A computationally efficient model predictive control scheme for space debris rendezvous

A.K. Larsén Y. Chen M. Bruschetta R. Carli A. Cenedese *D. Varagnolo* L. Felicetti

Luleå University of Technology, Sweden Eindhoven University of Technology, The Netherlands University of Padova, Italy Norwegian University of Science and Technology, Norway Cranfield University, United Kingdom

Space Debris Removal - why

J.-C. Liou et al. / Acta Astronautica 66 (2010) 648-653

Fig. 2. Comparison of three different scenarios. From top to bottom: postmission disposal (PMD) only, PMD and ADR of two objects per year, and PMD and ADR of five objects per year, respectively.

651

overarching need: get spacecrafts close enough to non-collaborative debris

Key challenge for space rendezvous with debris

- better to use small satellites to reduce financial costs
 - \implies limited actuation/thrust capabilities
 - \implies long maneuvering times

implied need: calculate the on-board thrusters scheduling taking into account the actuation limits

cast the control problem as a *Model Predictive Control (MPC)* one, but take into special account the *limited thrusting capabilities* of small satellites

This study (more specifically)

- formulate the MPC so that it:
 - accounts for non-linear orbital dynamics
 - emphasizes fuel consumption minimization
 - is numerically fast, so to achieve longer prediction horizons

Scenario

System Modeling: Orbital Dynamics

- Kinematics: ${}^i\dot{\boldsymbol{r}}_j = {}^i\boldsymbol{v}_j$
- Dynamics:

$${}^{i}\dot{\boldsymbol{v}}_{j} = {}^{i}\boldsymbol{a}_{g,j} + {}^{i}\boldsymbol{a}_{J2,j} + {}^{i}\boldsymbol{a}_{drag,j} + {}^{i}\boldsymbol{a}_{srp,j} + \frac{{}^{i}\boldsymbol{T}_{j}}{m_{j}}$$

where:

•
$$j = \{c, d\}$$
 (chaser or debris)
• ${}^{i}a_{g,j} = -\mu \frac{r_{j}}{r_{j}^{3}}$ with $\mu =$ Earth's gravitational parameter

- ${}^{i}a_{J2,j}$: Earth's oblateness perturbation
- ${}^{i}a_{drag,j}$: atmospheric drag perturbation
- ${}^{i}a_{srp,j}$: solar radiation pressure perturbation
- m_j : mass
- ${}^{c}\boldsymbol{T}_{c}$: thrust (note: ${}^{i}\boldsymbol{T}_{d}$ = 0)

Notation:

- $ullet ^{i}r_{j}=$ orbital position
- $ullet {}^{i}oldsymbol{v}_{j}={}^{orbital}$ velocity
- $q_j = \mathsf{attitude} \ \mathsf{quaternion}$
- ${}^{j}\omega_{j} = ext{angular rate}$

System Modeling: Attitude Dynamics

• Kinematics:
$$\dot{\boldsymbol{q}}_j = \frac{1}{2}^j \boldsymbol{\omega}_j \otimes \boldsymbol{q}_j$$

• Dynamics:

$${}^{j}\dot{oldsymbol{\omega}}_{j}=oldsymbol{I}_{j}^{-1}(-{}^{j}oldsymbol{\omega}_{j} imesoldsymbol{I}_{j}{}^{j}oldsymbol{\omega}_{j}+{}^{j}oldsymbol{ au}_{gg,j}+{}^{j}oldsymbol{ au}_{j})$$

where:

- \otimes : quaternion product
- I_j : inertia matrix
- ${}^{j} au_{gg,j}$: gravity gradient torque
- ${}^{j} \boldsymbol{\tau}_{j}$: control torque

note: no torques due to drag and solar radiation pressure

Notation:

- ${}^i r_j =$ orbital position
- $ullet {}^{i}oldsymbol{v}_{j}={}^{orbital}$ velocity
- $q_j =$ attitude quaternion
- ${}^{j}\omega_{j} = ext{angular rate}$

Differences between simulation vs. control models

	simulator	controller
atmospheric drag	\checkmark	
solar radiation pressure	\checkmark	
J_2 effects	\checkmark	
imperfect knowledge about mass distributions	\checkmark	
imperfect actuation	\checkmark	
measurement noise	\checkmark	
mass consumption during maneuvers		

State space representation of the chaser

state:
$$\boldsymbol{x} \coloneqq \begin{bmatrix} i \boldsymbol{r}_c^T & i \boldsymbol{v}_c^T & \boldsymbol{q}_c^T & ^c \boldsymbol{\omega}_c^T & ^c \boldsymbol{\tau}_c^T \end{bmatrix}^T$$

inputs:
$$oldsymbol{u} \coloneqq \begin{bmatrix} ^{c} \dot{oldsymbol{T}}_{c}^{T} & ^{c} \dot{oldsymbol{ au}}_{c}^{T} \end{bmatrix}^{T}$$

in words:

state = orbital position & velocity,
 attitude, angular rate, applied thrusts and torques
inputs = rate of variation of the applied thrusts and torques

Mission = make the chaser match its orbit with that of the debris

Mission = make the chaser match its orbit with that of the debris

$$\implies \text{ relative dynamics: } \begin{cases} {}^{l}\boldsymbol{d}_{c} \coloneqq {}^{l}\boldsymbol{R}_{i} ({}^{i}\boldsymbol{r}_{c} - {}^{i}\boldsymbol{r}_{d}) & (position) \\ {}^{l}\boldsymbol{\dot{d}}_{c} \coloneqq {}^{l}\boldsymbol{R}_{i} ({}^{i}\boldsymbol{v}_{c} - {}^{i}\boldsymbol{v}_{d}) + {}^{i}\boldsymbol{\omega}_{l} \times {}^{l}\boldsymbol{R}_{i} ({}^{i}\boldsymbol{r}_{c} - {}^{i}\boldsymbol{r}_{d}) & (velocity) \\ \boldsymbol{q}_{err} \coloneqq \boldsymbol{q}_{c,ref} \otimes \boldsymbol{q}_{c}^{*} & (attitude \ error) \end{cases}$$

with

 ${}^{c}R_{i}$ = rotation matrix from the ECI to the LHLV reference frame ${}^{i}\omega_{l}$ = angular velocity of the LHLV with respect to the ECI reference frame Mission = make the chaser match its orbit with that of the debris

$$\implies \text{ relative dynamics: } \begin{cases} {}^{l}\boldsymbol{d}_{c} \coloneqq {}^{l}\boldsymbol{R}_{i} ({}^{i}\boldsymbol{r}_{c} - {}^{i}\boldsymbol{r}_{d}) & (position) \\ {}^{l}\boldsymbol{\dot{d}}_{c} \coloneqq {}^{l}\boldsymbol{R}_{i} ({}^{i}\boldsymbol{v}_{c} - {}^{i}\boldsymbol{v}_{d}) + {}^{i}\boldsymbol{\omega}_{l} \times {}^{l}\boldsymbol{R}_{i} ({}^{i}\boldsymbol{r}_{c} - {}^{i}\boldsymbol{r}_{d}) & (velocity) \\ \boldsymbol{q}_{err} \coloneqq \boldsymbol{q}_{c,ref} \otimes \boldsymbol{q}_{c}^{*} & (attitude \ error) \end{cases}$$

with

 ${}^{c}R_{i}$ = rotation matrix from the ECI to the LHLV reference frame ${}^{i}\omega_{l}$ = angular velocity of the LHLV with respect to the ECI reference frame

controller's goal = make $m{y} \mathrel{circle = } \left[{^l}m{d}_c \quad m{l} \dot{m{d}}_c \quad m{q}_{err}
ight] ext{ } ext{ } m{0}$

Formulation as an optimal control problem

$$\begin{split} \min_{\widehat{\boldsymbol{u}}} & \int_{0}^{T} \left(\|\widehat{\boldsymbol{y}}\|_{Q}^{2} + \|\widehat{\boldsymbol{u}}\|_{R}^{2} \right) d\tau \\ \text{s.t} & \widehat{\boldsymbol{x}}_{0} = \boldsymbol{x}(t) \\ & \widehat{\boldsymbol{x}} = f\left(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{u}}\right) \\ & \widehat{\boldsymbol{y}} = h\left(\widehat{\boldsymbol{x}}, {}^{i}\widehat{\boldsymbol{r}}_{d}, {}^{i}\widehat{\boldsymbol{v}}_{d}, \boldsymbol{q}_{c,ref}\right) \\ & {}^{c}\widehat{\boldsymbol{T}}_{c} \in \begin{bmatrix} {}^{c}\underline{\boldsymbol{T}}_{c} & {}^{c}\overline{\boldsymbol{T}}_{c} \end{bmatrix} \\ & {}^{c}\widehat{\boldsymbol{\tau}}_{c} \in \begin{bmatrix} {}^{c}\underline{\boldsymbol{\tau}}_{c} & {}^{c}\overline{\boldsymbol{\tau}}_{c} \end{bmatrix} \\ & {}^{c}\widehat{\boldsymbol{\omega}}_{c} \in \begin{bmatrix} {}^{c}\underline{\boldsymbol{\omega}}_{c} & {}^{c}\overline{\boldsymbol{\omega}}_{c} \end{bmatrix} \\ & {}^{c}\widehat{\boldsymbol{\tau}}_{c} \in \begin{bmatrix} {}^{c}\underline{\boldsymbol{\tau}}_{c} & {}^{c}\overline{\boldsymbol{\tau}}_{c} \end{bmatrix} \\ & {}^{c}\widehat{\boldsymbol{\tau}}_{c} \in \begin{bmatrix} {}^{c}\underline{\boldsymbol{\tau}}_{c} & {}^{c}\overline{\boldsymbol{\tau}}_{c} \end{bmatrix} \\ & {}^{c}\widehat{\boldsymbol{\tau}}_{c} \in \begin{bmatrix} {}^{c}\underline{\boldsymbol{\tau}}_{c} & {}^{c}\overline{\boldsymbol{\tau}}_{c} \end{bmatrix} \end{split}$$

 \rightarrow computational demands

... in discrete time

$$\min_{x_k, u_k} \sum_{k=0}^{N-1} d \left(h(x_k, u_k) - h_{ref}^k \right)_{W_k} + d_N \left(h_N(x_N) - h_{ref}^N \right)_{W_N}$$

s.t. $0 = x_0 - \hat{x}_0$
 $0 = x_{k+1} - \phi_k(x_k, u_k)$
 $\underline{x}_k \le x_k \le \overline{x}_k$
 $\underline{u}_k \le u_k \le \overline{u}_k$
 $\underline{r}_k \le r_k(x_k, u_k) \le \overline{r}_k$

with $\phi_k(x_k, u_k)$ a numerical integrator simulating

$$0 = f(\dot{x}(t), x(t), u(t), t)$$
 $x(0) = x_k$

Our strategy: use MATMPC

MATMPC

Matlab (relatively slow)

$C{++} \ \ \ libraries \\ (faster but less straightforward)$

Our strategy: use MATMPC

MATMPC

Matlab (relatively slow)

MATMPC:

- based on MATLAB
- modular structure
- core modules written in MATLAB C API
- $\bullet\,$ not a C/C++ library, but a combination of MATLAB scripts and MEX functions
- computationally fast (comparable to low level languages)

Supported algorithms

Hessian Approximation	Generalized Gauss-Newton		
Integrator	Explicit Runge Kutta 4	Explicit Pungo Kutto 4	Implicit Runge-Kutta
	(CasADi code generation)	Explicit Runge Rutta 4	(Gauss-Legendre)
Condensing	non	full	partial
QP solver	qpOASES	MATLAB quadprog	Ipopt
	OSQP	HPIPM	
Globalization	ℓ_1 merit function line search		Real-Time Iteration
Special features	CMoN-SQP	input move blocking	non-uniform grid

implication: can consider longer prediction horizons \implies better divide the mission in distance-depending stages

Indeed:

when too far from the debris...

- ... info about the target's motion are of limited quality
 - \implies following exactly the reference trajectory may be fuel-inefficient
 - & better to have longer sampling periods

Indeed:

when too far from the debris...

- ... info about the target's motion are of limited quality
 - \implies following exactly the reference trajectory may be fuel-inefficient
 - & better to have longer sampling periods

when close to the target. . .

- ... need to prepare for the docking
 - \implies emphasize precision instead of fuel-consumption

& use shorter sampling periods

Indeed:

when too far from the debris...

- ... info about the target's motion are of limited quality
 - \implies following exactly the reference trajectory may be fuel-inefficient
 - & better to have longer sampling periods

when close to the target...

- ... need to prepare for the docking
 - ⇒ emphasize precision instead of fuel-consumption & use shorter sampling periods

chosen approach: use two MPCs with the same dynamics and different prediction horizons / cost functions

What do we want to understand?

How do. . .

- the length of the prediction horizon
- the definition of "close" vs "far"

... affect the mission efficiency? (fuel and time)

Simulation Parameters - scenario

- Space debris:
 - in circular orbit
 - $\bullet~$ altitude: 300 km
 - \bullet inclination: $30\deg$
- Chaser:
 - 3U CubeSat
 - same orbital parameters as space debris
 - mass: 4kg
 - inertia matrix:

$$I_c = \begin{bmatrix} 0.0333 & 0.0000 & 0.0000 \\ 0.0000 & 0.0067 & 0.0000 \\ 0.0000 & 0.0000 & 0.0333 \end{bmatrix} kg m^2$$

• true anomaly offset: $\Delta \nu = -10 \deg \implies$ initial distance from the debris: 1164 km

Prediction horizon length vs mission efficiency (2)

Transition distance vs mission efficiency

Conclusions

- if having low actuation capabilities, then better to increase the prediction-horizons
- long prediction-horizons require computational efficiency
- ${\ensuremath{\, \bullet }}$ when considering long missions we should use time-varying controllers

 $(\implies$ worth to be explored further)

A computationally efficient model predictive control scheme for space debris rendezvous

A.K. Larsén Y. Chen M. Bruschetta R. Carli A. Cenedese *D. Varagnolo* L. Felicetti

Luleå University of Technology, Sweden Eindhoven University of Technology, The Netherlands University of Padova, Italy Norwegian University of Science and Technology, Norway Cranfield University, United Kingdom