slow dynamics? (ε→ 0)

ẋ(t) = −x(t) +
y(x(t))

z(x(t))

ẋ(t) ≈ −x(t) +

[
1
N

∑N
i=1 f ′′i (xi(t)) xi(t)− f ′i (xi(t))

]
1[

1
N

∑N
i=1 f ′′i (xi(t))

]
1

ẋave ≈ −
f ′global (xave)

f ′′global (xave)

i.e. a continuous-time Newton-Raphson strategy
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Sketch of the proof

Recap

1 intuition:
1
N

∑N
i=1 f ′′i (xi) xi − f ′i (xi)

1
N

∑N
i=1 f ′′i (xi)

and x∗ are related

2 construct a system s.t.
yi (k)→ 1

N
∑N

i=1 f ′′i (xi (k)) xi (k)− f ′i (xi (k))

zi (k)→ 1
N
∑N

i=1 f ′′i (xi (k))

3 discover that
xi (k)→ xave(k)

xave(k) evolution driven by a Newton-Raphson algorithm
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Properties

Properties

Good qualities
easy to be implemented

“small” computational requirements
inherits good qualities of consensus:

small topological knowledge requirements
robust to numerical error and communication noise

Bad qualities

Up to now, requires strong assumptions:

fi ∈ C2 (R)

fi strictly convex

f ′i and f ′′i bounded
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Properties

On the necessity of the requirements

fi ∈ C2

needed for the existence of f ′i and f ′′i

fi strictly convex

needed to assure
1
N

∑N
i=1 f ′′i (xi) xi − f ′i (xi)

1
N

∑N
i=1 f ′′i (xi)

6= NaN

f ′i and f ′′i bounded

assure non-pathological Newton-Raphson evolutions
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Numerical examples

Experiments description

circulant graph, N = 30

P =


0.5 0.25 0.25
0.25 0.5 0.25

. . . . . . . . .
0.25 0.5 0.25

0.25 0.25 0.5


fi = sum of exponentials
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Numerical examples

Comparisons with a Distributed Subgradient
Algorithm from [Nedić Ozdaglar 2009]

1 x(c)(k) = Px(k) (consensus step)

2 xi (k + 1) = x (c)
i (k)− ρ

k
f ′i
(
x (c)
i (k)

)
(local gradient descent)

Numerical comparison

[Nedić Ozdaglar 2009] Dist. Newton-Raphson
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−10
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0
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k [time]

x i
(k

)
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)
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Numerical examples

Comparisons with an ADMM (first-order)

Algorithm from [Bertsekas Tsitsiklis 1997]

Lρ :=
∑

i

[
fi (xi) + y (`)

i (xi − zi−1) + y (c)
i (xi − zi) + y (r)

i (xi − zi+1)

+ δ
2 |xi − zi−1|2 + δ

2 |xi − zi |2 + δ
2 |xi − zi+1|2

]
Numerical comparison

[Bertsekas Tsitsiklis 1997] Dist. Newton-Raphson
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Conclusions

Conclusions and future works

The algorithm we proposed . . .
is a distributed Newton-Raphson strategy (+)

requires minimal network topology knowledge (+)

requires minimal agents synchronization (+)

extremely simple to be implemented (+)

converges to global optimum under convexity and smoothness
assumptions (+ / -)

numerically faster than subgradients (+) but slower than ADMM (-)
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Conclusions

Conclusions and future works

Currently working on (or already performed)

extension to multi-dimensional problems

extension to modified Newton strategies

analytical characterization of the convergence speed for
quadratic functions and specific graphs
(with comparisons to other methods)
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Conclusions

Conclusions and future works

Plans for the future
relax the assumptions
(strict convexity, C2, . . . )

find automatic stepsizes tuning strategies

propose quasi-Newton strategies
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