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Part I

Introduction
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Considered problem

Problem statement - centralized scenario

inputs: set of noisy measurements of a certain signal:

ym = f (xm) + νm m = 1, . . . ,M

goal: estimate f (x)

x

y

f (x)
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Motivations

Parametric approach

assumption: known structure but unknown parameters
example: exponential:

f (x) = exp (−θx) θ, x ∈ R+

x

y

exp (−3x)

goal: estimate θ starting from the data set {(xm, ym)}
⇒ various approaches depending on the model on f :

Maximum Likelihood
Least Squares
. . .
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Motivations

Nonparametric approach

assumption: signal f lives in a certain functions space:

f ∈ HK

goal: search the estimate f̂ directly inside this space:

f̂ = arg minef ∈HK

(
Loss function

(
f̃ , {ym}

)
+ γ

∥∥∥f̃ ∥∥∥2

HK

)
motivations: functional structure of f could be not easily managed

with parametric structures
our approach: use Reproducing Kernel Hilbert Spaces
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Part II

Centralized Learning
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Introduction to the centralized learning scenario

hypoteses: there is only one sensor
exist a certain and opportune “bidimensional”
function

K (·, ·) : Input locations× Input locations → R

working flow: K (·, ·) defines a function space HK

use K (·, ·) to construct the estimating function
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Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces - hypotheses

question: how HK is made?

first assumption: K (·, ·) is a Mercer Kernel:
continuous
symmetric
definite positive

second assumption: input locations domain is compact
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Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces - implications

implication 1: K (·, ·) defines a compact linear positive definite
integral operator:

(LK f ) (xm) :=

∫
X

K (xm, x ′) f (x ′) dx ′

implication 2: LK has at most a numerable set of eigenfunctions:

φk (·) = λk (LKφk) (·) k = 1, 2, . . .
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Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces

Theorem
with the previous hypotheses:
{λk} are real and non-negative: λ1 ≥ λ2 ≥ . . . ≥ 0
{φk (·)} is an orthonormal basis for the space

HK =
{

f ∈ L2 s.t. f =
∑∞

k=1 akφk

with {ak} s.t.
∑∞

k=1
ak ·ak
λk

< +∞
}

f1 =
∑∞

k=1 akφk , f2 =
∑∞

k=1 bkφk ⇒

〈f1, f2〉HK
=
∞∑

k=1

ak · bk

λk
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RKHS-based learning

RKHS based learning

assumption: HK is defined via the kernel K

1◦ question: how we construct the estimate?
2◦ question: how can we interpret it?
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RKHS-based learning

RKHS based learning - cost-function interpretation

recall: estimation f̂ has to:
fit → loss functions
not to overfit → Tikhonov regularizator

our approach: loss functions = quadratic functions

⇓

f̂ = arg minef ∈HK

 ∑
measurements m

(
f̃ (xm)− ym

)2

σ2 + γ
∥∥∥f̃ ∥∥∥2

HK


why this choice?
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RKHS-based learning

RKHS based learning - Bayesian interpretation

goal: construct the Bayesian estimator of f :

f̂ = cov (f , y) var (y)−1 y y =

 y1
...

yM


Proposition
If:

f is a Gaussian process with covariance K :

cov
(
f (xm) f (xn)T

)
= K (xm, xn)

loss functions = quadratic functions

then cost-function regularization is equivalent to Bayes estimation
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RKHS-based learning

RKHS based learning - numerical results

f̂ (·) =
M∑

m=1

cmK (xm, ·) with

 c1
...

cM

 = (Kx + γIM)−1

 y1
...

yM


Example:

K (2, ·)
x ′

x ′′

K (x ′, x ′′)

x

f̂ (x)
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RKHS-based learning

RKHS based learning - drawbacks

f̂ (·) =
M∑

m=1

cmK (xm, ·)

1◦ feature: must invert (Kx + γIM)−1

2◦ feature: must store [c1, . . . , cM ]

caveat: M big ⇒
computationally hard to invert M ×M matrices
function representations pretty big

our requirements:
� compact representations (necessary for distributed

algorithms)
� light computations (preferable)
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Approximated learning

Approximated RKHS learning

want compact representations & light computations?
⇒ must approximate

model: f =
+∞∑
k=1

akφk ⇒ ym =
+∞∑
k=1

akφk (xm) + νm

new goal: estimate only the first E coefficients with E � M

definition: Reduced Hilbert Space:

HE
K :=

{
f̃ ∈ L2 s.t. f̃ =

∑E
k=1 akφk

a := [a1 . . . aE ]T ∈ RE
}
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Approximated learning

Approximated learning - example

Kernel for BIBO stable linear time-invariant systems:

K (x , x ′; β) =


exp (−2βx)

2

(
exp (−βx ′)− exp (−βx)

3

)
if x ≤ x ′

exp (−2βx ′)
2

(
exp (−βx)− exp (−βx ′)

3

)
if x ≥ x ′
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Approximated learning

Approximated learning - kind of approaches

cost-function based:
data fitting → loss functions
not overfit → Tikhonov regularizer

f̂ = arg minef ∈HE
K

 ∑
measurements m

(
f̃ (xm)− ym

)2

σ2 + γ
∥∥∥f̃ ∥∥∥2

HE
K


Bayesian approach:

consider a prior
find the best linear estimator

â = cov (a, y) var (y)−1 y
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Approximated learning

Approximated learning - compact notation

notation: ym =
+∞∑
k=1

akφk (xm) + νm → y = Ca + e + ν

definitions:

y :=

 y1
...

yM

 C :=

 φ1 (x1) . . . φE (x1)
...

...
φ1 (xM) . . . φE (xM)



a :=

 a1
...

aE

 e :=


∑+∞

k=E+1 akφk (x1)
...∑+∞

k=E+1 akφk (xM)

 ν :=

 ν1
...
νE
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Approximated learning

Approximated learning - numerical solutions

( Σa := diag (λ1, . . . , λE ) Σe := var (Σe) )

cost-function approach:

â =
(
σ2ΣaCTC + γIE

)−1
ΣaCTy

(computations load: O (E 3 + E 2M + EM2) operations)
Bayesian approach:

â = ΣaCT (CΣaCT + Σe + σ2IM
)−1 y

(computations load: O (M3) operations)

⇓

never equivalent!
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Part III

Distributed Approximated Learning
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Distributed learning

Distributed approximated learning - introduction

hypothesis: there are S sensors
all measuring the same function f

1

2

3

x1

y1 x2

y2

x3

y3

goal: distributely estimate f
constraints: limited amount of exchangeable information

limited size of the representation of the estimated
function

further hypothesis: consensus-based algorithms can be implemented
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Recent results

Distributed approx. learning - starting hypotheses
Simplifications:

1 each sensor knows exactly S (n◦ of sensors)
2 no time-delay between measured signals
3 common input-locations grid among sensors

1

2

3

x1

y1

x2

y2

x3

y3
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Recent results

Bayesian strategy: when distributed = centralized?

( yi := set of measurements of sensor i )

âcent = cov

a,

 y1
...
yS


 var


 y1

...
yS



−1  y1

...
yS


= (. . . some massages . . .)

=
1
S

S∑
i=1

(
ΣaCT

(
CΣaCT + Σe +

σ2

S
IM

)−1

yi

)
⇒ equivalent to an average consensus on locally computable

quantities!
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Recent results

Bayesian strategies: distributed vs local

local Bayesian strategy:

âloc,s = cov (a, yi) var (yi)
−1 yi = ΣaCT (CΣaCT + Σe + σ2IM

)−1 ys

distributed strategy: (equivalent to centralized)

1 initial local estimation:

âs(0) = ΣaCT
(

CΣaCT + Σe +
σ2

S
IM

)−1

ys

2 average consensus on the varios âs(0)

difference = how to weight the measurement noise!
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Recent results

Guessed distributed strategy

hypothesis removal: sensors do not know S (n◦ of sensors)

↓

all sensors make the same guess: Sg (“g” = guess)

how distributed estimator changes?

distributed strategy:

1 initial local estimation:

âs(0) (Sg) = ΣaCT
(

CΣaCT + Σe +
σ2

Sg
IM

)−1

ys

2 average consensus on the varios âs(0) (Sg)
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Recent results

Comparison: centralized vs guessed distributed

centralized (or distributed) strategy:

âcent = ΣaCT
(

CΣaCT + Σe +
σ2

S
IM

)−1

y

guessed distributed strategy:

âdist (Sg) = ΣaCT
(

CΣaCT + Σe +
σ2

Sg
IM

)−1

y

centralized strategy use the correct measurements variance!
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Recent results

Comparisons between estimators performances

performance “=” estimation error variance

centralized vs local: centralized is always better than local

centralized vs guessed distributed: centralized is always better than
guessed distributed (equal iff S = Sg, (guess is correct))

guessed distributed vs local: depends!!
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Recent results

Comparison: guessed distributed vs local (1)

Proposition
If Sg ∈ [1, 2 (S − 1)] then guessed distributed strategy is better than
local independently of the kernel, noise power, number of
measurements, etc.

Sg (guess)

estimation error variance

S 2 (S − 1)

true number of sensors

local strategy

distributed strategy
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Recent results

Comparison: guessed distributed vs local (2)

Proposition
If we consider kernel then the previous bound can be enlarged

Sg (guess)

estimation error variance

S b (Kx)

bound depending on Kx

local strategy
distributed strategy

1◦ note: the bound depends on the eigenvalues of Kx

2◦ note: the bound is conservative
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Recent results

Comparison: guessed distributed vs local (3)

Proposition
If

min
(
eig (Kx)

)
≥ σ2

S − 1
then the guessed distributed strategy is always better than the local
one, for all guesses Sg ∈ [1,+∞)

Sg (guess)

estimation error variance

S

local strategy

distributed strategy

implication: in this case communications always improve estimation
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Recent results

Loss of performances: TODO
TODO: characterize the loss of performance when making wrong
guesses (i.e. Sg 6= S)

desired propositions: small error in guessing (say ∆) ?⇒ loss of
performance is small (say ε)? When? How much is ε?
Does it depend on Kx? . . .

Sg (guess)

estimation error variance

S−∆ +∆

true number of sensors

distributed strategy

ε
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Recent results

Distributed estimation without initial guessings (1)

Initial guessing Sg could be undesirable ⇒ look for estimators
without required initializations

requested features:

must not require guessings
must be a linear tranformation of the measurements yi

must lead to the smallest possible estimation error variance
dimension of exchanged vectors must be at most E
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Recent results

Distributed estimation without initial guessings (2)
Proposed algorithm:

1 whiten the noise e + ν
2 compress information using an SVD decomposition
3 run an average consensus algorithm

→ â = A (y1, . . . , yS)

“Corollary algorithm”: maximum likelihood estimator for the number
of sensors S :

ŜML := argmax
S

P (A (y1, . . . , yS) | S )

TODO: comparisons between this and “guessed distributed”:

estimation error variance
computational requirements
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Recent results

Adding temporal shifts to the measured function

hypothesis removal: there are unknown time-delays between
measured signals

x1

y1

x2

y2

x3

y3

implication: unknown delays ⇒ no common sampling grid

⇒ much more difficult scenario!
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Recent results

Classic Time Delay Estimation

notation: f1, f2 = noisy delayed versions of the same f
classic TDE: maximization of L2’s inner product:

τoptimal = argmax
τ
〈f1(x), f2(x − τ)〉L2

x

y

f1(x) f2(x)

f2(x − 0.7)
+1.2
−0.7

∼ optimal shift
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Recent results

Time Delay Estimation in RKHS framework

RKHS based TDE: maximization of HK ’s inner product:

τoptimal = argmax
τ
〈f1(x), f2(x − τ)〉HK

= argmax
τ

∞∑
k=1

ak · bk(τ)

λk

Note: requires f1(x) and f2(x − τ) in the same reference system
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Recent results

Joint “function and TD” Estimation - centralized
scenario

proposed solution: Maximum likelihood strategy:

L
(
f̃
)

:= −J
(
f̃
)

= −
S∑

s=1

Ms∑
m=1

(
f̃ (xs,m − τs)− ys,m

)2

σ2 − γ
∥∥∥f̃ ∥∥∥2

HK

implies:

f̂ML := arg maxef ∈HE
K

L
(
f̃
)

⇒ maximization via descent algorithms
Caveat: initialization strongly affects results!
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Recent results

Joint “function and TDE” - distributed scenario

proposed solution: distributed minimization of the centralized
likelihood:

1 find the minimal bridged sensor network topology:

1

2

3

4

5

6

7
8

9

10

11

2 introduce some constraints in the centralized likelihood (one for
each bridge)

3 construct a Lagrangian from the constrained likelihood
4 solve the Lagrangian via a distributed minimization algorithm

Caveat: initialization strongly affects results!
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Part IV

Other Open Problems
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Other open problems

Grid based distributed estimation (1)

hypotheses:
no time delays between measured functions
sensors share a common sampling grid
sensors have also some own sampling locations

x

y

f (x)
common grid

own samples
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Other open problems

Grid based distributed estimation (2)

proposed algorithm:

1 run distributed estimation on the grid (guessed / without
guessing) → âdist (θ)

2 fuse distributed estimation & data not previously used:
Ê [f | âdist (θ) ys ]

TODOs:

characterize the combined estimation error variance (always
better than pure local? no? when? why?)
find suboptimal combination strategies of local estimates +
distributed estimates (no recomputing everything)
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Other open problems

Recursively updated approximated estimators

problematic issue: all current implementations of approximated
estimators work “offline”:

single new measurement arrive → recompute everything

desired strategy: find recursive equations:

â(t + 1) = Θ (â(t), (xt+1, yt+1))

TODO: everything (first step: find at least some suboptimal
equations)
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Other open problems

No-common-grid suboptimal strategy

previously proposed strategy: distributed lagrangian minimization →
slow convergence + local minima

suboptimal alternative idea:

cycle the following

1 estimate the delays between the functions
2 construct an artificial grid
3 create some measurements on this grid
4 run distributed strategy on this grid
5 update the local estimations using the distributed one

TODO: everything (numerical equations, convergence, stability, error
bounds, . . .)
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Other open problems

Time Delay Estimation using RKHS techniques
TDE via RKHS-based approximated representations: in our
knowledge never been proposed

x

y

f1(x) f2(x)

TODOs:
analyze biasness & error variance vs number of eigenfunctions E
compare this strategy with other TDE techniques
find rapid estimation strategies based on the RKHSs inner
products
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Other open problems

Distributed Fault Detection (1)

hypotheses:
sensors measure the same (or quite the same)
function
sensors can be faulty

x1

y1

x2

y2

x3

y3

actual signal
measured signal
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Other open problems

Distributed Fault Detection (2)

proposed solution: each sensor:
do distributed estimation
do local estimation
compare local and distributed estimations

x

y

local estimation
distributed estimation

fault ⇔ local and distributed estimations are sufficiently different
(must have priors/bounds on differences of actual functions)

TODOs: everything (requires also the previous problems to be
solved)
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This Talk

Centralized
Learning

classic
RKHS
based

with
approxi-
mations

Distributed
Learning

simplified
set-up

with La-
grangians

grid
based es-
timation

Future
Works

recursive
esti-

mation
creation
of mea-
surements

time
delay es-
timation

fault
detection

Damiano Varagnolo (DEI - UniPD) Distributed non-parametric regression 48 / 50



Bibliography

Damiano Varagnolo (DEI - UniPD) Distributed non-parametric regression 49 / 50



Tack

damiano.varagnolo@dei.unipd.it

www.dei.unipd.it/∼varagnolo

en
tir
ely

written
in

LATEX2ε us
ing

Beamer and Tik Z

Damiano Varagnolo (DEI - UniPD) Distributed non-parametric regression 50 / 50


	Introduction
	Considered problem
	Motivations

	Centralized Learning
	Reproducing Kernel Hilbert Spaces
	RKHS-based learning
	Approximated learning

	Distributed Approximated Learning
	Distributed learning
	Recent results

	Other Open Problems
	Other open problems
	Mindmap
	Bibliography
	


