Newton-Raphson Consensus: a distributed convex optimization scheme for networks with asynchronous and lossy communications

Nicoletta Bof Ruggero Carli Giuseppe Notarstefano Luca Schenato Damiano Varagnolo

Linköping - Automatic control - ISY

November 10, 2016

Joint work with. . .

Nicoletta Bof

Univ. of Padova

Ruggero
Carli
Univ. of Padova

Giuseppe
Notarstefano
Univ. of Lecce

Luca
Schenato
Univ. of Padova

Overview

part I: distributed optimization and its needs
part II: Newton-Raphson Consensus
part III: from Newton-Raphson Consensus to Distributed Interior Point Methods
part IV: conclusions

Disclaimer

part I: distributed optimization and its needs

An introduction to distributed optimization

Assumption: neighbors cooperate to find the optimum of an additively separable cost:

$$
f(x)=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x) \quad x^{*}=\operatorname{argmin}_{x} f(x)
$$

Example of a practical optimization problem

Thermal conditioning in datacenters

Example of a practical optimization problem

Thermal conditioning in datacenters

Distributed optimization playfields

Distributed optimization playfields

(1) example: datacenters

- topology = fixed and known
- communications $=$ reliable and synchronous

Distributed optimization playfields

(1) example: datacenters

- topology = fixed and known
- communications $=$ reliable and synchronous
(2) example: network of exploring robots
- topology = variable and unknown
- communications $=$ unreliable and asynchronous

Distributed optimization playfields

(1) example: datacenters

- topology = fixed and known
- communications $=$ reliable and synchronous
(2) example: network of exploring robots
- topology = variable and unknown
- communications $=$ unreliable and asynchronous
(3) NO variable and unknown topology + reliable and synchronous communications or vice-versa

Personal intuition and opinion

different playfields
§
different distributed optimization algorithms

State of the art

3 main categories:

- primal decompositions methods
(e.g. distributed subgradients)
- dual decompositions methods
(e.g. alternating direction method of multipliers)
- heuristic methods
(e.g. swarm optimization, genetic algorithms)

Example

Alternating Direction Method of Multipliers (ADMM)

ADMM [Bertsekas Tsitsiklis, 1997]

Primal:

$$
\begin{array}{ll}
\min & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \\
\text { s.t. } & A_{1} x_{1}+A_{2} x_{2}-b=0
\end{array}
$$

Augmented Lagrangian:

$$
\begin{aligned}
L_{\rho}\left(x_{1}, x_{2}, \lambda\right)= & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\lambda^{T}\left(A_{1} x_{1}+A_{2} x_{2}-b\right) \\
& +\frac{\rho}{2}\left\|A_{1} x_{1}+A_{2} x_{2}-b\right\|_{2}^{2}
\end{aligned}
$$

Algorithm
(1) $x_{1}(k+1)=\arg \min _{x_{1}} L_{\rho}\left(x_{1}, x_{2}(k), \lambda(k)\right)$
(2) $\boldsymbol{x}_{2}(\boldsymbol{k}+\mathbf{1})=\arg \min _{x_{2}} L_{\rho}\left(x_{1}(k+1), \boldsymbol{x}_{2}, \lambda(k)\right)$
(3) $\lambda(k+1)=\lambda(k)+\rho\left(A_{1} x_{1}+A_{2} x_{2}-b\right)$

Drawbacks of ADMM

$$
\begin{gathered}
\min _{x} \sum_{i=1}^{N} f_{i}(x) \Longrightarrow \min _{\left\{x_{i}\right\},\left\{z_{i j}\right\}} \sum_{\substack{\text { s.t. }}} f_{i}\left(x_{i}\right) \\
x_{i}=z_{i j} \forall i, j \\
\sum_{i=1}^{N} f_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} \lambda_{i j}^{T}\left(x_{i}-z_{i j}\right)+\frac{\rho}{2} \sum_{(i, j) \in \mathcal{E}}\left\|x_{i}-z_{i j}\right\|^{2}
\end{gathered}
$$

Drawbacks of ADMM

$$
\begin{gathered}
\min _{x} \sum_{i=1}^{N} f_{i}(x) \Longrightarrow \min _{\left\{x_{i}\right\},\left\{z_{i j}\right\}} \sum_{\substack{\text { s.t. }}}^{N} f_{i}\left(x_{i}\right) \\
x_{i}=z_{i j} \forall i, j \\
\sum_{i=1}^{N} f_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} \lambda_{i j}^{T}\left(x_{i}-z_{i j}\right)+\frac{\rho}{2} \sum_{(i, j) \in \mathcal{E}}\left\|x_{i}-z_{i j}\right\|^{2}
\end{gathered}
$$

- hard to manage time-varying network topologies
- hard to manage packet losses

Drawbacks of ADMM

$$
\begin{gathered}
\min _{x} \sum_{i=1}^{N} f_{i}(x) \Longrightarrow \min _{\left\{x_{i}\right\},\left\{z_{i j}\right\}} \sum_{\substack{\text { s.t. }}}^{N} f_{i}\left(x_{i}\right) \\
x_{i}=z_{i j} \forall i, j \\
\sum_{i=1}^{N} f_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} \lambda_{i j}^{T}\left(x_{i}-z_{i j}\right)+\frac{\rho}{2} \sum_{(i, j) \in \mathcal{E}}\left\|x_{i}-z_{i j}\right\|^{2}
\end{gathered}
$$

- hard to manage time-varying network topologies
- hard to manage packet losses
\Rightarrow ADMM \in specific playfield

An other example

Distributed Subgradient Methods (DSMs)

Distributed Subgradient Methods

[Nedic Ozdaglar, 2009]

$$
\begin{aligned}
& x_{i}(k)^{+}=x_{i}(k)-\alpha_{i}(k) g_{i}\left(x_{i}(k)\right) \\
& x_{i}(k+1)=\sum_{j=1}^{N} a_{i j}(k) x_{j}^{+}(k)
\end{aligned}
$$

with

- $g_{i}\left(x_{i}(k)\right):=$ local subgradient of local cost $f_{i}(\cdot)$ at $x_{i}(k)$
- $\alpha_{i}(k):=$ local stepsize

Convergence properties [Nedic Ozdaglar, 2007]
E.g., for bounded subgradients and $\alpha_{i}(k)=\alpha$ then

$$
\lim _{\inf _{k \rightarrow+\infty}} f\left(x_{i}(k)\right)=f^{*}+\delta \quad\left(\delta=0 \text { if } f_{i}^{\prime} \text { 's are smooth }\right)
$$

Advantages of DSM

$$
\begin{aligned}
& x_{i}(k)^{+}=x_{i}(k)-\alpha_{i}(k) g_{i}\left(x_{i}(k)\right) \\
& x_{i}(k+1)=\sum_{j=1}^{N} a_{i j}(k) x_{j}^{+}(k)
\end{aligned}
$$

- easy to manage time-varying network topologies
- easy to manage packet losses

Advantages of DSM

$$
\begin{aligned}
& x_{i}(k)^{+}=x_{i}(k)-\alpha_{i}(k) g_{i}\left(x_{i}(k)\right) \\
& x_{i}(k+1)=\sum_{j=1}^{N} a_{i j}(k) x_{j}^{+}(k)
\end{aligned}
$$

- easy to manage time-varying network topologies
- easy to manage packet losses
problem: quite slow!

Advantages of DSM

$$
\begin{aligned}
& x_{i}(k)^{+}=x_{i}(k)-\alpha_{i}(k) g_{i}\left(x_{i}(k)\right) \\
& x_{i}(k+1)=\sum_{j=1}^{N} a_{i j}(k) x_{j}^{+}(k)
\end{aligned}
$$

- easy to manage time-varying network topologies
- easy to manage packet losses
problem: quite slow! $\Rightarrow \mathrm{DSM} \in$ specific playfield

Wish

find a strategy that works well in every distributed playfield

Wish

find a strategy that works well in every distributed playfield

> How?

Wish

find a strategy that works well in every distributed playfield

> How?
(personal opinion)
find a strategy that works well in every centralized playfield \downarrow make it distributed

Wish

find a strategy that works well in every distributed playfield

$$
\begin{gathered}
\text { How? } \\
\text { (personal opinion) }
\end{gathered}
$$

find a strategy that works well in every centralized playfield \downarrow make it distributed \Longrightarrow find a distributed Interior Point Method (IPM)

Wish

find a strategy that works well in every distributed playfield

$$
\begin{gathered}
\text { How? } \\
\text { (personal opinion) }
\end{gathered}
$$

find a strategy that works well in every centralized playfield \downarrow make it distributed
\Longrightarrow find a distributed Interior Point Method (IPM)
\Longrightarrow find a distributed Newton-Raphson (NR)

part II: Newton-Raphson Consensus

Towards distributed NR schemes

starting point: simplest case, i.e.,

- playfield $=$ static reliable networks
- unconstrained optimization problem

Centralized NR

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)} \tag{1}
\end{equation*}
$$

- multidimensional version: $\Delta x=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)$
- interpretation: $x_{n+1}=$ minimizer of second order approximation

From centralized NR to distributed ones (1)

Newton update:

$$
x^{+}=x-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}
$$

Then

$$
f(x)=\sum_{i=1}^{N} f_{i}(x) \Longrightarrow x^{+}=x-\frac{\sum_{i=1}^{N} f_{i}^{\prime}(x)}{\sum_{i=1}^{N} f_{i}^{\prime \prime}(x)}
$$

From centralized NR to distributed ones (1)

Newton update:

$$
x^{+}=x-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}
$$

Then

$$
f(x)=\sum_{i=1}^{N} f_{i}(x) \Longrightarrow x^{+}=x-\frac{\sum_{i=1}^{N} f_{i}^{\prime}(x)}{\sum_{i=1}^{N} f_{i}^{\prime \prime}(x)}=\frac{\sum_{i=1}^{N}\left(f_{i}^{\prime \prime}(x) x-f_{i}^{\prime}(x)\right)}{\sum_{i=1}^{N} f_{i}^{\prime \prime}(x)}
$$

From centralized NR to distributed ones (1)

Newton update:

$$
x^{+}=x-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}
$$

Then
$f(x)=\sum_{i=1}^{N} f_{i}(x) \Longrightarrow x^{+}=x-\frac{\sum_{i=1}^{N} f_{i}^{\prime}(x)}{\sum_{i=1}^{N} f_{i}^{\prime \prime}(x)}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}(x) x-f_{i}^{\prime}(x)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(x)}$
i.e., parallel of two average consensi

From centralized NR to distributed ones (1)

What does $\quad x^{+}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}(x) x-f_{i}^{\prime}(x)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(x)} \quad$ mean?

From centralized NR to distributed ones (1)

What does $\quad x^{+}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}(x) x-f_{i}^{\prime}(x)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(x)} \quad$ mean?
\Longrightarrow approximate each $f_{i}(x)$ with a parabola:

$$
\widehat{f}_{i}(x)=\frac{1}{2} a_{i}\left(x-b_{i}\right)^{2} \quad \begin{cases}a_{i} b_{i} & =f_{i}^{\prime \prime}(x) x-f_{i}^{\prime}(x) \\ a_{i} & =f_{i}^{\prime \prime}(x)\end{cases}
$$

From centralized NR to distributed ones (1)

What does $\quad x^{+}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}(x) x-f_{i}^{\prime}(x)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(x)}$ mean?
\Longrightarrow approximate each $f_{i}(x)$ with a parabola:

$$
\widehat{f}_{i}(x)=\frac{1}{2} a_{i}\left(x-b_{i}\right)^{2} \quad \begin{cases}a_{i} b_{i} & =f_{i}^{\prime \prime}(x) x-f_{i}^{\prime}(x) \\ a_{i} & =f_{i}^{\prime \prime}(x)\end{cases}
$$

Problem: how do we go distributed, i.e., $x_{i}^{+}=x_{i}+\ldots$?

From centralized NR to distributed ones (2)

What does $x_{j}^{+} \frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}\left(x_{i}\right)} \quad$ mean?

From centralized NR to distributed ones (2)

What does

$$
\begin{equation*}
x_{j}^{+} \frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}\left(x_{i}\right)} \quad \text { mean? } \tag{2}
\end{equation*}
$$

\Longrightarrow approximate each $f_{i}\left(x_{i}\right)$ with a parabola:

$$
\widehat{f}_{i}\left(x_{i}\right)=\frac{1}{2} a_{i}\left(x_{i}-b_{i}\right)^{2} \quad \begin{cases}a_{i} b_{i} & =f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right) \\ a_{i} & =f_{i}^{\prime \prime}\left(x_{i}\right)\end{cases}
$$

From centralized NR to distributed ones (2)

$$
\text { What does } x_{j}^{+} \frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}\left(x_{i}\right)} \quad \text { mean? }
$$

\Longrightarrow approximate each $f_{i}\left(x_{i}\right)$ with a parabola:

$$
\widehat{f}_{i}\left(x_{i}\right)=\frac{1}{2} a_{i}\left(x_{i}-b_{i}\right)^{2} \quad \begin{cases}a_{i} b_{i} & =f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right) \\ a_{i} & =f_{i}^{\prime \prime}\left(x_{i}\right)\end{cases}
$$

Problem: this is not the correct Newton step!

From centralized NR to distributed ones (2)

What does

$$
\begin{equation*}
x_{j}^{+} \frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}\left(x_{i}\right)} \text { mean? } \tag{2}
\end{equation*}
$$

\Longrightarrow approximate each $f_{i}\left(x_{i}\right)$ with a parabola:

$$
\widehat{f}_{i}\left(x_{i}\right)=\frac{1}{2} a_{i}\left(x_{i}-b_{i}\right)^{2} \quad \begin{cases}a_{i} b_{i} & =f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right) \\ a_{i} & =f_{i}^{\prime \prime}\left(x_{i}\right)\end{cases}
$$

Problem: this is not the correct Newton step! Intuition: x_{i} 's close $\Longrightarrow(2)=$ good approximation

Towards the distributed algorithm

Summary of the problems:

- if $x_{i} \neq x_{j}$ then $\frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}\left(x_{i}\right)}$
is not the correct Newton step
- to compute the exact averages
is time consuming

Towards the distributed algorithm

Summary of the problems:

- if $x_{i} \neq x_{j}$ then $\frac{\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right)\right)}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}\left(x_{i}\right)}$
is not the correct Newton step
- to compute the exact averages is time consuming

Solution:

alternate consensus steps on the x_{i} 's and smoothed local guesses updates

The (synchronous) Newton-Raphson Consensus (NRC)

(1) initialization:

- $g_{i}(-1)=0 \quad h_{i}(-1)=0 \quad y_{i}(0)=0 \quad z_{i}(0)=0$
(2) computation of auxiliary local variables:
- $g_{i}(k):=f_{i}^{\prime \prime}\left(x_{i}(k)\right) x_{i}(k)-f_{i}^{\prime}\left(x_{i}(k)\right)$
- $h_{i}(k):=f_{i}^{\prime \prime}\left(x_{i}(k)\right)$
(3) average consensus on the Newton direction:
(P doubly stochastic)
- $\boldsymbol{y}(k+1)=P \boldsymbol{y}(k)+\boldsymbol{g}(\boldsymbol{k})-\boldsymbol{g}(\boldsymbol{k}-\mathbf{1})$
- $\boldsymbol{z}(k+1)=P \boldsymbol{z}(k)+\boldsymbol{h}(\boldsymbol{k})-\boldsymbol{h}(\boldsymbol{k}-\mathbf{1})$
(9) local update:

$$
\text { - } x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)}
$$

The (synchronous) NRC: important features

$$
\text { Why } x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)} ?
$$

The (synchronous) NRC: important features

Why $x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)}$?
Why $P \boldsymbol{y}(k)+\boldsymbol{g}(k)-\boldsymbol{g}(k-1)$ instead of $P \boldsymbol{y}(k)+\boldsymbol{g}(k)$?

The (synchronous) NRC: important features

Why $x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)}$?
Why $P \boldsymbol{y}(k)+\boldsymbol{g}(k)-\boldsymbol{g}(k-1)$ instead of $P \boldsymbol{y}(k)+\boldsymbol{g}(k)$?
Why $g_{i}(-1)=0 \quad h_{i}(-1)=0 \quad y_{i}(0)=0 \quad z_{i}(0)=0$?

Block schematic representation

local	distributed	local
computations	averaging	updates

$$
\begin{aligned}
& g_{i}(k)=f_{i}^{\prime \prime}\left(x_{i}(k)\right) x_{i}(k)-f_{i}^{\prime}\left(x_{i}(k)\right) \quad x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)} \\
& h_{i}(k)=f_{i}^{\prime \prime}\left(x_{i}(k)\right)
\end{aligned}
$$

Convergence proof (singular perturbation theory)

$$
\begin{cases}\boldsymbol{x}(0)=\boldsymbol{y}(0)=\boldsymbol{z}(0)=\boldsymbol{g}(\boldsymbol{x}(-1))=\boldsymbol{h}(\boldsymbol{x}(-1))=\mathbf{0} & \text { initialization } \\ \hline \boldsymbol{y}(k+1)=P(\boldsymbol{y}(k)+\boldsymbol{g}(\boldsymbol{x}(k))-\boldsymbol{g}(\boldsymbol{x}(k-1))) & \text { fast dynamics } \\ \boldsymbol{z}(k+1)=P(\boldsymbol{z}(k)+\boldsymbol{h}(\boldsymbol{x}(k))-\boldsymbol{h}(\boldsymbol{x}(k-1))) & \\ \hline x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)} & \text { slow dynamics }\end{cases}
$$

Convergence proof (singular perturbation theory)

$$
\begin{cases}\boldsymbol{x}(0)=\boldsymbol{y}(0)=\boldsymbol{z}(0)=\boldsymbol{g}(\boldsymbol{x}(-1))=\boldsymbol{h}(\boldsymbol{x}(-1))=\mathbf{0} & \text { initialization } \\ \hline \boldsymbol{y}(k+1)=P(\boldsymbol{y}(k)+\boldsymbol{g}(\boldsymbol{x}(k))-\boldsymbol{g}(\boldsymbol{x}(k-1))) & \text { fast dynamics } \\ \boldsymbol{z}(k+1)=P(\boldsymbol{z}(k)+\boldsymbol{h}(\boldsymbol{x}(k))-\boldsymbol{h}(\boldsymbol{x}(k-1))) & \\ \hline x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)} & \text { slow dynamics }\end{cases}
$$

Fast dynamics

- $\varepsilon \approx 0 \Longrightarrow \boldsymbol{x}(k+1) \approx \boldsymbol{x}(k)=\boldsymbol{x}$ (constant)

Convergence proof (singular perturbation theory)

$$
\begin{cases}\boldsymbol{x}(0)=\boldsymbol{y}(0)=\boldsymbol{z}(0)=\boldsymbol{g}(\boldsymbol{x}(-1))=\boldsymbol{h}(\boldsymbol{x}(-1))=\mathbf{0} & \text { initialization } \\ \hline \boldsymbol{y}(k+1)=P(\boldsymbol{y}(k)+\boldsymbol{g}(\boldsymbol{x}(k))-\boldsymbol{g}(\boldsymbol{x}(k-1))) & \text { fast dynamics } \\ \boldsymbol{z}(k+1)=P(\boldsymbol{z}(k)+\boldsymbol{h}(\boldsymbol{x}(k))-\boldsymbol{h}(\boldsymbol{x}(k-1))) & \\ \hline x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)} & \text { slow dynamics }\end{cases}
$$

Fast dynamics

- $\varepsilon \approx 0 \Longrightarrow \boldsymbol{x}(k+1) \approx \boldsymbol{x}(k)=\boldsymbol{x}$ (constant)
- $\Longrightarrow y_{i}(k+1) \rightarrow \frac{1}{N} \sum_{i=1}^{N} g_{i}\left(x_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}(x)=\bar{g}(\boldsymbol{x})$
- $\Longrightarrow z_{i}(k+1) \rightarrow \frac{1}{N} \sum_{i=1}^{N} h_{i}\left(x_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}\left(x_{i}\right)=\bar{h}(\boldsymbol{x})$

Convergence proof

$$
\begin{cases}\boldsymbol{x}(0)=\boldsymbol{y}(0)=\boldsymbol{z}(0)=\boldsymbol{g}(\boldsymbol{x}(-1))=\boldsymbol{h}(\boldsymbol{x}(-1))=\mathbf{0} & \text { initialization } \\ \hline \boldsymbol{y}(k+1)=P(\boldsymbol{y}(k)+\boldsymbol{g}(\boldsymbol{x}(k))-\boldsymbol{g}(\boldsymbol{x}(k-1))) & \text { fast dynamics } \\ \boldsymbol{z}(k+1)=P(\boldsymbol{z}(k)+\boldsymbol{h}(\boldsymbol{x}(k))-\boldsymbol{h}(\boldsymbol{x}(k-1))) & \\ \hline x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)} & \text { slow dynamics }\end{cases}
$$

Slow dynamics

$$
\text { - } y_{i}=\bar{g}(\boldsymbol{x}) \quad z_{i}=\bar{h}(\boldsymbol{x})
$$

Convergence proof

$$
\begin{cases}\boldsymbol{x}(0)=\boldsymbol{y}(0)=\boldsymbol{z}(0)=\boldsymbol{g}(\boldsymbol{x}(-1))=\boldsymbol{h}(\boldsymbol{x}(-1))=\mathbf{0} & \text { initialization } \\ \hline \boldsymbol{y}(k+1)=P(\boldsymbol{y}(k)+\boldsymbol{g}(\boldsymbol{x}(k))-\boldsymbol{g}(\boldsymbol{x}(k-1))) & \text { fast dynamics } \\ \boldsymbol{z}(k+1)=P(\boldsymbol{z}(k)+\boldsymbol{h}(\boldsymbol{x}(k))-\boldsymbol{h}(\boldsymbol{x}(k-1))) & \\ \hline x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)} & \text { slow dynamics }\end{cases}
$$

Slow dynamics

- $y_{i}=\bar{g}(\boldsymbol{x}) \quad z_{i}=\bar{h}(\boldsymbol{x})$
- $\Longrightarrow x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{\bar{g}(\boldsymbol{x}(k))}{\bar{h}(\boldsymbol{x}(k))}$

Convergence proof

$$
\begin{cases}\boldsymbol{x}(0)=\boldsymbol{y}(0)=\boldsymbol{z}(0)=\boldsymbol{g}(\boldsymbol{x}(-1))=\boldsymbol{h}(\boldsymbol{x}(-1))=\mathbf{0} & \text { initialization } \\ \hline \boldsymbol{y}(k+1)=P(\boldsymbol{y}(k)+\boldsymbol{g}(\boldsymbol{x}(k))-\boldsymbol{g}(\boldsymbol{x}(k-1))) & \text { fast dynamics } \\ \boldsymbol{z}(k+1)=P(\boldsymbol{z}(k)+\boldsymbol{h}(\boldsymbol{x}(k))-\boldsymbol{h}(\boldsymbol{x}(k-1))) & \\ \hline x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{y_{i}(k+1)}{z_{i}(k+1)} & \text { slow dynamics }\end{cases}
$$

Slow dynamics

- $y_{i}=\bar{g}(\boldsymbol{x}) \quad z_{i}=\bar{h}(\boldsymbol{x})$
- $\Longrightarrow x_{i}(k+1)=(1-\varepsilon) x_{i}(k)+\varepsilon \frac{\bar{g}(\boldsymbol{x}(k))}{\bar{h}(\boldsymbol{x}(k))}$
- same forcing term $\Longrightarrow \lim _{k \rightarrow \infty} x_{i}(k)-x_{j}(k)=0$

Convergence proof

Slow dynamics

- same forcing term \Longrightarrow eventually $x_{i}=x_{j}=\bar{x}$

Convergence proof

Slow dynamics

- same forcing term \Longrightarrow eventually $x_{i}=x_{j}=\bar{x}$
- \Longrightarrow

$$
\begin{aligned}
\bar{x}^{+} & =(1-\varepsilon) \bar{x}+\varepsilon \frac{\bar{g}(\bar{x} \mathbf{1})}{\bar{h}(\bar{x} \mathbf{1})} \\
& =(1-\varepsilon) \bar{x}+\varepsilon \frac{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(\bar{x}) \bar{x}-f_{i}^{\prime}(\bar{x})}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(\bar{x})} \\
& =(1-\varepsilon) \bar{x}+\varepsilon\left(\bar{x}-\frac{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime}(\bar{x})}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(\bar{x})}\right) \\
& =\bar{x}-\varepsilon \frac{f^{\prime}(\bar{x})}{f^{\prime \prime}(\bar{x})}
\end{aligned}
$$

Convergence proof

Slow dynamics

- same forcing term \Longrightarrow eventually $x_{i}=x_{j}=\bar{x}$
- \Longrightarrow

$$
\begin{aligned}
\bar{x}^{+} & =(1-\varepsilon) \bar{x}+\varepsilon \frac{\bar{g}(\bar{x} \mathbf{1})}{\bar{h}(\bar{x} \mathbf{1})} \\
& =(1-\varepsilon) \bar{x}+\varepsilon \frac{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(\bar{x}) \bar{x}-f_{i}^{\prime}(\bar{x})}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(\bar{x})} \\
& =(1-\varepsilon) \bar{x}+\varepsilon\left(\bar{x}-\frac{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime}(\bar{x})}{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{\prime \prime}(\bar{x})}\right) \\
& =\bar{x}-\varepsilon \frac{f^{\prime}(\bar{x})}{f^{\prime \prime}(\bar{x})}
\end{aligned}
$$

Centralized Newton-Raphson!!

Formal results

- f_{i} quadratic \Longrightarrow global exponential convergence with rate $\operatorname{sr}(P)$ for $\varepsilon=1$ for any connected graph
- complete graph \Longrightarrow centralized Newton-Raphson
- $f_{i} \in \mathcal{C}^{3}$ and convex \Longrightarrow local exponential stability for $0<\varepsilon<\varepsilon_{c}$
- global boundedness of $\frac{f^{\prime} \cdot f^{\prime \prime \prime}}{\left(f^{\prime \prime}\right)^{2}}$ and $f^{\prime \prime} \Longrightarrow$ global exponential stability for $0<\varepsilon<\varepsilon_{c}$

Simulations: SVM Classification

Spam-nonspam classification

- $x \in R^{4}$ (frequency of specific words)
- $y \in\{0,1\}$ (spam, non spam)
- network:

- cost: $f_{i}(x):=\sum_{j} \log \left(1+\exp \left(-y_{j}\left(\chi_{j}^{T} \boldsymbol{x}+x_{0}\right)\right)\right)+\gamma\|\boldsymbol{x}\|_{2}^{2}$

Simulations: SVM Classification

Spam-nonspam classification

Simulations: regression

Housing regression

- $x \in R^{4}$ (size, distance from downtown, etc.)
- $y \in \mathbb{R}$ (house price)
- network:

- cost: $f_{i}(x):=\sum_{j} \frac{\left(y_{j}-\chi_{j}^{T} \boldsymbol{x}-x_{0}\right)^{2}}{\left|y_{j}-\chi_{j}^{T} \boldsymbol{x}-x_{0}\right|+\beta}+\gamma\|\boldsymbol{x}\|_{2}^{2}$

Simulations: regression

Housing regression

problem: can we play in the other playfield?
i.e., with asynchronous broadcast communications without channel feedback?

Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right.
$$

Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad\right. \text { (4) }
$$

Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { (4) } \begin{array}{l}
x_{4} \leftarrow \frac{1}{4} x_{4} \\
y_{4} \leftarrow \frac{1}{4} y_{4}
\end{array}\right.
$$

Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad .\right.
$$

Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

$$
\left\{\begin{array}{l}
\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \\
P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{array} \begin{array}{l}
\text { 3) }_{x_{3} \leftarrow x_{3} \overbrace{2_{4}}}^{y_{3} \leftarrow y_{3}+y_{4}} \\
x_{1} \leftarrow x_{1}+x_{4} \\
y_{1} \leftarrow y_{1}+y_{4}
\end{array}\right] \begin{aligned}
& x_{5} \leftarrow x_{5}+x_{4}
\end{aligned}
$$

Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

$$
\begin{aligned}
& \left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right. \\
& P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \left\{\begin{array}{l}
x_{i}(k) \rightarrow \beta_{i}(k) \sum_{j} x_{i}(0) \\
y_{i}(k) \rightarrow \beta_{i}(k) \sum_{j} y_{i}(0)
\end{array}\right.
\end{aligned}
$$

Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right.
$$

$$
P(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
x_{i}(k) \rightarrow \beta_{i}(k) \sum_{j} x_{i}(0) \\
y_{i}(k) \rightarrow \beta_{i}(k) \sum_{j} y_{i}(0)
\end{array}\right.
$$

$$
\Longrightarrow \quad z_{i}(k):=\frac{x_{i}(k)}{y_{i}(k)} \rightarrow \frac{\sum_{i} x_{i}(0)}{\sum_{i} y_{i}(0)}=\frac{1}{N} \sum_{i} \theta_{i}
$$

Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array}\right.
$$

Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & \mathbf{0} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], ~[k)\right.
$$

Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & \mathbf{0} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .\right.
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}: j$'s local estimate of $b_{i, x}$

Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & \mathbf{0} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .\right.
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}$: j's local estimate of $b_{i, x}$

Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & \mathbf{0} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], ~[k)\right.
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}$: j's local estimate of $b_{i, x}$

Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & \mathbf{0} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .\right.
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}$: j's local estimate of $b_{i, x}$

Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

$$
\left\{\begin{array}{l}
\boldsymbol{x}(k+1)=P(k) \boldsymbol{x}(k) \\
x_{i}(0)=\theta_{i} \\
\boldsymbol{y}(k+1)=P(k) \boldsymbol{y}(k) \\
y_{i}(0)=1
\end{array} \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & \mathbf{0} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], ~ \$\right.
$$

- $b_{i, x}$: total cumulative mass of x_{i}
- $\beta_{i, x}^{(j)}$: j's local estimate of $b_{i, x}$

Robust Asynchronous NRC (RA-NRC)

Initialization

$$
\begin{cases}x_{i} & \leftarrow x^{o} \\ y_{i}=g_{i}^{\text {old }}=g_{i} & \leftarrow f_{i}^{\prime \prime}\left(x^{o}\right) x^{o}-f_{i}^{\prime}\left(x^{o}\right) \\ z_{i}=h_{i}^{\text {old }}=h_{i} & \leftarrow f_{i}^{\prime \prime}\left(x^{o}\right)\end{cases}
$$

Robust Asynchronous NRC (RA-NRC)

Transmission

$$
\begin{array}{lll}
y_{i} \leftarrow \frac{1}{\left|\mathcal{N}_{i}^{\text {out }}\right|+1}\left[y_{i}+g_{i}-g_{i}^{\text {old }}\right] & \begin{array}{l}
b_{i, y} \leftarrow b_{i, y}+y_{i} \\
b_{i, z}
\end{array} b_{i, z}+z_{i} \\
z_{i} \leftarrow \frac{1}{\left|\mathcal{N}_{i}^{\text {out }}\right|+1}\left[z_{i}+h_{i}-h_{i}^{\text {old }}\right] & \begin{array}{l}
g_{i}^{\text {old }}
\end{array} h_{i} & h_{i}^{\text {old }} \leftarrow h_{i} \\
x_{i} \leftarrow(1-\varepsilon) x_{i}+\varepsilon \frac{y_{i}}{\left[z_{i}\right]_{c}} & g_{i} \leftarrow f_{i}^{\prime \prime}\left(x_{i}\right) x_{i}-f_{i}^{\prime}\left(x_{i}\right) \\
h_{i} & \leftarrow f_{i}^{\prime \prime}\left(x_{i}\right)
\end{array}
$$

Robust Asynchronous NRC (RA-NRC)

Reception

$$
\begin{aligned}
& y_{j} \leftarrow y_{j}+b_{i, y}-\beta_{i, y}^{(j)}+g_{j}-g_{j}^{\text {old }} \\
& z_{j} \leftarrow z_{j}+b_{i, z}-\beta_{i, z}^{(j)}+h_{j}-h_{j}^{\text {old }} \\
& x_{j} \leftarrow(1-\varepsilon) x_{j}+\varepsilon \frac{y_{j}}{\left[z_{j}\right]_{c}} \\
& \begin{array}{l}
\beta_{i, \gamma}^{(j)} \leftarrow b_{i, y} \\
\beta_{i, z}^{(j)} \leftarrow b_{i, z}
\end{array} \\
& g_{j}^{\text {old }} \leftarrow g_{j} \\
& h_{j}^{\text {old }} \leftarrow h_{j} \\
& g_{j} \leftarrow f_{i}^{\prime \prime}\left(x_{j}\right) x_{i}-f_{i}^{\prime}\left(x_{j}\right) \\
& h_{j} \leftarrow f_{i}^{\prime \prime}\left(x_{j}\right)
\end{aligned}
$$

Convergence properties of RA-NRC

Assumptions

- $f_{i} \in \mathcal{C}^{2}, \quad f_{i}^{\prime \prime}(x)>c$
- fixed, strongly connected and directed network
- communications are persistent (i.e., at least 1 communication in every $[t, t+\tau]$)
- bounded packet losses
(i.e., number of consecutive failures is limited)

Proposition

$\exists B_{\delta}\left(x^{*}\right)$ and $\varepsilon_{c} \in \mathbb{R}_{+}$s.t. if $x^{0} \in B_{\delta}$ and $0<\varepsilon<\varepsilon_{c}$ then

$$
\left|x_{i}(k)-x^{*}\right| \leq c \lambda^{k} \quad \forall i
$$

for opportune $c \in \mathbb{R}_{+}$and $\lambda<1$

Numerical experiments: RA-NRC vs. DSM

algorithms tuned with their best parameters and packet loss probability $p=0.1$

$$
f_{i}(x)=\frac{\left(y_{i}-\left\langle\chi_{i}, \widetilde{\boldsymbol{x}}\right\rangle\right)^{2}}{\left|y_{i}-\left\langle\chi_{i}, \widetilde{\boldsymbol{x}}\right\rangle\right|+\beta}+\gamma\|\boldsymbol{x}\|_{2}^{2}
$$

part III: the route from Newton-Raphson Consensus to Distributed Interior Point Methods

Missing features

- handling constraints

Missing features

- handling constraints
- distributed stepsize selection

Missing features

- handling constraints
- distributed stepsize selection
- partition-based optimization

Missing features

- handling constraints
- distributed stepsize selection
- partition-based optimization
- distributed termination criteria

Missing features

- handling constraints
- distributed stepsize selection
- partition-based optimization
- distributed termination criteria
- quasi-Newton methods

part IV: conclusions

Take-home messages

- NRC ladders on average consensus for distributedly computing Newton directions
- NRC is a good candidate for developing distributed IPMs; nonetheless it still lacks of some development
if you want to collaborate on this area we are super keen to do so

Newton-Raphson Consensus: a distributed convex optimization scheme for networks with asynchronous and lossy communications

Nicoletta Bof Ruggero Carli Giuseppe Notarstefano Luca Schenato Damiano Varagnolo

Linköping - Automatic control - ISY

November 10, 2016
damiano.varagnolo@ltu.se

