
Distributed convex optimization: a
consensus-based Newton-Raphson approach

Damiano Varagnolo
joint work with A. Cenedese, G. Pillonetto, L. Schenato, F. Zanella

Department of Information Engineering - University of Padova

December 14th, 2011 – 50th IEEE CDC

This talk

distributed
optimization
examples

state of
the art

proposed
algorithm

comparisons
with state
of the art

This talk

distributed
optimization
examples

state of
the art

proposed
algorithm

comparisons
with state
of the art

Distributed convex optimization and its importance

A general problem . . .

minimize f (x) =
∑N

i=1 fi (x)

subject to g(x) ≤ 0
x ∈ X

under
convexity
assumptions

. . . motivated by multi-agents scenarios

Networked system
where neighbors

cooperate to find the
optimum

f1

f2

f3
f4

f5

f6

f7

Distribution optimization - Example 1

Regression in sensor networks
(e.g. when estimation = optimization of a cost function)

Residuals minimization

minθ
∑N

i=1 φ(yi − ŷi)

s.t. ŷi = θT xi

φ(r) = |r |2 (least squares)
φ(r) = |r | (least abs. deviations)

φ(r) =

{
0 if |r | < 1
|r | − 1 otherwise

(Vapnik)

φ(r) =

{
|r |2 if |r | < 1
2(|r | − 1) otherwise

(Huber)

−3 −2 −1 0 1 2 3
0
1
2
3
4

0.2 0.4 0.6 0.8

2
4
6
8

Distribution optimization - Example 2

Resource allocation in wireless systems
(e.g. when optimal allocation = optimization of a cost function)

Links capacity allocation [Johansson 2008]

suboptimal allocation optimal allocation

's width = allocated link capacity
's width = data �ux

Update

distributed
optimization
examples

state of
the art

proposed
algorithm

comparisons
with state
of the art

State of the art

Distributed optimization methods: 3 main categories

Primal decompositions methods
(e.g. distributed subgradients)

Dual decompositions methods
(e.g. alternating direction method of multipliers)

Heuristic methods
(e.g. swarm optimization, genetic algorithms)

Primal decomposition methods (distributed)

Distributed subgradient methods [Nedić Ozdaglar 2009]

xi (k + 1) = PX

 N∑
j=1

aĳ(k)xj(k) + αi (k)gi
(
xi (k)

)
with∑N

j=1 aĳ(k)xj(k) := aver. consensus step on local estimates
xj(k)

gi
(
xi (k)

)
:= local subgradient of local cost fi (·) at xi (k)

αi (k) := local stepsize

Convergence properties [Nedić Ozdaglar (2007)]
E.g., for bounded subgradients and αi (k) = α then

lim inf
k→+∞

f
(
xi (k)

)
= f ∗ + small constant

Dual decomposition methods (distributed)

Alternating Direction Method of Multipliers
[Bertsekas Tsitsiklis 1997]

minimize f1(x1) + f2(x2)

subject to A1x1 + A2x2 − b = 0

Augmented
Lagrangian:

Lρ(x1, x2, λ) := f1(x1) + f2(x2)

+λT (A1x1 + A2x2 − b)

+ρ2 ‖A1x1 + A2x2 − b‖22

Algorithm
1 x1(k + 1) = argminx1 Lρ

(
x1, x2(k), λ(k)

)
2 x2(k + 1) = argminx2 Lρ

(
x1(k + 1), x2, λ(k)

)
3 λ(k + 1) = λ(k) + ρ (A1x1 + A2x2 − b)

Drawbacks of the considered algorithms

Primal based strategies
may be slow
may not converge to the optimum

Dual based strategies
may be computationally expensive
require topological knowledge
implementation to handle time-varying graphs, time delays,
etc. may require effort

Motivations for our method

The algorithm that we want:

1 easy to be implemented

2 with small computational requirements

3 does not require synchronization or topology knowledge

4 assured to converge to global optimum

5 inheriting good properties of standard consensus
convergence proofs, robustness, . . .

Update

distributed
optimization
examples

state of
the art

proposed
algorithm

comparisons
with state
of the art

Our position in literature

How the proposed algorithm relates to other techniques?

primal decomposition method

uses second-order approximations

caveat:
unconstrained convex optimization

strong assumptions on the cost functions
(all other algorithms can work under our hypotheses)

our contribute: better convergence speed
for primal methods

Illustrative example: quadratic local cost functions
Derivation of the algorithm - step 1 on 3

Simplified scalar scenario

fi (x) =
1
2ai (x − bi)

2 + ci ai > 0

Corresponding global solution

x∗ := argmin
x

∑
i

fi (x) x∗ =

N∑
i=1

aibi

N∑
i=1

ai

=

1
N

N∑
i=1

aibi

1
N

N∑
i=1

ai

i.e. parallel of 2 average consensus!

Illustrative example: quadratic local cost functions
Derivation of the algorithm - step 1 on 3 - graphical interpretation

ftot

f1 = 1
2a1(x − b1)

2 + c1

f2 = 1
2a2(x − b2)

2 + c2

x∗
2 =

a2b2

a2 x∗
1 =

a1b1

a1

x∗ =
0.5a1b1 + 0.5a2b2

0.5a1 + 0.5a2

0 1 2 3 4

−1

0

1

2

3

4

5

And for generic convex local cost functions?
Derivation of the algorithm - step 2 on 3

For quadratics . . .

x∗ =

1
N

N∑
i=1

aibi

1
N

N∑
i=1

ai

with aibi = f ′′i (xi)xi − f ′i (xi)

ai = f ′′i (xi)

. . . so let’s check

x∗ ?
=

1
N

N∑
i=1

(
f ′′i (xi)xi − f ′i (xi)

)
1
N

N∑
i=1

f ′′i (xi)

underlying idea: use Newton-Raphson approximation

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot

candidate for x∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
=

1
N
∑N

i=1(f ′′i (xi)xi−f ′i (xi))
1
N
∑N

i=1 f ′′i (xi)

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot

candidate for x∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
=

1
N
∑N

i=1(f ′′i (xi)xi−f ′i (xi))
1
N
∑N

i=1 f ′′i (xi)

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1

candidate for x∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
=

1
N
∑N

i=1(f ′′i (xi)xi−f ′i (xi))
1
N
∑N

i=1 f ′′i (xi)

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2

candidate for x∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
=

1
N
∑N

i=1(f ′′i (xi)xi−f ′i (xi))
1
N
∑N

i=1 f ′′i (xi)

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2
q1

candidate for x∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
=

1
N
∑N

i=1(f ′′i (xi)xi−f ′i (xi))
1
N
∑N

i=1 f ′′i (xi)

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2
q1
q2

candidate for x∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
=

1
N
∑N

i=1(f ′′i (xi)xi−f ′i (xi))
1
N
∑N

i=1 f ′′i (xi)

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2
q1
q2
qtot

candidate for x∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
=

1
N
∑N

i=1(f ′′i (xi)xi−f ′i (xi))
1
N
∑N

i=1 f ′′i (xi)

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2
q1
q2
qtot
x∗

candidate for x∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
=

1
N
∑N

i=1(f ′′i (xi)xi−f ′i (xi))
1
N
∑N

i=1 f ′′i (xi)

The initial idea
Derivation of the algorithm - step 3 on 3 - analysis of the problems

Does it work?
1 initialization:

yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0))

zi (0) := f ′′i (xi (0))

2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

3 local updates: xi (k + 1) =
yi (k + 1)

zi (k + 1)

No, must provide 2 little modifications:
xi changes ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi (k) =
yi (k)

zi (k)
too aggressive!! Should make it milder

The initial idea
Derivation of the algorithm - step 3 on 3 - analysis of the problems

Does it work?
1 initialization:

yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0))

zi (0) := f ′′i (xi (0))

2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

3 local updates: xi (k + 1) =
yi (k + 1)

zi (k + 1)

No, must provide 2 little modifications:
xi changes ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi (k) =
yi (k)

zi (k)
too aggressive!! Should make it milder

The initial idea
Derivation of the algorithm - step 3 on 3 - analysis of the problems

Does it work?
1 initialization:

yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0))

zi (0) := f ′′i (xi (0))

2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

3 local updates: xi (k + 1) =
yi (k + 1)

zi (k + 1)

No, must provide 2 little modifications:
xi changes ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi (k) =
yi (k)

zi (k)
too aggressive!! Should make it milder

The initial idea
Derivation of the algorithm - step 3 on 3 - analysis of the problems

Does it work?
1 initialization:

yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0))

zi (0) := f ′′i (xi (0))

2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

3 local updates: xi (k + 1) =
yi (k + 1)

zi (k + 1)

No, must provide 2 little modifications:
xi changes ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi (k) =
yi (k)

zi (k)
too aggressive!! Should make it milder

The complete algorithm

1 tracking:
gi (k) := f ′′i (xi (k))xi (k)− f ′i (xi (k))

hi (k) := f ′′i (xi (k))

2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = P [y(k) + g(k)− g(k − 1)]

z(k + 1) = P [z(k) + h(k)− h(k − 1)]

3 local updates: xi (k + 1) = (1− ε)xi (k) + ε
yi (k + 1)

zi (k + 1)

(numerical) remark: step 2 may be substituted
with asymptotical average consensus algorithms

The complete algorithm

1 tracking:
gi (k) := f ′′i (xi (k))xi (k)− f ′i (xi (k))

hi (k) := f ′′i (xi (k))

2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = P [y(k) + g(k)− g(k − 1)]

z(k + 1) = P [z(k) + h(k)− h(k − 1)]

3 local updates: xi (k + 1) = (1− ε)xi (k) + ε
yi (k + 1)

zi (k + 1)

(numerical) remark: step 2 may be substituted
with asymptotical average consensus algorithms

The complete algorithm – Block schematic representation

gi , hi

g1, h1

gN , hN

distributed
averaging

xi

x1

xN

local
computations

local
updates

gi(k) = f ′′i (xi(k))xi(k)− f ′i (xi(k))

hi(k) = f ′′i (xi(k))
xi(k +1) = (1−ε)xi(k)+ε

yi(k + 1)
zi(k + 1)

Convergence properties

Hypotheses
fi ∈ C2 (R)

f ′i and f ′′i bounded
fi strictly convex
x∗ 6= ±∞
null initial conditions (for gi , hi , yi , zi)

Thesis
there exists a positive ε̄ s.t. if ε < ε̄ then

lim
k→+∞

x(k) = x∗1

(convergence ∝ as Newton-Raphson strategies over f)

Sketch of the proof

importance of the proof:
gives insights on key properties

1 transform the algorithm in a continuous-time system

2 recognize the existence of a two-time scales dynamical system

3 analyze separately fast and slow dynamics
(singular perturbation methods [Khalil (2002)])

Properties

Good qualities
easy to be implemented

“small” computational requirements

Bad qualities

Up to now, requires strong
assumptions:

fi ∈ C2 (R)

fi strictly convex
f ′i and f ′′i bounded

Update

distributed
optimization
examples

state of
the art

proposed
algorithm

comparisons
with state
of the art

Experiments description

circulant graph, N = 30

P =


0.5 0.25 0.25
0.25 0.5 0.25

.
0.25 0.5 0.25

0.25 0.25 0.5


fi = sum of exponentials

Comparisons with a Distributed Subgradient

Nedić Ozdaglar Dist. subgr. meth. for multi-agent opt. (2009)

1 x(c)(k) = Px(k) (consensus step)

2 xi (k + 1) = x (c)
i (k)− ρ

k f ′i
(

x (c)
i (k)

)
(local gradient descent)

Numerical comparison
Dist. Subgradient Dist. Newton-Raphson

0 100 200 300 400
−10

−5
0

5

10

k [time]

x i
(k

)

0 100 200 300 400
−10

−5
0

5

10

k [time]

x i
(k

)

Comparisons with (an) ADMM

Bertsekas Tsitsiklis, Parall. and Dist. Computation (1997)

Lρ :=
∑

i

[
fi (xi) + y (`)

i (xi − zi−1) + y (c)
i (xi − zi) + y (r)

i (xi − zi+1)

+ δ
2 |xi − zi−1|2 + δ

2 |xi − zi |2 + δ
2 |xi − zi+1|2

]

Numerical comparison
ADMM Dist. Newton-Raphson

0 20 40 60 80 100
−1

−0.5
0

0.5

1

k [time]

x i
(k

)

0 20 40 60 80 100
−10

−5
0

5

10

k [time]

x i
(k

)

Update

concluding
remarks

Conclusions and future works

The algorithm we proposed . . .
is a distributed Newton-Raphson strategy (+)
requires minimal network topology knowledge (+)
requires minimal agents synchronization (+)
is simple to be implemented (+)
converges to global optimum under convexity and smoothness
assumptions (+ / -)
is numerically faster than subgradients (+) but slower than
ADMM (-)

Conclusions and future works

Currently working on (or already performed)
extension to multi-dimensional problems
extension to modified Newton strategies
analytical characterization of the convergence speed for
quadratic functions and specific graphs
(with comparisons to other methods)
relax the assumptions
(strict convexity, C2, . . .)
find automatic stepsizes tuning strategies
propose quasi-Newton strategies

K. C. Kiwiel (2004)
Convergence of approximate and incremental subgradient methods for
convex optimization
SIAM Journal on Optimization

D. P. Bertsekas (1982)
Constrained Optimization and Lagrange Multiplier Methods
Academic Press

D. P. Bertsekas and J. N. Tsitsiklis (1997)
Parallel and Distributed Computation: Numerical Methods
Athena Scientific

A. Nedić and A. Ozdaglar (2009)
Distributed subgradient methods for multi-agent optimization
IEEE Transactions on Automatic Control

B. Johansson (2008)
On Distributed Optimization in Networked Systems
Ph.D. Thesis, KTH

A. Nedić and A. Ozdaglar (2007)
On the Rate of Convergence of Distributed Subgradient Methods for
Multi-agent Optimization
CDC

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein (2010)
Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers
Foundations and Trends in Machine Learning

M. Zargham, A. Ribeiro, A. Ozdaglar, A. Jadbabaie (2011)
Accelerated Dual Descent for Network Optimization
ACC

D. P. Bertsekas (2011)
Centralized and Distributed Newton Methods for Network Optimization
and Extensions
Technical Report LIDS 2866

H. K. Khalil (2002)
Nonlinear Systems
Prentice Hall

Distributed convex optimization: a
consensus-based Newton-Raphson approach

Damiano Varagnolo
joint work with A. Cenedese, G. Pillonetto, L. Schenato, F. Zanella

Department of Information Engineering - University of Padova

December 14th, 2011 – 50th IEEE CDC

varagnolo@dei.unipd.it
www.dei.unipd.it/∼varagnolo/

google: damiano varagnolo
.

.

en
tir

ely
written

in

LATEX2ε us
ing

Beamer and Tik Z licensed under the Creative Commons BY-NC-SA 2.5 Italy License:

http://creativecommons.org/licenses/by-nc-sa/2.5/it/deed.en

	Introduction
	
	State of the art
	Motivations
	
	The main algorithm
	Sketch of the proof
	Properties
	
	Numerical examples
	
	Conclusions
	Bibliography
	

