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Engel et al. (2002) Sparse online greedy SV Regr. ECML

While training
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Burges Schölkopf (1997) Improv. acc. and speed of SV
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huller Bordes Bottou (2005) The huller: a simple and efficient
online SVM ECML
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Claim

in this talk we do not present the
results on non-separable datasets



Support Vector Classification: a brief overview
(for separable datasets)

x1

x2
wT x + b

min
w ,b

‖w‖2
s.t. yi

(
wT x i + b

)
≥ 1



Support Vector Classification: a brief overview
(for separable datasets)

x1

x2
wT x + b

min
w ,b

‖w‖2
s.t. yi

(
wT x i + b

)
≥ 1



Support Vector Classification: a brief overview
(for separable datasets)

x1

x2
wT x + b

min
w ,b

‖w‖2
s.t. yi

(
wT x i + b

)
≥ 1



Support Vector Classification: a brief overview
(for separable datasets)

x1

x2
wT x + b

min
w ,b

‖w‖2
s.t. yi

(
wT x i + b

)
≥ 1



Support Vector Classification: a brief overview
(for separable datasets)

x1

x2
wT x + b

min
w ,b

‖w‖2
s.t. yi

(
wT x i + b

)
≥ 1



Support Vector Classification: a brief overview
(for separable datasets)

x1

x2
wT x + b

min
w ,b

‖w‖2
s.t. yi

(
wT x i + b

)
≥ 1



Potential Support Vectors and Discardable Vectors

Definition: Potential Support Vector
(x i , yi ) = Potential SV for dataset D

if
exists plausible future data s.t. (x i , yi ) will become a SV

focus: keep information useful for future retrainings!

Definition: Discardable Vector
(x i , yi ) = Discardable Vector for dataset D

if
it is not a Potential SV

important: (x i , yi ) is either Potential or Discardable



Potential Support Vectors and Discardable Vectors

Definition: Potential Support Vector
(x i , yi ) = Potential SV for dataset D

if
exists plausible future data s.t. (x i , yi ) will become a SV

focus: keep information useful for future retrainings!

Definition: Discardable Vector
(x i , yi ) = Discardable Vector for dataset D

if
it is not a Potential SV

important: (x i , yi ) is either Potential or Discardable



Potential Support Vectors and Discardable Vectors

Definition: Potential Support Vector
(x i , yi ) = Potential SV for dataset D

if
exists plausible future data s.t. (x i , yi ) will become a SV

focus: keep information useful for future retrainings!

Definition: Discardable Vector
(x i , yi ) = Discardable Vector for dataset D

if
it is not a Potential SV

important: (x i , yi ) is either Potential or Discardable



Potential Support Vectors and Discardable Vectors

Definition: Potential Support Vector
(x i , yi ) = Potential SV for dataset D

if
exists plausible future data s.t. (x i , yi ) will become a SV

focus: keep information useful for future retrainings!

Definition: Discardable Vector
(x i , yi ) = Discardable Vector for dataset D

if
it is not a Potential SV

important: (x i , yi ) is either Potential or Discardable



Towards the characterization of the Potential SVs and the
Discardable Vectors

Definition: quasi separating hyperplane
(w , b) quasi separates a dataset D if yi (wT x i + b) ≥ 0 for all i

separating hyperplane ⇔ yi (wT x i + b) ≥ 1



Towards the characterization of the Potential SVs and the
Discardable Vectors

Definition: quasi separating hyperplane
(w , b) quasi separates a dataset D if yi (wT x i + b) ≥ 0 for all i

separating hyperplane ⇔ yi (wT x i + b) ≥ 1



Towards the characterization of the Potential SVs and the
Discardable Vectors

Definition: quasi separating hyperplane
(w , b) quasi separates a dataset D if yi (wT x i + b) ≥ 0 for all i

separating hyperplane ⇔ yi (wT x i + b) ≥ 1



Towards the characterization of the Potential SVs and the
Discardable Vectors

Definition: quasi separating hyperplane
(w , b) quasi separates a dataset D if yi (wT x i + b) ≥ 0 for all i

separating hyperplane ⇔ yi (wT x i + b) ≥ 1



Towards the characterization of the Potential SVs and the
Discardable Vectors

Definition: quasi separating hyperplane
(w , b) quasi separates a dataset D if yi (wT x i + b) ≥ 0 for all i

separating hyperplane ⇔ yi (wT x i + b) ≥ 1



Towards the characterization of the Potential SVs and the
Discardable Vectors

Definition: quasi separating hyperplane
(w , b) quasi separates a dataset D if yi (wT x i + b) ≥ 0 for all i

separating hyperplane ⇔ yi (wT x i + b) ≥ 1



Full characterization of the Potential SVs

Proposition
(x i , yi ) = Potential SV if and only if exists (w , b) 6= (0, 0) that

1 pass through (x i , 0)

2 quasi separates D
3 can pass through (x j , 0) if x j is of the same class of x i

4 cannot pass through (x j , 0) if x j is of the opposite class of x i

assures the datum to be in PSV (D)

no such hyperplanes from here
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Towards an alternative characterization

proposition not useful for algorithmic purposes
⇒ seek for alternative ones

Definition
∆j ’s of a given (x i , yi ):
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The algorithm

1 consider a (x i , yi )

2 compute the ∆js
3 consider the problem

max . ωn + . . .+ ωq

s.t.
{

∆T
j w + ωj ≤ 0
ωj ≥ 0

j = n, . . . , q

(feasibile if and only if “≤” condition holds)

4 apply just one simplex step starting from w = 0,
ωn = . . . = ωp = 0

(i.e. check if it is possible to move from the origin)
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Some remarks

the algorithm returns just the set of Potential SVs with
probability one (under mild assumptions)

the algorithm is optimal under information contents points
of view:

no algorithms can return better answers

improvements possible only under
computational complexity points of view

computational complexity ∝ complexity of simplex algorithm
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A numerical example

−1
+1
PSV
SV

future training can consider just Potential SVs



Summary

considered separable datasets

introduced the concept of Potential Support Vectors

saw that data that are not Potential SVs bring no information

Potential SVs can be computed
before training steps
iteratively
exploiting just one simplex step per datum



Future works

extend results for non-separable datasets

(analytically) check whether Potential SVs can speed-up
training strategies
(e.g., embed PSVs in SMO strategies)
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