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The paper in a nutshell

Application-oriented input design

for room occupancy estimation algorithms
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Why occupancy estimation?
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Roadmap

1 how do we estimate occupancy levels?

2 how do we identify the system?

3 how confident are we in the occupancy estimates?

4 can we operate the HVAC so to increase the final confidence on the estimates?

5 what do we get, in practice?
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How do we estimate occupancy levels?

Main idea:
first, identify the dynamics
second, invert the estimation problem

CO2 dynamics
model

CO2 concentration c(k)
ventilation u(k)

occupancy o(k)

disturbances

6



Grey box modelling of the CO2 dynamics
(Ebadat et al., Multi-room occupancy estimation through adaptive gray-box models, CDC 2015)

Physics-based continuous-time model assuming:
well-mixed air
mass conservation

v
dc(t)
dt
= (Q̇vent,sup + Q̇leak,in)cext − (Q̇vent,exh + Q̇leak,out)c(t) + go(t) (1)

Discretizing and collecting the unknown parameters:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c(k) = θ1
1 + θ3u(k)

c(k − 1) + θ2
1 + θ3u(k)

o(k)

y(k) = c(k) + e(k)
(2)

MVU predictor:
ĉ (k ; θ,o) = φ (k,o,u,y,θ) (3)
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ĉ (k ; θ,o) = φ (k,o,u,y,θ) (3)

7



PEM identification of the CO2 dynamics
Available information:

o(k)
y(k)
u(k)

CO2 dynamics
model

CO2 concentration c(k)
ventilation u(k)

occupancy o(k)

disturbances

θ̂N = arg min
θ∈Θ
∑
k

(y(k) − ĉ (k; θ,o) )
2

(4)
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How good is this model?
(Ebadat et al., Multi-room occupancy estimation through adaptive gray-box models, CDC 2015)
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How to estimate o given θ̂N
(Ebadat et al., Regularized Deconvolution-based Approaches for Estimating Room Occupancies, T-ASE 2015)

ô(θ̂N) = ⌈arg min
õ

N

∑
k=1
(y(k) − ĉ (k; θ̂N , õ) )

2
+ λ ∥∆õ∥1⌉ (5)

CO2 dynamics
model

CO2 concentration c(k)
ventilation u(k)

occupancy o(k)

disturbances
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How good is this estimator in practice?
(Ebadat et al., Regularized Deconvolution-based Approaches for Estimating Room Occupancies, T-ASE 2015)
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How good is this estimator in theory?
(this paper)

Cost in terms of occupancy estimation:

Vapp (θ̂N ,θ0) ∶= Eu {
1
N
∥ô (θ̂N) − ô (θ0)∥

2
2} (a.k.a. application function) (6)

Our requirement:

θ̂N ∈ Θapp (θ0, γ) ∶= {θ ∶ Vapp(θ,θ0) ≤ γ−1} (a.k.a. application set) (7)

Problem: we actually don’t know θ0! Ô⇒ substitute it with an initial guess θ̂0
(even better, do things recursively)
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Our requirement, rephrased

θ̂N ∈ Θapp (θ̂0, γ) ∶= {θ ∶ Vapp (θ, θ̂0) ≤ γ−1} (8)

Problem: how do we compute Vapp (θ, θ̂0)?

θ̂N ∈ Θapp (θ̂0, γ) ↝ λmin (Ṽ −1/2IN
F (θ̂0) Ṽ −1/2) ≥ 1 (9)

with

Ṽ ∶= γχ
2
α(nθ)
2

∇2Vapp (θ̂0, θ̂0) IN
F (θ̂0) ∶=

1
σ2

e

N

∑
k=1
∇ψ (k, θ̂0)

T ∇ψ (k, θ̂0) (10)
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The application-oriented input design problem – in words

minimize
u

experimental cost

subject to θ̂N ∈ Θapp(θ̂0, γ)
u ∈ input constraints
y ∈ output constraints

(11)
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The application-oriented input design problem – in practice
input constraints

final goal of occupancy estimation
= optimize the performance of controllers

= save energy
Ô⇒ use a low-energy ventilation signal during the identification experiment

contradiction with the excitation requirements!

Trade-off = constraint
∥u∥22 ≤ (1 + β)∥u∗∥22 (12)

with
u∗ = arg min ∥u∥22

subject to u ∈ hard input constraints
y ∈ output constraints

(13)
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The application-oriented input design problem – in practice
output constraints

P{y(k) ≤ ymax} ≥ py for every k (14)

Computation through exhaustive search:

P{y(k) ≤ ymax} =
∑t+Nu

k=1 1 (ymax − y(k))
t +Nu

(15)
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The application-oriented input design problem – final formulation

minimize
u,N

N

subject to λmin (Ṽ −1/2IN
F (θ̂0) Ṽ −1/2) ≥ 1

u ∈ U
∥∆u∥0 ≤ nc

∥u∥22 ≤ (1 + β)∥u∗∥22
P{y ≤ ymax} ≥ py

(16)
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Numerical results – setup

need: know the groundtruth
(and thus the θ0 generating the data)

Ô⇒ Monte Carlo on simulated “true” occupancy levels o
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Numerical results – design of the ventilation input u
sampling time = 5 minutes, one single MC run on o
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Numerical results – estimation performance on the whole MC on o

u for β = +∞ u for β = 0.2 u∗
0
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What did we achieve?

simulations indicate big potential improvements even for small “energy overheads”
prone to recursive and online implementation
computationally lightweight

Problem:
how well will it work on a real system?
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