On the discardability of data in Support Vector Classification problems

Simone Del Favero, Damiano Varagnolo, Francesco Dinuzzo, Luca Schenato, Gianluigi Pillonetto

Department of Information Engineering - Padova, Italy
Max Planck Institute - Tübingen, Germany

December $13^{\text {th }}, 2011-50^{\text {th }}$ IEEE CDC

Support Vector Classification is . . .

... transform numbers into labels ...

Support Vector Classification is ...

... transform numbers into labels ...

... minimizing the structural risk

E Cortés, Vapnik (1995)
Support-Vector Networks
Machine Learning

Support Vector Classifiers in the real world

```
several examples
of successful applications!
```


Support Vector Classifiers in the real world

```
several examples
of successful applications!
```


possible
bottlenecks

Support Vector Classifiers in the real world

several examples
of successful applications!

Jauml
ear diary, I woul
cally like to think
e likes the don as
possible
bottlenecks

Support Vector Classifiers in the real world

several examples
of successful applications!

Counter-measures for the bottlenecks (1/2)

Several strategies to enhance the training phase:

Counter-measures for the bottlenecks (1/2)

Several strategies to enhance the training phase:

- chunking
(R) Vapnik (1982) Estim. of Depend. Based on Emp. Data Springer-Verlag

Counter-measures for the bottlenecks (1/2)

Several strategies to enhance the training phase:

- chunking
- SMO
國 Vapnik (1982) Estim. of Depend. Based on Emp. Data Springer-Verlag

Platt (1998) SMO: a fast alg. for training SVMs Adv. in Ker. Meth.

Counter-measures for the bottlenecks (1/2)

Several strategies to enhance the training phase:

- chunking
- SMO
- Active sets
- Vapnik (1982) Estim. of Depend. Based on Emp. Data Springer-Verlag

國 Platt (1998) SMO: a fast alg. for training SVMs Adv. in Ker. Meth.

R Musicant Feinberg (2004) Active set SV regr. IEEE Trans. on N.N.

Counter-measures for the bottlenecks $(1 / 2)$

Several strategies to enhance the training phase:

- chunking
- SMO
- Active sets
- new QPs

丰 Vapnik (1982) Estim. of Depend. Based on Emp. Data Springer-Verlag

Platt (1998) SMO: a fast alg. for training SVMs Adv. in Ker. Meth.

囯 Musicant Feinberg (2004) Active set SV regr. IEEE Trans. on N.N.
(2001) Mangasarian Musicant (2001) Lagrangian SVM J. of Mach. L. Res.

Counter－measures for the bottlenecks $(1 / 2)$

Several strategies to enhance the training phase：

－chunking

围
Vapnik（1982）Estim．of Depend．Based on Emp．Data Springer－Verlag
－SMO
－Active sets

图 Platt（1998）SMO：a fast alg．for training SVMs Adv．in Ker． Meth．

國 Musicant Feinberg（2004）Active set SV regr．IEEE Trans．on N．N．
－new QPs
－Mangasarian Musicant（2001）Lagrangian SVM J．of Mach．L． Res．
－new
kernel matrix

Fine Scheinberg（2001）Eff．SVM train．using low rank ker．rep． J．of Mach．L．Res．
國 Williams Seeger（2001）Using the Nyström meth．to speed up ker．mach．NIPS

Counter-measures for the bottlenecks (2/2)

Several strategies to reduce the dataset / compress the evaluation function:

Counter-measures for the bottlenecks (2/2)

Several strategies to reduce the dataset / compress the evaluation function:

Before training

- k-NN
- FDA

Ri (2004) Dist. based select. of Pot. SVs by ker. mat. Adv. in N.N.
T. Lei Long (2011) Locate Pot. SVs for faster SMO IEEE Conf. on Nat. Comp.

Counter-measures for the bottlenecks (2/2)

Several strategies to reduce the dataset / compress the evaluation function:

Before training

- k-NN

Ri (2004) Dist. based select. of Pot. SVs by ker. mat. Adv. in N.N.

- FDA

Lei Long (2011) Locate Pot. SVs for faster SMO IEEE Conf. on Nat. Comp.

While training

- reduced sets

Burges Schölkopf (1997) Improv. acc. and speed of SV learn. mach. NIPS

- huller

國 Bordes Bottou (2005) The huller: a simple and efficient online SVM ECML

Counter-measures for the bottlenecks (2/2)

Several strategies to reduce the dataset / compress the evaluation function:

After training

- exact reduct.

Rowns et al. (2001) Exact simpl. of SV sol. J. of M.L. Res.

- approx. reduct.

Engel et al. (2002) Sparse online greedy SV Regr. ECML

While training

- reduced sets

E- Burges Schölkopf (1997) Improv. acc. and speed of SV learn. mach. NIPS

- huller

國 Bordes Bottou (2005) The huller: a simple and efficient online SVM ECML

Our contributions w.r.t. the existing literature

Our contributions w.r.t. the existing literature

Our contributions w.r.t. the existing literature

Motivation: distributed learning

Claim

in this talk we do not present the results on non-separable datasets

Support Vector Classification: a brief overview

(for separable datasets)

$$
\boldsymbol{w}^{T} \boldsymbol{x}+b \uparrow \text { s.t. }
$$

Support Vector Classification: a brief overview

(for separable datasets)

$$
\boldsymbol{w}^{T} \boldsymbol{x}+b \uparrow \text { s.t. } y_{i}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}+b\right) \geq 1
$$

Support Vector Classification: a brief overview

(for separable datasets)

$$
\begin{aligned}
& \min _{\boldsymbol{w}, b}\|\boldsymbol{w}\|_{2} \\
& \text { s.t. } y_{i}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}+b\right) \geq 1
\end{aligned}
$$

Support Vector Classification: a brief overview

(for separable datasets)

$$
\begin{aligned}
& \min _{\boldsymbol{w}, b}\|\boldsymbol{w}\|_{2} \\
& \text { s.t. } y_{i}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}+b\right) \geq 1
\end{aligned}
$$

Support Vector Classification: a brief overview

(for separable datasets)

Support Vector Classification: a brief overview

(for separable datasets)

$$
\begin{aligned}
& \min _{\boldsymbol{w}, b}\|\boldsymbol{w}\|_{2} \\
& \text { s.t. } y_{i}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}+b\right) \geq 1
\end{aligned}
$$

Potential Support Vectors and Discardable Vectors

Definition: Potential Support Vector

$$
\left(\boldsymbol{x}_{i}, y_{i}\right)=\text { Potential SV for dataset } \mathcal{D}
$$

if
exists plausible future data s.t. $\left(x_{i}, y_{i}\right)$ will become a SV

Potential Support Vectors and Discardable Vectors

Definition: Potential Support Vector

$$
\left(\boldsymbol{x}_{i}, y_{i}\right)=\text { Potential SV for dataset } \mathcal{D}
$$

if
exists plausible future data s.t. $\left(\boldsymbol{x}_{i}, y_{i}\right)$ will become a SV
focus: keep information useful for future retrainings!

Potential Support Vectors and Discardable Vectors

Definition: Potential Support Vector

$$
\left(\boldsymbol{x}_{i}, y_{i}\right)=\text { Potential SV for dataset } \mathcal{D}
$$

if
exists plausible future data s.t. $\left(\boldsymbol{x}_{i}, y_{i}\right)$ will become a SV
focus: keep information useful for future retrainings!

Definition: Discardable Vector

$$
\left(\boldsymbol{x}_{i}, y_{i}\right)=\text { Discardable Vector for dataset } \mathcal{D}
$$ if

it is not a Potential SV

Potential Support Vectors and Discardable Vectors

Definition: Potential Support Vector

$$
\left(\boldsymbol{x}_{i}, y_{i}\right)=\text { Potential SV for dataset } \mathcal{D}
$$

if
exists plausible future data s.t. $\left(x_{i}, y_{i}\right)$ will become a SV
focus: keep information useful for future retrainings!

Definition: Discardable Vector

$$
\begin{gathered}
\left(\boldsymbol{x}_{i}, y_{i}\right)=\text { Discardable Vector for dataset } \mathcal{D} \\
\text { if } \\
\text { it is not a Potential SV }
\end{gathered}
$$

important: $\left(\boldsymbol{x}_{i}, y_{i}\right)$ is either Potential or Discardable

Towards the characterization of the Potential SVs and the

 Discardable VectorsDefinition: quasi separating hyperplane
(\boldsymbol{w}, b) quasi separates a dataset \mathcal{D} if $y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 0$ for all i

Towards the characterization of the Potential SVs and the

 Discardable VectorsDefinition: quasi separating hyperplane
(\boldsymbol{w}, b) quasi separates a dataset \mathcal{D} if $y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 0$ for all i

$$
\text { separating hyperplane } \Leftrightarrow y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 1
$$

Towards the characterization of the Potential SVs and the

 Discardable VectorsDefinition: quasi separating hyperplane
(\boldsymbol{w}, b) quasi separates a dataset \mathcal{D} if $y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 0$ for all i

$$
\text { separating hyperplane } \Leftrightarrow y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 1
$$

$0 \quad 0$

Towards the characterization of the Potential SVs and the

 Discardable VectorsDefinition: quasi separating hyperplane
(\boldsymbol{w}, b) quasi separates a dataset \mathcal{D} if $y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 0$ for all i

$$
\text { separating hyperplane } \Leftrightarrow y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 1
$$

Towards the characterization of the Potential SVs and the

 Discardable VectorsDefinition: quasi separating hyperplane
(\boldsymbol{w}, b) quasi separates a dataset \mathcal{D} if $y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 0$ for all i

$$
\text { separating hyperplane } \Leftrightarrow y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 1
$$

Towards the characterization of the Potential SVs and the

 Discardable VectorsDefinition: quasi separating hyperplane
(\boldsymbol{w}, b) quasi separates a dataset \mathcal{D} if $y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 0$ for all i

$$
\text { separating hyperplane } \Leftrightarrow y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right) \geq 1
$$

Full characterization of the Potential SVs

Proposition

$\left(\boldsymbol{x}_{i}, y_{i}\right)=$ Potential SV if and only if exists $(\boldsymbol{w}, b) \neq(\mathbf{0}, 0)$ that
(1) pass through $\left(x_{i}, 0\right)$
(2) quasi separates \mathcal{D}
(3) can pass through $\left(\boldsymbol{x}_{j}, 0\right)$ if $\boldsymbol{x}_{\boldsymbol{j}}$ is of the same class of \boldsymbol{x}_{i}
(9) cannot pass through $\left(\boldsymbol{x}_{j}, 0\right)$ if $\boldsymbol{x}_{\boldsymbol{j}}$ is of the opposite class of \boldsymbol{x}_{i}

0

Full characterization of the Potential SVs

Proposition

$\left(\boldsymbol{x}_{i}, y_{i}\right)=$ Potential SV if and only if exists $(\boldsymbol{w}, b) \neq(\mathbf{0}, 0)$ that
(1) pass through $\left(x_{i}, 0\right)$
(2) quasi separates \mathcal{D}
(3) can pass through $\left(\boldsymbol{x}_{j}, 0\right)$ if $\boldsymbol{x}_{\boldsymbol{j}}$ is of the same class of $\boldsymbol{x}_{\boldsymbol{i}}$
(9) cannot pass through $\left(\boldsymbol{x}_{j}, 0\right)$ if $\boldsymbol{x}_{\boldsymbol{j}}$ is of the opposite class of \boldsymbol{x}_{i}

Full characterization of the Potential SVs

Proposition

$\left(\boldsymbol{x}_{i}, y_{i}\right)=$ Potential SV if and only if exists $(\boldsymbol{w}, b) \neq(\mathbf{0}, 0)$ that
(1) pass through $\left(x_{i}, 0\right)$
(2) quasi separates \mathcal{D}
(3) can pass through $\left(\boldsymbol{x}_{j}, 0\right)$ if \boldsymbol{x}_{j} is of the same class of \boldsymbol{x}_{i}
(9) cannot pass through $\left(\boldsymbol{x}_{j}, 0\right)$ if $\boldsymbol{x}_{\boldsymbol{j}}$ is of the opposite class of \boldsymbol{x}_{i}
assures the datum to be in $\operatorname{PSV}(\mathcal{D})$

Full characterization of the Potential SVs

Proposition

$\left(\boldsymbol{x}_{i}, y_{i}\right)=$ Potential SV if and only if exists $(\boldsymbol{w}, b) \neq(\mathbf{0}, 0)$ that
(1) pass through $\left(x_{i}, 0\right)$
(2) quasi separates \mathcal{D}
(3) can pass through $\left(\boldsymbol{x}_{j}, 0\right)$ if \boldsymbol{x}_{j} is of the same class of \boldsymbol{x}_{i}
(9) cannot pass through $\left(\boldsymbol{x}_{j}, 0\right)$ if $\boldsymbol{x}_{\boldsymbol{j}}$ is of the opposite class of \boldsymbol{x}_{i}
assures the datum to be in $\operatorname{PSV}(\mathcal{D})$

Towards an alternative characterization

proposition not useful for algorithmic purposes \Rightarrow seek for alternative ones

Definition
 Δ_{j} 's of a given $\left(x_{i}, y_{i}\right)$:

Alternative characterization of the Potential SVs

Proposition

$\left(\boldsymbol{x}_{i}, y_{i}\right)$ is Potential SV

if and only if

exists $\boldsymbol{w} \neq \mathbf{0}$ s.t.

$$
\left\{\begin{array} { l }
{ \Delta _ { n } ^ { T } \boldsymbol { w } \leq 0 } \\
{ \vdots } \\
{ \Delta _ { m } ^ { T } \boldsymbol { w } \leq 0 }
\end{array} \quad \left\{\begin{array}{l}
\Delta_{p}^{T} \boldsymbol{w}<0 \\
\vdots \\
\Delta_{q}^{T} \boldsymbol{w}<0
\end{array}\right.\right.
$$

(data of the same class)
(data of the opposite class)

Alternative characterization of the Potential SVs

Proposition
$\left(\boldsymbol{x}_{i}, y_{i}\right)$ is Potential SV

> if and only if
exists $\boldsymbol{w} \neq \mathbf{0}$ s.t.

$$
\left\{\begin{array} { l }
{ \Delta _ { n } ^ { T } \boldsymbol { w } \leq 0 } \\
{ \vdots } \\
{ \Delta _ { m } ^ { T } \boldsymbol { w } \leq 0 }
\end{array} \quad \left\{\begin{array}{l}
\Delta_{p}^{T} \boldsymbol{w}<0 \\
\vdots \\
\Delta_{q}^{T} \boldsymbol{w}<0
\end{array}\right.\right.
$$

(data of the same class)
(data of the opposite class)
Corollary (well known in literature)
($\boldsymbol{x}_{i}, y_{i}$) discardable if $\boldsymbol{x}_{\boldsymbol{i}}$ in the interior of the convex hull of the data of the same class

Towards a fast and implementable algorithm

"exists $\boldsymbol{w} \neq \mathbf{0}$ s.t. $\left\{\begin{array}{l}\Delta_{n}^{T} \boldsymbol{w} \leq 0 \\ \vdots \\ \Delta_{m}^{T} \boldsymbol{w} \leq 0\end{array} \quad\left\{\begin{array}{l}\Delta_{p}^{T} \boldsymbol{w}<0 \\ \vdots \\ \Delta_{q}^{T} \boldsymbol{w}<0\end{array}\right.\right.$ "
not fast to be checked numerically \& not intuitive

Towards a fast and implementable algorithm

$$
\text { "exists } \boldsymbol{w} \neq \mathbf{0} \text { s.t. }\left\{\begin{array} { l }
{ \Delta _ { n } ^ { T } \boldsymbol { w } \leq 0 } \\
{ \vdots } \\
{ \Delta _ { m } ^ { T } \boldsymbol { w } \leq 0 }
\end{array} \quad \left\{\begin{array}{l}
\Delta_{p}^{T} \boldsymbol{w}<0 \\
\vdots \\
\Delta_{q}^{T} \boldsymbol{w}<0
\end{array},\right.\right.
$$

not fast to be checked numerically \& not intuitive

$$
\begin{aligned}
& \text { more intuitive \& faster to check } \\
& \text { (we'll see why in } 2 \text { slides): } \\
& \text { "exists } \boldsymbol{w} \neq \mathbf{0} \text { s.t. }\left\{\begin{array}{l}
\Delta_{n}^{T} \boldsymbol{w} \leq 0 \\
\vdots \\
\Delta_{q}^{T} \boldsymbol{w} \leq 0
\end{array}\right.
\end{aligned}
$$

Towards a fast and implementable algorithm

$$
\text { "exists } \boldsymbol{w} \neq \mathbf{0} \text { s.t. }\left\{\begin{array} { l }
{ \Delta _ { n } ^ { T } \boldsymbol { w } \leq 0 } \\
{ \vdots } \\
{ \Delta _ { m } ^ { T } \boldsymbol { w } \leq 0 }
\end{array} \quad \left\{\begin{array}{l}
\Delta_{p}^{T} \boldsymbol{w}<0 \\
\vdots \\
\Delta_{q}^{T} \boldsymbol{w}<0
\end{array},\right.\right.
$$

not fast to be checked numerically \& not intuitive

$$
\begin{aligned}
& \text { more intuitive \& faster to check } \\
& \text { (we'll see why in } 2 \text { slides): } \\
& \text { "exists } \boldsymbol{w} \neq \mathbf{0} \text { s.t. }\left\{\begin{array}{l}
\Delta_{n}^{T} \boldsymbol{w} \leq 0 \\
\vdots \\
\Delta_{q}^{T} \boldsymbol{w} \leq 0
\end{array}\right.
\end{aligned}
$$

is it wrong to use the latter?

Differences between the two conditions

Differences between the two conditions

0

Differences between the two conditions

Differences between the two conditions

Proposition

The measure of the set of input locations that satisfy " \leq " condition but not " $<$ " one is zero

The algorithm

(1) consider a $\left(\boldsymbol{x}_{i}, y_{i}\right)$

The algorithm

(1) consider a $\left(\boldsymbol{x}_{i}, y_{i}\right)$
(2) compute the $\Delta_{j} \mathrm{~s}$

The algorithm

(1) consider a $\left(\boldsymbol{x}_{i}, y_{i}\right)$
(2) compute the $\Delta_{j} \mathrm{~s}$
(3) consider the problem

$$
\begin{aligned}
& \max . \\
& \text { s.t. }\left\{\begin{array}{l}
\omega_{n}+\ldots+\omega_{q} \\
\Delta_{j}^{T} \boldsymbol{w}+\omega_{j} \leq 0 \\
\omega_{j} \geq 0
\end{array} \quad j=n, \ldots, q\right.
\end{aligned}
$$

(feasibile if and only if " \leq " condition holds)

The algorithm

- consider a $\left(\boldsymbol{x}_{i}, y_{i}\right)$
(3) compute the $\Delta_{j} \mathrm{~s}$
- consider the problem

$$
\begin{aligned}
& \max . \\
& \text { s.t. }\left\{\begin{array}{l}
\omega_{n}+\ldots+\omega_{q} \\
\Delta_{j}^{T} \boldsymbol{w}+\omega_{j} \leq 0 \\
\omega_{j} \geq 0
\end{array} \quad j=n, \ldots, q\right.
\end{aligned}
$$

(feasibile if and only if " \leq " condition holds)

(9) apply just one simplex step starting from $\boldsymbol{w}=\mathbf{0}$, $\omega_{n}=\ldots=\omega_{p}=0$
(i.e. check if it is possible to move from the origin)

Some remarks

- the algorithm returns just the set of Potential SVs with probability one (under mild assumptions)

Some remarks

- the algorithm returns just the set of Potential SVs with probability one (under mild assumptions)
- the algorithm is optimal under information contents points of view:
no algorithms can return better answers

Some remarks

- the algorithm returns just the set of Potential SVs with probability one (under mild assumptions)
- the algorithm is optimal under information contents points of view:

no algorithms can return better answers

improvements possible only under computational complexity points of view

Some remarks

- the algorithm returns just the set of Potential SVs with probability one (under mild assumptions)
- the algorithm is optimal under information contents points of view:

no algorithms can return better answers

> improvements possible only under computational complexity points of view

- computational complexity \propto complexity of simplex algorithm

A numerical example

A numerical example

training not required to compute Potential SVs

A numerical example

future training can consider just Potential SVs

Summary

- considered separable datasets
- introduced the concept of Potential Support Vectors
- saw that data that are not Potential SVs bring no information
- Potential SVs can be computed
- before training steps
- iteratively
- exploiting just one simplex step per datum

Future works

- extend results for non-separable datasets
- (analytically) check whether Potential SVs can speed-up training strategies (e.g., embed PSVs in SMO strategies)

On the discardability of data in Support Vector Classification problems

Simone Del Favero, Damiano Varagnolo, Francesco Dinuzzo, Luca Schenato, Gianluigi Pillonetto

Department of Information Engineering - Padova, Italy Max Planck Institute - Tübingen, Germany

December $13^{\text {th }}, 2011-50^{\text {th }}$ IEEE CDC

> varagnolo@dei.unipd.it
> www.dei.unipd.it/~varagnolo/ google: damiano varagnolo

