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Space Debris Removal - why
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overarching need: get spacecrafts close enough to non-collaborative debris
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Key challenge for space rendezvous with debris

better to use small satellites to reduce financial costs
Ô⇒ limited actuation/thrust capabilities
Ô⇒ long maneuvering times
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implied need: calculate the on-board thrusters scheduling
taking into account the actuation limits
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This study (in general)

cast the control problem as a Model Predictive Control (MPC) one,
but take into special account the limited thrusting capabilities of small satellites
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This study (more specifically)

formulate the MPC so that it:
accounts for non-linear orbital dynamics
emphasizes fuel consumption minimization
is numerically fast, so to achieve longer prediction horizons
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Scenario
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System Modeling: Orbital Dynamics

Kinematics: iṙj = ivj

Dynamics:

iv̇j = iag,j + iaJ2,j + iadrag,j + iasrp,j +
iTj

mj

where:
j = {c, d} (chaser or debris)
iag,j = −µ

rj

rj
3 with µ = Earth’s gravitational parameter

iaJ2,j : Earth’s oblateness perturbation
iadrag,j : atmospheric drag perturbation
iasrp,j : solar radiation pressure perturbation
mj : mass
cTc: thrust (note: iTd = 0)

Notation:
irj = orbital position
ivj = orbital velocity
qj = attitude quaternion
jωj = angular rate
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System Modeling: Attitude Dynamics

Kinematics: q̇j =
1
2

jωj ⊗ qj

Dynamics:

jω̇j = I−1
j (−jωj × Ij

jωj + jτgg,j + jτj)

where:
⊗: quaternion product
Ij : inertia matrix
jτgg,j : gravity gradient torque
jτj : control torque

Notation:
irj = orbital position
ivj = orbital velocity
qj = attitude quaternion
jωj = angular rate

note: no torques due to drag and solar radiation pressure
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Differences between simulation vs. control models

simulator controller
atmospheric drag ✓
solar radiation pressure ✓
J2 effects ✓
imperfect knowledge about mass distributions ✓
imperfect actuation ✓
measurement noise ✓
mass consumption during maneuvers
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State space representation of the chaser

state: x ∶= [irT
c

ivT
c qT

c
cωT

c
cT T

c
cτ T

c ]
T

inputs: u ∶= [cṪ T
c

cτ̇ T
c ]

T

in words:

state = orbital position & velocity,
attitude, angular rate, applied thrusts and torques

inputs = rate of variation of the applied thrusts and torques
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Mission = make the chaser match its orbit with that of the debris

Ô⇒ relative dynamics:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ldc ∶= lRi(irc − ird) (position)
lḋc ∶= lRi(ivc − ivd) + iωl × lRi(irc − ird) (velocity)
qerr ∶= qc,ref ⊗ q∗c (attitude error)

with
cRi = rotation matrix from the ECI to the LHLV reference frame
iωl = angular velocity of the LHLV with respect to the ECI reference frame

controller’s goal = make y ∶= [ldc
lḋc qerr] → 0
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Formulation as an optimal control problem

min
û
∫

T

0
(∥ŷ∥2Q + ∥û∥

2
R)dτ

s.t x̂0 = x(t)
̂̇x = f (x̂, û)
ŷ = h (x̂, ir̂d, iv̂d, qc,ref)
cT̂c ∈ [cTc

cTc]
cτ̂c ∈ [cτc

cτc]
cω̂c ∈ [cωc

cωc] → computational demands
c ̂̇Tc ∈ [cṪc

cṪc]
ĉ̇τc ∈ [cτ̇c

cτ̇c]
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. . . in discrete time

min
xk,uk

N−1
∑
k=0

d(h(xk, uk) − hk
ref)Wk

+ dN(hN(xN) − hN
ref)WN

s.t. 0 = x0 − x̂0

0 = xk+1 − φk(xk, uk)
xk ≤ xk ≤ xk

uk ≤ uk ≤ uk

rk ≤ rk(xk, uk) ≤ rk

with φk(xk, uk) a numerical integrator simulating

0 = f(ẋ(t), x(t), u(t), t) x(0) = xk
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Our strategy: use MATMPC

Matlab
(relatively slow)

C++ libraries
(faster but less straightforward)

MATMPC

MATMPC:
based on MATLAB
modular structure
core modules written in MATLAB C API
not a C/C++ library, but a combination of MATLAB scripts and MEX functions
computationally fast (comparable to low level languages)
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Supported algorithms

Hessian Approximation Generalized Gauss-Newton

Integrator Explicit Runge Kutta 4
(CasADi code generation) Explicit Runge Kutta 4 Implicit Runge-Kutta

(Gauss-Legendre)
Condensing non full partial

QP solver qpOASES MATLAB quadprog Ipopt
OSQP HPIPM

Globalization `1 merit function line search Real-Time Iteration
Special features CMoN-SQP input move blocking non-uniform grid
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implication: can consider longer prediction horizons
Ô⇒ better divide the mission in distance-depending stages
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Indeed:

when too far from the debris. . .
. . . info about the target’s motion are of limited quality
Ô⇒ following exactly the reference trajectory may be fuel-inefficient

& better to have longer sampling periods

when close to the target. . .
. . . need to prepare for the docking
Ô⇒ emphasize precision instead of fuel-consumption

& use shorter sampling periods

chosen approach: use two MPCs with the same dynamics
and different prediction horizons / cost functions
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What do we want to understand?

How do. . .

the length of the prediction horizon
the definition of "close" vs "far"

. . . affect the mission efficiency? (fuel and time)

22



Simulation Parameters - scenario
Space debris:

in circular orbit
altitude: 300km

inclination: 30 deg
Chaser:

3U CubeSat
same orbital parameters as space debris
mass: 4kg

inertia matrix:

Ic =
⎡⎢⎢⎢⎢⎢⎣

0.0333 0.0000 0.0000
0.0000 0.0067 0.0000
0.0000 0.0000 0.0333

⎤⎥⎥⎥⎥⎥⎦
kg m2

true anomaly offset: ∆ν = −10 deg Ô⇒ initial distance from the debris: 1164km
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Prediction horizon length vs mission efficiency (1)

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400

26

28

30

32

34

prediction horizon [adim.]

fu
el

co
ns

um
pt

io
n

[N
s]

fuel consumption

0

100

200

300

400

co
m

pu
ta

tio
na

lt
im

e
[m

s]

computational time

24



Prediction horizon length vs mission efficiency (2)
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Transition distance vs mission efficiency
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Conclusions

if having low actuation capabilities, then better to increase the prediction-horizons

long prediction-horizons require computational efficiency

when considering long missions we should use time-varying controllers
(Ô⇒ worth to be explored further)
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