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Introduction

Focus of this talk:

distributed estimation
of the size S of a network

— I.e. let the agents know how many they are
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Introduction

Motivations (1/3): network maintenance purposes
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Introduction

Motivations (2/3): smart buildings management
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Motivations (3/3): estimation purposes

(also S~1 may be interesting!!)

true function
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Introduction

Problem definition

hypotheses
@ S := network size
Q- @ S deterministic and constant in time
o-Q o--© . .
. \C:' ~ @ agents have limited computational /
) o © memory / communication capabilities
o -0 @ network is anonymous
(no IDs or IDs not assured to be unique)
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? T memory / communication capabilities
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Goal: develop a distributed estimator
S of S satisfying the constraints
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Introduction

Literature review

network size estimation = not a new problem!!
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Introduction

Literature review

network size estimation = not a new problem!!

Deterministic scenario: theoretical limit for anonymous networks

3 algorithm (with bounded average bit complexity) guaranteed to
return the correct answer for every (finite) execution

Cidon, Shavitt (1995), Information Processing Letters

Stochastic scenario: some existing approaches
e random walk strategies

@ capture-recapture strategies
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Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)
Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing

Algorithm

o @ ©
\ ;' .0
.0

o

A
v w

24th October 2011 10 / 47

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation



Introduction

Random walks

@ Massoulié, Le Merrer, K

ermarrec, Ganesh (2006)

Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Pri

inciples of distributed computing

Algorithm

Q-

S S
o 9

v 1.0
o0

~ U

© generate a “seed”

varagnolo@dei.unipd.it (DEI - UniPD)

A
v w

Distributed size estimation 24th October 2011

10 / 47



Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)
Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing
Algorithm

© generate a “seed”

© randomly propagate it

\

Q-
D ©

Q
‘ .0

-

-

A
v w

24th October 2011 10 / 47

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation



Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)
Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing

Algorithm
© generate a “seed”

o © QXX\::::Q @ randomly propagate it

\ - ~
U

o o O
O

~
/O
-
-

o

A
v w

24th October 2011

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation

10 / 47



Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)
Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing

Algorithm

24th October 2011

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation

© generate a “seed”
Q—“'O‘ Q}{) @ randomly propagate it
o @ ©
V1.0
-0
)
L2
10 / 47



Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)
Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing

Algorithm
© generate a “seed”

Q,__—Q O\‘),Q © randomly propagate it

o
oo
O

A
v w

24th October 2011

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation

10 / 47



Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)
Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing
Algorithm

© generate a “seed”

© randomly propagate it

\

Q-
O \ ’:::,Q

Q
‘ .0

-

-

A
v w

24th October 2011 10 / 47

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation



Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)

Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing

- ~

N
.0
-

o

o & ©
O

varagnolo@dei.unipd.it (DEI - UniPD)

Algorithm

© generate a “seed”

© randomly propagate it

© +# of jumps — statistically

dependent on S

A
v w

Distributed size estimation

24th October 2011

10 / 47



Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)

Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing

-
-

\
N c):/ N
\
Q 1 RN
\ 1
1
-O

\ ‘o
b,

varagnolo@dei.unipd.it (DEI - UniPD)

Algorithm

© generate a “seed”

© randomly propagate it

© +# of jumps — statistically

dependent on S

@ variance of the error:

o (# of generated seeds)™?

v w

v

Distributed size estimation

24th October 2011

10 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters
London: Charles Griffin & Co.

\
[V 4

Algorithm
-0
o o P
AY \ // \\ ’
\\ o 0O
(\) 1 Ss
e
\ 1 -
5O
Distributed size estimation

24th October 2011

11 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters
London: Charles Griffin & Co.

\
[V 4

Algorithm
0. © generate N seeds
re) s
R e

N ’ ~ U
o o ©

\ .0

\ 1 _-

o -0

Distributed size estimation

24th October 2011

11 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters
London: Charles Griffin & Co.

\
[V 4

Algorithm
0. © generate N seeds
Q,———Q Nz @ propagate them

o o

\ .0

\ 1 _-

o -0

Distributed size estimation

24th October 2011

11 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters
London: Charles Griffin & Co.

Algorithm
N © generate N seeds
Q—"’O\ - @ propagate them
\\O q\\ O
\\ : //O
5O

\
[V 4

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation 24th October 2011

11 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters

London: Charles Griffin & Co.

.

-
-

varagnolo@dei.unipd.it (DEI - UniPD)

Algorithm

© generate N seeds
© propagate them

\
[V 4

Distributed size estimation

24th October 2011

11 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters
London: Charles Griffin & Co.

Algorithm

© generate N seeds

Q\Q M © propagate them

C—O’

\
[V 4

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation 24th October 2011

11 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters

London: Charles Griffin & Co.

e
Q\--Q’

o

varagnolo@dei.unipd.it (DEI - UniPD)

Algorithm

© generate N seeds
© propagate them

\
[V 4

Distributed size estimation

24th October 2011

11 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters
London: Charles Griffin & Co.

Algorithm

© generate N seeds
© propagate them

© capture and infer

\
[V 4

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation 24th October 2011

11 / 47



Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters
London: Charles Griffin & Co.

Algorithm

© generate N seeds
© propagate them
© capture and infer

@ variance of the error:
o # of captured seeds
(polynomially)
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Introduction

Our algorithm

several peculiarities
w.r.t. existing literature

o full parallelism — every agent will have an estimate at the same time
@ easily implementable in anonymous networks
@ nice mathematical properties

the idea: generate random numbers — combine
them with consensus — exploit statistical inference
[

Cohen (1997), Journal of Computer and System Sciences, =

Size-estimation framework with applications to transitive closure and reachability =
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General estimation scheme

Block representation of our strategy

local distributed local

Yi1
Y21

ysa

Y12
Y22
Ys,2

Yi,m
Y2.m

ys.m
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General estimation scheme

Block representation of our strategy

local distributed local

Yi1
Y21

ysa

Y12
Y22
Ys,2

Yi,m
Y2.m

ys.m

every agent i generates a M-tuple {y;1,...,¥im}, Yim~p(*)
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General estimation scheme

Block representation of our strategy

local distributed local

Yi1
Y21

ysa

Y12
Y22
Ys,2

Yi,m
Y2.m

ys.m

the S-tuples {y1,m,...,¥s,m} are converted into a scalar f,, through F
(e.g. F = average, F = max)
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General estimation scheme

Block representation of our strategy

local distributed local

Yi1
Y21

ysa

Y12
Y22
Ys,2

Yi,m
Y2.m

ys.m
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the M-tuple {f1,...,fm} is converted into an estimate S through ¥
(e.g. W = Maximum Likelihood)
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General estimation scheme

Block representation of our strategy

local distributed local

Yi1
Y21

ysa

Y12
Y22
Ys,2

Yi,m
Y2.m

ys.m
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N2
cost function:  J(p,F,V):=E [(5 - 5) ]
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General estimation scheme

An example

Algorithm (M = 1):
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General estimation scheme

An example

Algorithm (M = 1):

local generation
with p = N(0,1)
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General estimation scheme

An example

Algorithm (M = 1):

local generation
with p = N(0,1)

F = average consensus
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General estimation scheme

An example

Algorithm (M = 1):

local generation
with p = N(0,1)

F = average consensus
¥ = Maximum Likelihood S—=y2
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General estimation scheme

A formidable infinite-dimensional problem

local distributed local

Y11
Y21

Ys1

Y12
Y22
Ys,2

Yi,m
Y2.m

Ys,m
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Our case studies

Case 1:

local distributed local

Yi1 —
Y21 ———»

F = ave.

Ys1 —»

f

Y12 ——»]
Gaussian F = ave.

distribution Ys2 ——

Y22 —»

YiM ——]

YoM ———»

F = ave.

YS M ———»
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General estimation scheme

Our case studies

Case 2:

local distributed local

Yi1 —
Y21 ———»

F = max

Ys1 —»

f

Y12 ——

absolutely
continuous
distribution

F = max

Y22 ———»

Ys2 ———»

YiM ——]

YoM ———»

F = max

YS M ———»
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Our case studies

Case 3:

local distributed local

Yi1 —
Y21 ———»

F = ave.

Ys1 —»

f

Y12 ——»]
Bernoulli F = ave.

distribution Ys2 ——»

Y22 —»

YiM ——]

YoM ———»

F = ave.

YS M ———»
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An historical case study
The German Tank problem

infer tanks production from serial numbers analysis
(June 1940 — September 1942)

intelligence | statisticians actual
1400 256
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f" infer tanks production from serial numbers analysis
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intelligence | statisticians actual
1400 256
tank217
battlefield rankes2 P = max D W — MVUE
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Continuous distributions

Case 1: (p Gaussian) + (F = average) + (W = ML)

)’1 m}
N (o )< () }G = o) —(F= 0
{)/s m} <

S
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- 0000000 Connmmpchmihmm |
Case 1: (p Gaussian) + (F = average) + (W = ML)

{YI,m}

{y2,m}
[p =N (p,0°) (F = ave. cons. —(W = ML)
{)/S,m} §
Results: (1 /2)  (independent of x and o2)
1 Y -
< _ 2 -1¢ 2
o5 (32 ) (VS)15 ~ v — 3(M)
o E S M 5-5 2
- = — var [ —— | = — '
S M—2 S M )
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+ (V= ML)

Case 1: (p Gaussian) + (F = average)

{}/1 m}
/l, )< Vamk (F = ave. cons.)—>

}/s m}

Results: (2 / 2)
S-1 and S-1is MVUE for §—!

1 ist. 1
o for generic regular p(-), ST = 5 Zy,- dit, (O, E)

implication: performances tend to become independent of p(-) |,
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Case 2: (p continuous) + (F = max) + (V = ML)
{yl,m}

absolutely {yo.m}

continuous

distribution

F = max cons.)—*
{Ys.m} S
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Case 2: (p continuous) + (F = max) + (V = ML)
{yl,m}

absolutely {yo.m}
continuous F = max cons.)—>
S

distribution

{yS,m}
Results:  independent of p (-)

0 S5= (% Zﬁ\nﬂzl — log (P [}/ave,m])> - (MS)_IE ~ Inv —T(M,1)

__M var E ~ L (<% w.r.t. average)
— S ~ > w.r.t. g

W0l v

o~ _1 —_— —
° (5) =SS! and S'!is MVUE for S! .

J.
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Continuous distributions

A graphical summary

J(p, F = {ave.,max} , V)

—

p
(abs. cont. dist.)
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Continuous distributions

A graphical summary

J(p, F = {ave.,max} , V)
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Continuous distributions

A graphical summary
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A graphical summary
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Continuous distributions

A graphical summary

J(p, F = {ave.,max} , V)
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Continuous distributions

A graphical summary
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Continuous distributions

A graphical summary

J(p, F = {ave.,max} , V)

7“\1}

p
(abs. cont. dist.)

F = ave,V = ML)

S

J(p, F = max, ¥ = ML) J(

77
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Discrete distributions

Example with Bernoulli trials

disclaimer: finite precision will be handled later

24th October 2011
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Example with Bernoulli trials

Algorithm (M = 1):

local generation
with p = B3(0.5)
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Example with Bernoulli trials

Algorithm (M = 1):

local generation
with p = B3(0.5)
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Discrete distributions

Example with Bernoulli trials

i=1
Algorithm (M = 1):
1
— = i O 2
local generation Y2 S ;y RN / | S
| i=1

S 1

1 L
— — fi O:\ \
R M

1 S
Y4—>§§}/i

F= average consensus
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Discrete distributions

Example with Bernoulli trials

Algorithm (M

local generation
with p = B3(0.5)

F= average consensus
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Discrete distributions

Example with Bernoulli trials

2
Yave = g
Algorithm (M = 1): o
2 JUPELAR
. Yave = = O !
local generation 5 o /
. \ S ) 2
with p = B3(0.5) \ _
2 I\ ’/’ ’I?\ yave 5
Yave g (ON - "
Ne)
F = average consensus )
yave - g
idea: estimator S = denominator!
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Discrete distributions

Example with Bernoulli trials - insights

Yave g
e
_ 2 O”—’,, /
Yave = 5 |‘\~\\ ;
. SO ! 2
2 l\ ,,I? Yave 5
=2 o
Yave 5 -~ |
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Discrete distributions

Example with Bernoulli trials - insights

Yave 6
.0
_2 O”—’,, /
Yave = 6 |‘\~\\ ;
‘ s ! 2
9 l\‘ ’,,I?\\yave 6
yave_g O‘:\\ " s
\\O\~ .
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Discrete distributions

Example with Bernoulli trials - insights

1 JR—
Yave 3 - 6
e
1 2 o/
Yave = - 6 1‘\\\ ;
\ N 1 2
1 2 \\ ’/,,I?\ \yave 3 6_
yave_§:6 O‘~\\ " \\\
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Discrete distributions

Example with Bernoulli trials - insights

1
Yave 3
..--9
Yave = O::—’ ,’I
‘\ \\\\ )/ 1
1 l\\ /,,I?\\ Yave 3
Yave = § O‘:\\ " \\\
\O\:\\O 1
1 Yave = §
Yave =Y

assumption: agents compute only coprime representations
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Discrete distributions

Example with Bernoulli trials - insights

1
yave - 3 . .
o is denominator a
1 O/-x”/,’ good estimator?
yave - 3 I‘\‘\\ l'
' S~ ! 1
1 I\‘ /,,I?\\ Yave 3
Yave = § O‘:\\ " \\\
\O‘\\‘\\O 1
B 1 yave - §
yave - 3

assumption: agents compute only coprime representations
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Discrete distributions

Statistical characterization of the estimator

Proposition
Hypotheses:
o yi~ B(p)

s
1 .
@ Vuve = S E yi = = coprime
i=1

W)l =)
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Discrete distributions

Statistical characterization of the estimator

Proposition
Hypotheses: Thesis:
oy~ B(p) S — ML estimate of S for
s ~
1 k .
@ Vove = = Zyl = =< coprime every p
5o S
" 0.2
- o.{ |
B 07 : I , , !
0 5 10 15 20 25 g
5 S =
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Discrete distributions

Intuition behind the ML property

Ockham's razor  (William of Ockham, c. 1288 - c. 1348)

“select from among competing hypotheses the
one that makes the fewest new assumptions”

U@
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Discrete distributions

Intuition behind the ML property

Ockham's razor  (William of Ockham, c. 1288 - c. 1348)

“select from among competing hypotheses the
one that makes the fewest new assumptions”

o = ko 2k _ 3k _
S 25 35
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Discrete distributions

Intuition behind the ML property
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o = ko 2k _ 3k _
S 25 35
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Discrete distributions

Intuition behind the ML property

Ockham's razor  (William of Ockham, c. 1288 - c. 1348)

“select from among competing hypotheses the
one that makes the fewest new assumptions”

o = ko 2k _ 3k _
S 25 35

""""" 25 agents, 2k generated 1"
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Discrete distributions

Intuition behind the ML property
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Discrete distributions

Intuition behind the ML property

Ockham's razor  (William of Ockham, c. 1288 - c. 1348)

“select from among competing hypotheses the
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Discrete distributions

An historical and related question

The Newton-Pepys problem (isaac Newton, 1643 - 1727; Samuel Pepys, 1633 - 1703)

Which one is the most likely event?

@ have at least 1 six when rolling 6 dice
© have at least 2 sixes when rolling 12 dice

© have at least 3 sixes when rolling 18 dice

Our result:

P [have exactly k sixes when rolling kN dice

decreases when increasing k

o< -

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation 24th October 2011 29 / 47



Discrete distributions

Essential question: performances?

recap

measured Y., = = coprime,  estimator = S

)| x)
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Discrete distributions

Essential question: performances?

recap

measured Y., = = coprime,  estimator = S

)| x)

t

is this a good
estimator?

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation 24th October 2011

U@

30 / 47



Discrete distributions

Essential question: performances?

recap
k. . -
measured Yoo = § coprime,  estimator = S
is this a good
f estimator?
will develop
intuitions
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The nonlinear behavior of the estimator

assumption:

S known,

S5=6

r— & —0—0— 00— 00— 0
0 1

(o)} [¢,]

1 2
2 3

=
W=
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The nonlinear behavior of the estimator

assumption:
S known,
S5=6

—_
W—e———@
WNGg—— 0

N—@———@

o
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Discrete distributions

The nonlinear behavior of the estimator

assumption:

S known,
S5=6

N W ol o W0

—
o l~@
wim——— X
win—— X
olo@

N I=———X
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Discrete distributions

The nonlinear behavior of the estimator

S ® o o o o o
6
5
assumption: 4
S known,
S=71 3
2
1 ’JX(
\ S SN " " S Yove @
0 1 2 3 4 5 6 1 o
7 7 7 7 7 7 =
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Discrete distributions

Connections with number theory

Definition: totative of an integer S
a positive integer k < S which is also relatively prime to S J
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Discrete distributions

Connections with number theory

Definition: totative of an integer S
a positive integer k < S which is also relatively prime to S

N—

Definition: Euler’'s ¢-function
#(S) := number of totatives of S
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Discrete distributions

Connections with number theory

Definition: totative of an integer S
a positive integer k < S which is also relatively prime to S J

Definition: Euler’'s ¢-function
#(S) := number of totatives of S J

for our purposes, ¢(S) = number of good values

[
[
N
wWIN
[e[E)]
—
(@)
~Ni=
~IN
~lw
NIES
~Nlo1
~No
U@
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EE——— et
Totatives' characteristics (1/2)

Distribution: ~ uniform on N
S = 10 = ; | o (40%)
S = 50: G (40%)
S = 100: (Wloo (40%) |
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Totatives' characteristics (1/2)

Distribution: ~ uniform on N
S = 10: = ; | o (40%)
S =50: Wﬁo (40%)
S =100: (Wmo (40%) ,

very important: Bernoulli's p has not key roles
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Discrete distributions

Totatives' characteristics (2/2)

How many?

¢(5)
S . T > 0.15

vV S e[2, 10

9(5) > 5
e’ loglogS + ———
log log S

(v = 0.577, Euler-Mascheroni constant)
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Discrete distributions

Totatives' characteristics (2/2)

How many?
S @ > 0.15
#(S) > 3 ie. S
e’ loglogS + ——— VS €2, 101]

log log S

(v = 0.577, Euler-Mascheroni constant)

an other important result:

at least 15% of the plausible y,.. are good ones
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Discrete distributions

Totatives' characteristics (2/2)

How many?
S @ > 0.15
#(S) > 3 ie. S
e’ loglogS + ——— VS €2, 101]

log log S

(v = 0.577, Euler-Mascheroni constant)

an other important result:

at least 15% of the plausible y,.. are good ones

only 15%77
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Discrete distributions

Extension to the multiple-generations case

yi: 01 0 1

ys 0 0 1 0

y,, 1 1 00

yg 0 0 1 1
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Discrete distributions

Extension to the multiple-generations case

yi: 01 0 1

ys 0 0 1 0

y,, 1.1 00

yg 0 0 1 1
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01 00O
11101
0 01 10
11111
0 01 0O

Distributed size estimation

locally generated
(size = M)
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Discrete distributions

Extension to the multiple-generations case

y: 0101 1010UO0O0
y.» 111 001 1101
yx> 001 00 O0O0T1T1PO0
y,, 1 100111111
ys: 0 0 1 1 1 0 0 1 0 O

component—vvise consensus
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Discrete distributions

Extension to the multiple-generations case

y,, 11100 11 101
yx> 001 00 O0O0T1T1O0

Yoo 1100111111

§1 §2 g3 §4 §5 §6 g7 §8 §9 §10
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Discrete distributions

Extension to the multiple-generations case

Y1

Yo

Ys:

Y4

Ys:

varagnolo@dei.unipd.it (DEI - UniPD)

1
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1

1

0

1

0

1

1

1

0

0

[E%%ii%@%%%}

Distributed size estimation

[§ ~ LCM ({3,”})}

ML
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Intuition behind the LCM(+) operation
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Discrete distributions

Intuition behind the LCM(+) operation
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Discrete distributions

Intuition behind the LCM(+) operation

11
23

11 o
T /,11 [LCM(2,3) 6]
11 ]Q§§
23 O

O“‘io 11

11 23

23
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Discrete distributions

Estimation performance

Main result
(0.5)S0=M < p [? £S5, M] < (0.85)M
1 : """""""""""" e g i
= e T M
. 1076 1 ~*~~~‘ Y e (085)
» T I (0.5)>maxM
@ 10712 s
— v 5 = 11
R i Tils o, S=12
10-18 , . e, S=19
1 2 3 5 P
M >
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Robustness issues

need to take into account several non-idealities

@ quantization errors

@ consensus €rrors

robustness properties of the various
strategies are very different
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Robustness: Gaussian + average

Assumptions and definitions

© il = (L+ )it + A

~

AS ) ) ]
@ —— := relative error btw. ideal case and actual estimate
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Robustness: Gaussian + average

Assumptions and definitions
oyt = (14 8)yidet + A

AS ) ) ]
@ —— := relative error btw. ideal case and actual estimate

First-order approximation

AS

< 25max + 2\/§Amax

~

A\
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Robustness: Gaussian + average

Assumptions and definitions

© il = (L+ )it + A

~

AS ) ) ]
@ —— := relative error btw. ideal case and actual estimate

First-order approximation
AS

—~

< 25max + 2\/§Amax

~

well posed map
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Robustness: absolutely continuous dist. + max

Assumptions and definitions

© il = (L+ )it + A

~

AS ) ) ]
@ —— := relative error btw. ideal case and actual estimate

First-order approximation
AS

—~

< S(Smax + SAmax

~

U@
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Robustness: absolutely continuous dist. + max

Assumptions and definitions

© il = (L+ )it + A

~

AS ) ) ]
@ —— := relative error btw. ideal case and actual estimate

First-order approximation
AS

—~

< S(Smax + SAmax

~

tradeoff robustness vs. performance
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Robustness: Bernoulli 4+ average

Extremely non-linear map (requires Spax):

20

15

(\n 10
5

0
0O 01 02 03 04 05 06 07 08 09 1

Yave
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Robustness: Bernoulli + average

Extremely non-linear map (requires Spax):

20

15

(\n 10
5

0
0O 01 02/ 03 04 05 06 07 08 09 1

Yave
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Robustness: Bernoulli + average

Extremely non-linear map (requires Spax):

20

15

(\n 10
5

0
0 01 02/ 03 04 05 06 07 08 09

Yave

T T T T

=

big error = unreliable estimates

[ small error = insensitivity ]

| ( ill posed map

U@

24th October 2011 42 / 47

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation



Robustness: Bernoulli + average

Extremely non-linear map (requires Spax):

20

15

(\n 10
5

0
0O 01 02/ 03 04 05 06 07 08 09 1

Yave

minimal distance lietween stems

0.8 52

max

U@
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——————————
Concluding comments (1/2)

Summary of discussed points

@ proposed various easily implementable distributed estimators
@ mathematically characterized their statistical properties

@ shown tradeoffs between estimation error performances and
robustness to errors
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N
Concluding comments (1/2)

Summary of discussed points

@ proposed various easily implementable distributed estimators
@ mathematically characterized their statistical properties

@ shown tradeoffs between estimation error performances and
robustness to errors

Summary of novel contributes

o full statistical descriptions of the estimators
@ independence of performances on generation distributions

@ novel Bernoulli-based estimator with exponential performance
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——————————
Concluding comments (2/2)

Future works

@ extensions to dynamic networks

@ applications to network topology estimation

e generate some data (locally)
o transform them (distributedly)
e compute hypotheses’ likelihood (locally)

A

U@
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Vision

develop algorithms able to detect
network faults
and give indications

for self-reconfiguration purposes
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