Distributed detection of topological changes in communication networks

Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson

Thanks to. . .

The need: detecting changes in topological networks

The need: detecting changes in topological networks

Literature review

I.e., potential solutions

Main idea: iterate topology estimation routines

Main idea: iterate topology estimation routines

Transmit tables of IDs

Pros: perfect reconstruction / detection Cons: *not scalable*

Main idea: iterate topology estimation routines

Exploit Random-Walks schemes

Main idea: iterate topology estimation routines

Exploit Random-Walks schemes

Main idea: iterate topology estimation routines

Exploit Random-Walks schemes

Main idea: iterate topology estimation routines

Exploit Random-Walks schemes

Main idea: iterate topology estimation routines

Exploit Random-Walks schemes

Main idea: iterate topology estimation routines

Exploit Random-Walks schemes

Main idea: iterate topology estimation routines

Exploit Random-Walks schemes

Main idea: iterate topology estimation routines

Exploit Capture-Recapture schemes

Main idea: iterate topology estimation routines

Exploit Capture-Recapture schemes

Main idea: iterate topology estimation routines

Exploit Capture-Recapture schemes

Main idea: iterate topology estimation routines

Exploit Capture-Recapture schemes

Main idea: iterate topology estimation routines

Exploit Capture-Recapture schemes

Main idea: iterate topology estimation routines

Exploit Capture-Recapture schemes

Main idea: iterate topology estimation routines

Exploit Capture-Recapture schemes

Our contributions

A topology change detector* that is:

- a Generalized Likelihood Ratio (GLR) test
- truly distributed
- scalable and fast (based on max-consensus)

Our contributions

A topology change detector* that is:

- a Generalized Likelihood Ratio (GLR) test
- truly distributed
- scalable and fast (based on max-consensus)

In this presentation:

- algorithm
- statistical characterization
- experiments

Preliminaries

$$egin{aligned} \mathcal{H}_0 &= \{f \sim p_ heta \; ext{with} \; heta \in \Omega_0\} \ \mathcal{H}_1 &= \{f \sim p_ heta \; ext{with} \; heta \in \Omega_1\} \ \Omega_1 &= \Omega_0^c \end{aligned}$$

$$egin{aligned} \mathcal{H}_0 &= \{f \sim p_ heta ext{ with } heta \in \Omega_0\} \ \mathcal{H}_1 &= \{f \sim p_ heta ext{ with } heta \in \Omega_1\} \ \Omega_1 &= \Omega_0^c \end{aligned}$$

$$\begin{split} g\left(f\right): \mathsf{range}(f) \mapsto \{0,1\}\\ g(f) = 1 \text{ under } \mathcal{H}_0: \quad \mathsf{error of type I} \quad (\textit{false positive})\\ g(f) = 0 \text{ under } \mathcal{H}_1: \quad \mathsf{error of type II} \quad (\textit{false negative}) \end{split}$$

$$egin{aligned} \mathcal{H}_0 &= \{f \sim p_ heta ext{ with } heta \in \Omega_0\} \ \mathcal{H}_1 &= \{f \sim p_ heta ext{ with } heta \in \Omega_1\} \ \Omega_1 &= \Omega_0^c \end{aligned}$$

$$\begin{split} g\left(f\right): \mathsf{range}(f) \mapsto \{0,1\}\\ g(f) = 1 \text{ under } \mathcal{H}_0: \quad \mathsf{error of type I} \quad (\textit{false positive})\\ g(f) = 0 \text{ under } \mathcal{H}_1: \quad \mathsf{error of type II} \quad (\textit{false negative}) \end{split}$$

$$R := \{f \text{ s.t. } g(f) = 0\}$$
$$R^{c} := \{f \text{ s.t. } g(f) = 1\}$$

$$egin{aligned} \mathcal{H}_0 &= \{f \sim p_ heta ext{ with } heta \in \Omega_0\} \ \mathcal{H}_1 &= \{f \sim p_ heta ext{ with } heta \in \Omega_1\} \ \Omega_1 &= \Omega_0^c \end{aligned}$$

$$\begin{split} g\left(f\right): \mathsf{range}(f) \mapsto \{0,1\}\\ g(f) = 1 \text{ under } \mathcal{H}_0: \quad \text{error of type I} \quad (\textit{false positive})\\ g(f) = 0 \text{ under } \mathcal{H}_1: \quad \text{error of type II} \quad (\textit{false negative}) \end{split}$$

$$R := \{f \text{ s.t. } g(f) = 0\}$$
$$R^{c} := \{f \text{ s.t. } g(f) = 1\}$$
$$\beta_{g}(\theta) := \mathbb{P}[f \in R^{c}; \theta]$$
$$\alpha_{0}(g) := \sup_{\theta \in \Omega_{0}} \beta_{g}(\theta)$$

Preliminaries – Notation on Graphs

Preliminaries – Notation on Graphs

Very important assumption: synchronous communications

Considered concepts:

- *k*-steps neighbors
- links among k-steps neighbors

Problem Formulation (simplified)

 $S_k^{(i)}(t) :=$ size of k-steps neighborhood of node i at time t

$$\begin{cases} \mathcal{H}_0: \quad S_k^{(i)}(t-N) = \ldots = S_k^{(i)}(t-1) = \overline{S}, \quad S_k^{(i)}(t) \ge \sigma \overline{S} \\ \mathcal{H}_1: \quad S_k^{(i)}(t-N) = \ldots = S_k^{(i)}(t-1) = \overline{S}, \quad S_k^{(i)}(t) < \sigma \overline{S} \end{cases}$$

Parameters:

- σ (relative amplitude of change)
- N (horizon)

Algorithms

i.i.d. local generation

i.i.d. local generation

max consensus

Characteristics

(under no-quantization assumptions)

• ML estimator:
$$\widehat{S} = \left(-\frac{1}{M}\sum_{m=1}^{M}\log\left(y_{\max}(m)\right)\right)^{-1}$$

•
$$\frac{\widehat{S}}{SM} \sim \text{Inv-Gamma}(M, 1)$$

•
$$\mathbb{E}\left[\frac{\widehat{S}}{S}\right] = \frac{M}{M-1}$$

• $\operatorname{var}\left(\frac{\widehat{S}-S}{S}\right) \approx \frac{1}{M}$

Characteristics

(under no-quantization assumptions)

• ML estimator:
$$\widehat{S} = \left(-\frac{1}{M}\sum_{m=1}^{M}\log\left(y_{\max}(m)\right)\right)^{-1}$$

•
$$\frac{\widehat{S}}{SM} \sim \text{Inv-Gamma}(M, 1)$$

•
$$\mathbb{E}\left[\frac{\widehat{S}}{S}\right] = \frac{M}{M-1}$$

•
$$\operatorname{var}\left(\frac{S-S}{S}\right) \approx \frac{1}{M}$$

M trades off performance vs. communications

0.1			
0.5			
0.7			
0.3			

0.6			
0.7			
0.9			
0.5			

0.6		
0.7		
0.9		
0.5		

0.4	0.6		
0.3	0.7		
0.6	0.9		
0.5	0.5		

0.4	0.8		
0.5	0.8		
0.7	0.9		
0.6	0.7		

0.4	0.8		
0.5	0.8		
0.7	0.9		
0.6	0.7		

0.4	0.5	0.6	0.7	0.8	0.9
0.3	0.4	0.5	0.6	0.7	0.8
0.4	0.4	0.7	0.7	0.8	0.8
0.6	0.6	0.6	0.9	0.9	0.9

0.3

$$\chi := -\frac{1}{M} \sum_{m} \log \left(y_{\max}(m) \right) = \widehat{S}^{-1}$$

0.3	0.4	0.5	0.6	0.7	0.8
0.4	0.5	0.6	0.7	0.8	0.9
0.6	0.6	0.6	0.9	0.9	0.9
0.4	0.4	0.7	0.7	0.8	0.8

$$\chi := -\frac{1}{M} \sum_{m} \log (y_{\max}(m)) = \hat{S}^{-1}$$
0.33 0.33

14

0.3	0.4	0.5	0.6	0.8	0.9
0.6	0.6	0.6	0.9	0.9	0.9
0.2	0.5	0.6	0.7	0.8	0.9
0.4	0.4	0.7	0.8	0.8	0.8

$$\chi := -\frac{1}{M} \sum_{m} \log(y_{\max}(m)) = \widehat{S}^{-1}$$
0.33 0.33 0.3

0.6	0.6	0.6	0.9	0.9	0.9
0.2	0.5	0.6	0.7	0.8	0.9
0.3	0.4	0.5	0.6	0.9	0.9
0.4	0.4	0.7	0.8	0.8	0.8

I

$$\chi := -\frac{1}{M} \sum_{m} \log (y_{\max}(m)) = \widehat{S}^{-1}$$
0.33 0.33 0.3 0.3

$$\left\{ egin{array}{ll} \mathcal{H}_0: & S(t-\mathcal{N})=\ldots=S(t-1)=\overline{S} & S(t)\geq\sigma\overline{S} \ \mathcal{H}_1: & S(t-\mathcal{N})=\ldots=S(t-1)=\overline{S} & S(t)<\sigma\overline{S} \end{array}
ight.$$

$$\chi(t-5)$$
 $\chi(t-4)$ $\chi(t-3)$ $\chi(t-2)$ $\chi(t-1)$ $\chi(t)$

$$\left\{ egin{array}{ll} \mathcal{H}_0: & S(t-\mathcal{N})=\ldots=S(t-1)=\overline{S} & S(t)\geq\sigma\overline{S} \ \mathcal{H}_1: & S(t-\mathcal{N})=\ldots=S(t-1)=\overline{S} & S(t)<\sigma\overline{S} \end{array}
ight.$$

used to estimate
$$\overline{S}$$
 under \mathcal{H}_0
 $\chi(t-5)$ $\chi(t-4)$ $\chi(t-3)$ $\chi(t-2)$ $\chi(t-1)$ $\chi(t)$

$$\left\{ egin{array}{ll} \mathcal{H}_0: & S(t-\mathcal{N})=\ldots=S(t-1)=\overline{S} & S(t)\geq\sigma\overline{S} \ \mathcal{H}_1: & S(t-\mathcal{N})=\ldots=S(t-1)=\overline{S} & S(t)<\sigma\overline{S} \end{array}
ight.$$

used to estimate
$$\overline{S}$$
 under \mathcal{H}_0
 $\chi(t-5)$ $\chi(t-4)$ $\chi(t-3)$ $\chi(t-2)$ $\chi(t-1)$ $\chi(t)$

used to estimate S(t) under no hypotheses or \mathcal{H}_0

(estimation of the pre-change value)

$$\overline{S} = \left(\frac{1}{N} \sum_{\tau=t-N}^{t-1} \chi(\tau)\right)^{-1}$$

(estimation of the post-change value)

$$\begin{split} \widehat{S}(t) &= \chi(t)^{-1} \\ \widehat{S}_0(t) &= \begin{cases} \widehat{S}(t) & \text{if } \widehat{S}(t) \geq \sigma \overline{S} \\ \sigma \overline{S} & \text{otherwise} \end{cases} \end{split}$$

(computation of the log-GLR)

$$\Lambda = M \log \left(\frac{\widehat{S}_0(t)}{\widehat{S}(t)} \right) - \left(\widehat{S}_0(t) - \widehat{S}(t) \right) \chi(t)$$

 $(decision between \mathcal{H}_0 and \mathcal{H}_1)$ $g(f) = \begin{cases} 0 & \text{if } \Lambda \ge \lambda \\ 1 & \text{otherwise} \end{cases} (how to compute \lambda \to in 2 slides)$

Neighborhood Size Change-Detection – General

$$\begin{cases} \mathcal{H}_0: \quad S(t-N) = \ldots = S(t-T) = \overline{S} \\ \forall \tau \in \{t-T+1,\ldots,0\} \quad S(t-\tau) \ge \sigma \overline{S} \\ \mathcal{H}_1: \quad S(t-N) = \ldots = S(t-T) = \overline{S} \\ \exists \tau \in \{t-T+1,\ldots,0\} \text{ s.t. } S(t) < \sigma \overline{S} \end{cases}$$

Parameters:

- σ (relative amplitude of change)
- N (outer horizon)
- T (inner horizon)

Neighborhood Size Change-Detection – General

$$\begin{cases} \mathcal{H}_0: \quad S(t-N) = \ldots = S(t-T) = \overline{S} \\ \forall \tau \in \{t-T+1,\ldots,0\} \quad S(t-\tau) \ge \sigma \overline{S} \\ \mathcal{H}_1: \quad S(t-N) = \ldots = S(t-T) = \overline{S} \\ \exists \tau \in \{t-T+1,\ldots,0\} \text{ s.t. } S(t) < \sigma \overline{S} \end{cases}$$

Parameters:

- σ (relative amplitude of change)
- N (outer horizon)
- T (inner horizon)

Algorithm: parallelize the previous one!

Characterization

Computation of the Thresholds - General Case

$$\nu = \begin{cases} 1 & \text{with mass } q_1 \\ a \in (0,1) & \text{with density } p_2(a) / q_1 \end{cases}$$

 $\mathbf{0}$ compute the mixed probability density and mass function of ω as

$$p_{\omega}\left(\cdot\right) = \overbrace{p_{\nu}\left(\cdot\right)*\cdots*p_{\nu}\left(\cdot\right)}^{T \text{ times}}$$

compute the quantile function of ω, F_ω⁻¹(·)
set λ_T = F_ω⁻¹(α₀)

Computation of the Power - General Case

$$\beta_{g}^{r}(\kappa, M) \mathrel{\mathop:}= \mathbb{P}\left[\boldsymbol{f} \in R^{c} ; \left[\overline{\boldsymbol{S}}, \dots, \overline{\boldsymbol{S}}, \kappa \sigma \overline{\boldsymbol{S}}, \dots, \kappa \sigma \overline{\boldsymbol{S}} \right]
ight]$$

Computation of the Power - General Case

$$\beta_{g}^{r}(\kappa, M) := \mathbb{P}\left[\boldsymbol{f} \in R^{c} ; \left[\overline{S}, \dots, \overline{S}, \kappa\sigma\overline{S}, \dots, \kappa\sigma\overline{S}\right]\right]$$

compute

$$q_1 = 1 - \frac{\Gamma(M, \kappa M)}{\Gamma(M)}$$

as before

- 2 set $p_1(a) = \text{Gamma}\left(M, (\kappa M)^{-1}\right)$
- **3** compute $F_{\omega}(\lambda_T)$ as before

compute

$$\beta_{g}^{r}(\kappa, M) = F_{\omega}(\lambda_{T})$$

Computation of the Power - General Case

$$\beta_{g}^{r}(\kappa, M) := \mathbb{P}\left[\boldsymbol{f} \in R^{c} ; \left[\overline{S}, \dots, \overline{S}, \kappa\sigma\overline{S}, \dots, \kappa\sigma\overline{S}\right]\right]$$

compute

$$q_1 = 1 - \frac{\Gamma(M, \kappa M)}{\Gamma(M)}$$

as before

- **2** set $p_1(a) = \text{Gamma}\left(M, (\kappa M)^{-1}\right)$
- 3 compute $F_{\omega}(\lambda_T)$ as before

compute

$$\beta_{g}^{r}(\kappa, M) = F_{\omega}(\lambda_{T})$$

no UMP test exists for this problem!

Experiments

video

- using max-consensus (fast scheme!) is meaningful for topology change detection purposes
- main tradeoff = performance vs. communication requirements
- characterization can be used parameters selection

future direction: adapt for traffic management purposes

Distributed detection of topological changes in communication networks

Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson

damiano.varagnolo@ltu.se

licensed under the Creative Commons BY-NC-SA 2.5 European License:

