Application-oriented input design for room occupancy estimation algorithms

Afrooz Ebadat Damiano Varagnolo Giulio Bottegal Bo Wahlberg Karl H. Johansson















Application-oriented *input design* 

for room occupancy estimation algorithms

## Why occupancy estimation?

## Roadmap

- I how do we estimate occupancy levels?
- One of the system?
- I how confident are we in the occupancy estimates?
- O can we operate the HVAC so to increase the final confidence on the estimates?
- **(**) what do we get, in practice?

How do we estimate occupancy levels?

Main idea:

first, identify the dynamics

second, invert the estimation problem

ventilation 
$$u(k) \longrightarrow CO_2$$
 dynamics  
occupancy  $o(k) \longrightarrow model \longrightarrow CO_2$  concentration  $c(k)$ 

## Grey box modelling of the $CO_2$ dynamics

(Ebadat et al., Multi-room occupancy estimation through adaptive gray-box models, CDC 2015)

Physics-based continuous-time model assuming:

- well-mixed air
- mass conservation

$$v\frac{dc(t)}{dt} = (\dot{Q}^{\text{vent,sup}} + \dot{Q}^{\text{leak,in}})c^{\text{ext}} - (\dot{Q}^{\text{vent,exh}} + \dot{Q}^{\text{leak,out}})c(t) + go(t)$$
(1)

## Grey box modelling of the $CO_2$ dynamics

(Ebadat et al., Multi-room occupancy estimation through adaptive gray-box models, CDC 2015)

Physics-based continuous-time model assuming:

- well-mixed air
- mass conservation

$$v\frac{dc(t)}{dt} = (\dot{Q}^{\text{vent,sup}} + \dot{Q}^{\text{leak,in}})c^{\text{ext}} - (\dot{Q}^{\text{vent,exh}} + \dot{Q}^{\text{leak,out}})c(t) + go(t)$$
(1)

Discretizing and collecting the unknown parameters:

$$\begin{cases} c(k) = \frac{\theta_1}{1 + \theta_3 u(k)} c(k-1) + \frac{\theta_2}{1 + \theta_3 u(k)} o(k) \\ y(k) = c(k) + e(k) \end{cases}$$
(2)

## Grey box modelling of the $CO_2$ dynamics

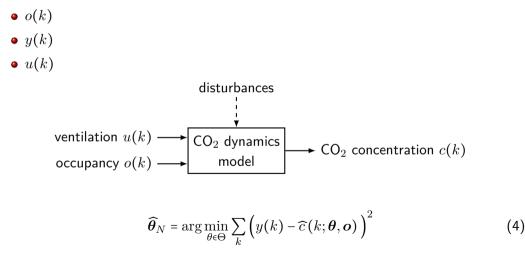
(Ebadat et al., Multi-room occupancy estimation through adaptive gray-box models, CDC 2015)

Physics-based continuous-time model assuming:

- well-mixed air
- mass conservation

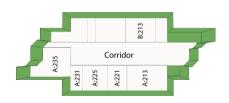
$$v\frac{dc(t)}{dt} = (\dot{Q}^{\text{vent,sup}} + \dot{Q}^{\text{leak,in}})c^{\text{ext}} - (\dot{Q}^{\text{vent,exh}} + \dot{Q}^{\text{leak,out}})c(t) + go(t)$$
(1)

Discretizing and collecting the unknown parameters:

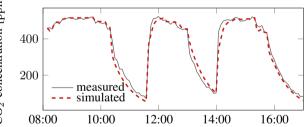

$$\begin{cases} c(k) = \frac{\theta_1}{1 + \theta_3 u(k)} c(k-1) + \frac{\theta_2}{1 + \theta_3 u(k)} o(k) \\ y(k) = c(k) + e(k) \end{cases}$$
(2)

MVU predictor:

$$\widehat{c}(k; \theta, o) = \phi(k, o, u, y, \theta)$$
(3)


## PEM identification of the CO<sub>2</sub> dynamics

#### Available information:



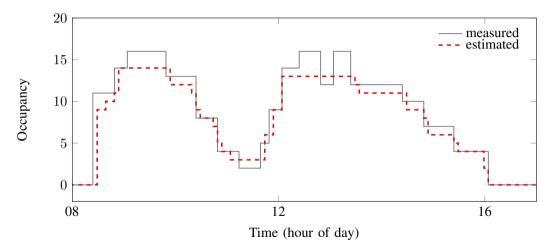

## How good is this model?

(Ebadat et al., Multi-room occupancy estimation through adaptive gray-box models, CDC 2015)








# How to estimate $\boldsymbol{o}$ given $\widehat{\boldsymbol{\theta}}_N$

(Ebadat et al., Regularized Deconvolution-based Approaches for Estimating Room Occupancies, T-ASE 2015)

$$\widehat{\boldsymbol{\sigma}}(\widehat{\boldsymbol{\theta}}_{N}) = \left[ \arg\min_{\widetilde{\boldsymbol{\sigma}}} \sum_{k=1}^{N} \left( y(k) - \widehat{c}\left(k; \widehat{\boldsymbol{\theta}}_{N}, \widetilde{\boldsymbol{\sigma}}\right) \right)^{2} + \lambda \left\| \Delta \widetilde{\boldsymbol{\sigma}} \right\|_{1} \right]$$
(5)  
ventilation  $u(k) \longrightarrow CO_{2}$  dynamics  
occupancy  $o(k) \longrightarrow CO_{2}$  dynamics  
model  $CO_{2}$  concentration  $c(k)$ 

### How good is this estimator in practice?

(Ebadat et al., Regularized Deconvolution-based Approaches for Estimating Room Occupancies, T-ASE 2015)



Cost in terms of occupancy estimation:

$$V_{\mathsf{app}}\left(\widehat{\boldsymbol{\theta}}_{N}, \boldsymbol{\theta}_{0}\right) \coloneqq \mathbb{E}_{\boldsymbol{u}}\left\{\frac{1}{N} \left\|\widehat{\boldsymbol{o}}\left(\widehat{\boldsymbol{\theta}}_{N}\right) - \widehat{\boldsymbol{o}}\left(\boldsymbol{\theta}_{0}\right)\right\|_{2}^{2}\right\} \qquad (a.k.a. \text{ application function}) \qquad (6)$$

Cost in terms of occupancy estimation:

$$V_{\mathsf{app}}\left(\widehat{\boldsymbol{\theta}}_{N}, \boldsymbol{\theta}_{0}\right) \coloneqq \mathbb{E}_{\boldsymbol{u}}\left\{\frac{1}{N} \left\|\widehat{\boldsymbol{o}}\left(\widehat{\boldsymbol{\theta}}_{N}\right) - \widehat{\boldsymbol{o}}\left(\boldsymbol{\theta}_{0}\right)\right\|_{2}^{2}\right\} \qquad (a.k.a. \text{ application function}) \quad (6)$$

Our requirement:

$$\widehat{\boldsymbol{\theta}}_{N} \in \Theta_{\mathrm{app}}\left(\boldsymbol{\theta}_{0}, \gamma\right) \coloneqq \left\{\boldsymbol{\theta} : V_{\mathsf{app}}\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right) \leq \gamma^{-1}\right\} \qquad (a.k.a. \text{ application set})$$
(7)

Cost in terms of occupancy estimation:

$$V_{\mathsf{app}}\left(\widehat{\boldsymbol{\theta}}_{N}, \boldsymbol{\theta}_{0}\right) \coloneqq \mathbb{E}_{\boldsymbol{u}}\left\{\frac{1}{N} \left\|\widehat{\boldsymbol{\sigma}}\left(\widehat{\boldsymbol{\theta}}_{N}\right) - \widehat{\boldsymbol{\sigma}}\left(\boldsymbol{\theta}_{0}\right)\right\|_{2}^{2}\right\} \qquad (a.k.a. \text{ application function}) \quad (6)$$

Our requirement:

$$\widehat{\boldsymbol{\theta}}_{N} \in \Theta_{\mathrm{app}}\left(\boldsymbol{\theta}_{0}, \gamma\right) \coloneqq \left\{\boldsymbol{\theta} : V_{\mathsf{app}}(\boldsymbol{\theta}, \boldsymbol{\theta}_{0}) \leq \gamma^{-1}\right\} \qquad (a.k.a. \text{ application set})$$
(7)

Problem: we actually don't know  $\theta_0! \implies$  substitute it with an initial guess  $\widehat{\theta}_0$  (even better, do things recursively)

## Our requirement, rephrased

$$\widehat{\boldsymbol{\theta}}_{N} \in \Theta_{\mathrm{app}}\left(\widehat{\boldsymbol{\theta}}_{0}, \gamma\right) \coloneqq \left\{\boldsymbol{\theta} : V_{\mathsf{app}}\left(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}_{0}\right) \leq \gamma^{-1}\right\}$$

$$(8)$$

## Our requirement, rephrased

$$\widehat{\boldsymbol{\theta}}_{N} \in \Theta_{\mathrm{app}}\left(\widehat{\boldsymbol{\theta}}_{0}, \gamma\right) \coloneqq \left\{\boldsymbol{\theta} : V_{\mathrm{app}}\left(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}_{0}\right) \leq \gamma^{-1}\right\}$$

$$(8)$$

Problem: how do we compute  $V_{app}(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}_0)$ ?

## Our requirement, rephrased

$$\widehat{\boldsymbol{\theta}}_{N} \in \Theta_{\mathrm{app}}\left(\widehat{\boldsymbol{\theta}}_{0}, \gamma\right) \coloneqq \left\{\boldsymbol{\theta} : V_{\mathsf{app}}\left(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}_{0}\right) \leq \gamma^{-1}\right\}$$
(8)

Problem: how do we compute  $V_{app}\left(\boldsymbol{\theta}, \widehat{\boldsymbol{\theta}}_{0}\right)$ ?

$$\widehat{\boldsymbol{\theta}}_{N} \in \Theta_{\mathrm{app}}\left(\widehat{\boldsymbol{\theta}}_{0}, \gamma\right) \quad \rightsquigarrow \quad \lambda_{\min}\left(\widetilde{V}^{-1/2} I_{F}^{N}\left(\widehat{\boldsymbol{\theta}}_{0}\right) \widetilde{V}^{-1/2}\right) \ge 1$$
(9)

with

$$\widetilde{V} \coloneqq \frac{\gamma \chi_{\alpha}^{2}(n_{\theta})}{2} \nabla^{2} V_{\mathsf{app}}\left(\widehat{\theta}_{0}, \widehat{\theta}_{0}\right) \qquad I_{F}^{N}\left(\widehat{\theta}_{0}\right) \coloneqq \frac{1}{\sigma_{e}^{2}} \sum_{k=1}^{N} \nabla \psi\left(k, \widehat{\theta}_{0}\right)^{T} \nabla \psi\left(k, \widehat{\theta}_{0}\right) \qquad (10)$$

## The application-oriented input design problem – in words

 $\begin{array}{ll} \underset{u}{\text{minimize}} & \text{experimental cost} \\ \text{subject to} & \widehat{\boldsymbol{\theta}}_N \in \Theta_{\text{app}}(\widehat{\boldsymbol{\theta}}_0, \gamma) \\ & \boldsymbol{u} \in \text{input constraints} \\ & \boldsymbol{y} \in \text{output constraints} \end{array}$ 

(11)

## The application-oriented input design problem – in practice

input constraints

#### final goal of occupancy estimation

- = optimize the performance of controllers
  - = save energy

 $\implies$  use a low-energy ventilation signal during the identification experiment

## The application-oriented input design problem – in practice

input constraints

#### final goal of occupancy estimation

- = optimize the performance of controllers
  - = save energy

 $\implies$  use a low-energy ventilation signal during the identification experiment

contradiction with the excitation requirements!

# The application-oriented input design problem - in practice

input constraints

#### final goal of occupancy estimation

- = optimize the performance of controllers
  - = save energy

 $\implies$  use a low-energy ventilation signal during the identification experiment

contradiction with the excitation requirements!

 $\mathsf{Trade-off} = \mathsf{constraint}$ 

$$\|\boldsymbol{u}\|_{2}^{2} \leq (1+\beta) \|\boldsymbol{u}^{*}\|_{2}^{2}$$
(12)

with

$$u^* = \underset{\text{subject to}}{\operatorname{arg\,min}} \|u\|_2^2$$
  
subject to  $u \in \text{hard input constraints}$   
 $y \in \text{output constraints}$ 

(13)

# The application-oriented input design problem – in practice output constraints

$$\mathbb{P}\{y(k) \le y_{\max}\} \ge p_y \text{ for every } k \tag{14}$$

The application-oriented input design problem – in practice output constraints

$$\mathbb{P}\{y(k) \le y_{\max}\} \ge p_y \text{ for every } k \tag{14}$$

Computation through exhaustive search:

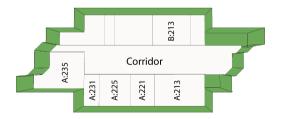
$$\mathbb{P}\{y(k) \le y_{\max}\} = \frac{\sum_{k=1}^{t+N_u} \mathbb{1}\left(y_{\max} - y(k)\right)}{t + N_u}$$
(15)

The application-oriented input design problem – final formulation

$$\begin{split} \underset{\boldsymbol{u},N}{\text{minimize}} & N \\ \text{subject to} & \lambda_{\min} \left( \widetilde{V}^{-1/2} I_F^N \left( \widehat{\boldsymbol{\theta}}_0 \right) \widetilde{V}^{-1/2} \right) \geq 1 \\ & \boldsymbol{u} \in \mathcal{U} \\ & \| \boldsymbol{u} \|_0 \leq n_c \\ & \| \boldsymbol{u} \|_2^2 \leq (1+\beta) \| \boldsymbol{u}^* \|_2^2 \\ & \mathbb{P} \{ \boldsymbol{y} \leq y_{\max} \} \geq p_y \end{split}$$
(16)

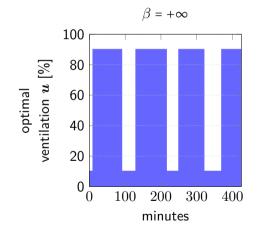
## Numerical results - setup

## need: know the groundtruth

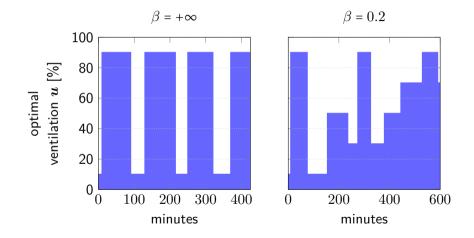

(and thus the  $oldsymbol{ heta}_0$  generating the data)

## Numerical results – setup

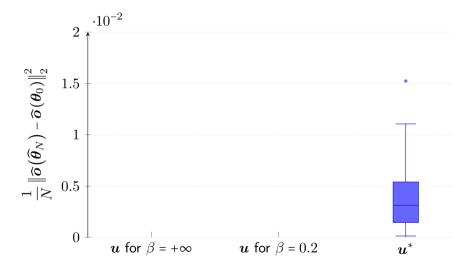
#### need: know the groundtruth


#### (and thus the $heta_0$ generating the data)

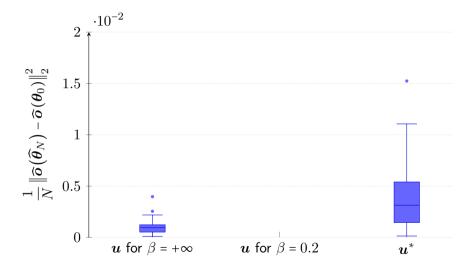
 $\implies$  Monte Carlo on simulated "true" occupancy levels o



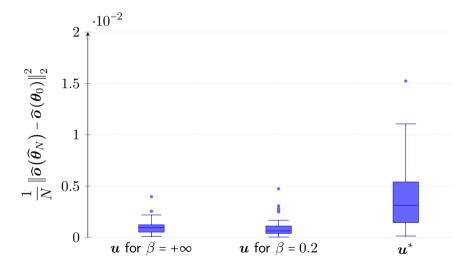




## Numerical results – design of the ventilation input $\boldsymbol{u}$ sampling time = 5 minutes, one single MC run on $\boldsymbol{o}$




## Numerical results – design of the ventilation input $\boldsymbol{u}$ sampling time = 5 minutes, one single MC run on $\boldsymbol{o}$




## Numerical results – estimation performance on the whole MC on $\boldsymbol{o}$



## Numerical results – estimation performance on the whole MC on $\boldsymbol{o}$



## Numerical results – estimation performance on the whole MC on $\boldsymbol{o}$



## What did we achieve?

• simulations indicate big potential improvements even for small "energy overheads"

- simulations indicate big potential improvements even for small "energy overheads"
- prone to recursive and online implementation

- simulations indicate big potential improvements even for small "energy overheads"
- prone to recursive and online implementation
- computationally lightweight

- simulations indicate big potential improvements even for small "energy overheads"
- prone to recursive and online implementation
- computationally lightweight

#### Problem:

• how well will it work on a real system?

Application-oriented input design for room occupancy estimation algorithms

### Afrooz Ebadat Damiano Varagnolo Giulio Bottegal Bo Wahlberg Karl H. Johansson







damiano.varagnolo@ltu.se

