
V. Methods for Euler and
Navier-Stokes Equations

by Bernhard Müller

Outline

The application of the cell-centered finite volume method is illustrated

for the 2D Navier-Stokes equations. The finite volume discretization

can be used for structured and unstructured grids. For the latter,

vertex finite volume methods are preferred, because much less memory

is needed to store the cell averages at nodes than in cells, if the cells

are not quadrilaterals in 2D or not hexahedra in 3D.

The upwind discretization of the inviscid fluxes takes the direction into

account, where the waves normal to the cell interface come from. Roe’s

approximate Riemann solver and scalar numerical dissipation are

discussed in detail. Both methods allow the computation of shocks.

1

For contact discontinuities, Roe’s approximate Riemann solver yields

more accurate results than scalar numerical dissipation. For the

viscous fluxes, central discretization is adequate.

The spatial discretization and the boundary conditions lead to a large

system of ODEs. Its solution by explicit Runge-Kutta methods and

implicit linear multistep methods is discussed for steady and unsteady

flow applications. Convergence acceleration techniques are pointed out.

Algorithmic details of the cell-centered finite volume method on

structured quadrilateral grids and of the dual-based vertex finite

volume method on unstructured triangular grids are outlined.

2

1. Cell-Centered Finite Volume Method

1.1.Integral Form of 2D Navier-Stokes
EquationsZ

Ω

�U�t dV +
Z

Γ

(F1nx + F2ny) dA =

Z

Ω

Fe dV: (1)

where Fj = Fj � Fvj ; and

U =

0BBBBB�
��u�v�E
1CCCCCA ; F

1 =

0BBBBB�
�u�u2 + p�vu�Hu
1CCCCCA ; F

2 =

0BBBBB�
�v�uv�v2 + p�Hv
1CCCCCA ; Fe =

0BBBBB�

0f1f2

f � u

1CCCCCA ;

H = E + p� total enthalpy, p = (� 1)(�E � 1
2

�(u2 + v2)) pressure.

3

Fv
1 =

0BBBBB�
0�xx�yx�xxu + �yxv + k �T�x

1CCCCCA ; Fv

2 =

0BBBBB�

0�xy�yy�xyu + �yyv + k �T�y
1CCCCCA ;

�xx = 4
3

��u�x � 2
3

��v�y , �xy = �yx = �(�u�y + �v�x) , �yy = 4
3

��v�y � 2
3

��u�x .

For quadrilateral cell Ωi with faces Γl; l = 1; 2; 3; 4 :dUidt Vi +
4Xl=1

Z
Γl(F1nx + F2ny) dA = FeiVi; (2)

with cell averaged conservative variables and source term

Ui(t) = 1Vi RΩi U(x; t) dV ,

Fei(t) = 1Vi RΩi Fe(U(x; t)) dV ,

4

where Vi =

R
Ωi dV area of quadrilateral cell Ωi, equal to volume of

corresponding 3D cell with unit length in z-direction.

n
Γ

Γ

Γ

Γ
Ω

2

1

3

4

i

5

If we express the flux over face l R

Γl F � ndA by the scalar product of

the face averaged flux tensor Fl and the face normal Sl =

R

Γl ndA, we

can write the 2D Navier-Stokes equations (2) asdUidt Vi +
4Xl=1

Fl � Sl = FeiVi; (3)

1.2. Cell-Centered Finite Volume Method

We approximate F = F1e1 + F2e2 at face Γl by means of the

neighboring cell averages, e.g. the arithmetic average

Fl =
1

2
(F(Ui) + (F(Ul)) ; (4)

where l denotes the neighboring cell adjacent to face l.
A nonlinear source term is approximated by Fei � Fe(Ui) .

Thus, the cell-centered finite volume discretization of the

6

Navier-Stokes equations yields the following ODE using the same

notation for the approximate cell averages as for the exact ones in (3):

dUidt Vi +
4Xl=1

[F1 S1 + F2 S2]l = Fei Vi; (5)

where F1l and F2l are functions of Ui and Ul .

7

S1

1

2

3

4

Ωi

8

Let the face Γlm be defined by the vertices xl and xm . Assume that xl

and xm lie on the boundary of Ωi in counterclockwise direction. Then,

the outer normal of face Γlm is given by

Slm =

0� ym � yl�(xm � xl)
1A :

For the neighboring cell Ωj , the outer normal of face Γml is

Sml = �Slm . Thus, (F � S)ml = �(F � S)lm , i.e. the flux leaving

control volume Ωj over Γml is equal to the flux entering control volume

Ωi over Γlm . Consequently, the net flux over all interior boundaries is

zero guaranteeing conservativity.

9

S

l

m

S

lm

ml

Ω

Ω

i

j

1.3. Computation of Flux Balance

Suppose we have a face-based data structure, i.e. for each interior face

Γn, the numbers i and j of the adjacent left and right cells,

respectively, and the outer normal Sn of Ωi are given. Note that �Sn

is the outer normal of Ωj . After initializing the flux balance array

FB (NCELL) for all NCELL cells either by zero or the boundary flux,

we can loop over all NFACE interior faces:

10

DO N=1,NFACE

I = number of left cell

J = number of right cell

S = face normal of left cell

FLUX = numerical flux (U (I), U (J), S)

FB (I) = FB (I) + FLUX

FB (J) = FB (J) - FLUX

END DO

Thus, the flux balance for each cell can be computed without the need

for storing or recomputing the fluxes.

11

1.4. Approximation of Derivatives

The x- and y-derivatives of u, v and T in (5) are usually approximated

by using the Green-Gauss theorem, e.g.Z
Ω

rT dV =

Z�Ω

Tn dA : (6)

o
o

o
o

Ωi

a

b

d

c

1

23

4

12

The derivatives at vertex a can be approximated by the volume

average over the control volume Ωa defined by the midpoints

xl ; l = 1; 2; 3; 4; of the adjacent cells

(rT)a � 1Va ZΩarT dV :

With the Green-Gauss theorem (6), we get

(rT)a � 1Va Z�Ωa Tn dA : (7)

The surface integral is approximated by the trapezoidal rule

(rT)a � 1Va 4Xl=1

1

2
(Tl + Tl+1)Sl;l+1 ; (8)

where Sl;l+1 is the normal of the face with the endpoints xl and xl+1 .

13

The viscosity and thermal conductivity are obtained by averaging, e.g.�a � 1

4

4Xl=1

�l :

Thus, the viscous flux tensor Fv is available at the vertices a, b, andd. Then, the viscous flux balance can be approximated by the

trapezoidal ruleZ�Ωi Fv � n dA =

dXm=a 1

2
(Fvm + Fvm+1) � Sm;m+1 (9)

where b = a + 1 , etc.

The central approximation (9) is 2nd order accurate on a smooth grid.

Note that consistency may be lost on a non-smooth grid.

14

2. Numerical Flux Functions and
Boundary Conditions

The shock thickness is proportional to (cf. Whitham (1974), p. 190)

4�
3�1

2 + 1

1

(u1 � u2) � n ;

where 1 and 2 denote the states upstream and downstream of the

shock, respectively. E.g. for ��1
� 1:4 10�5 m2s and a normal velocity

jump of � 100ms , the shock thickness is of the order of 1mm. In

general, the internal viscous structure of a shock wave needs not to be

resolved, and a shock can be described as a discontinuity governed by

the Euler equations.

For simple shock problems, e.g. blunt body flow, shock fitting can be

used: the shock is treated as a moving discontinuity with the

Rankine-Hugoniot relations satisfied across the shock.

15

In general, shock capturing must be used: the shock is computed as

any other flow structure and evolves as steep gradient, which is

smeared over a few grid points. The better the method, the less the

smearing. Central discretizations (4) of the inviscid fluxes lead to the

Gibb’s phenomenon, i.e. oscillations near the shock.

We review here methods that are not only suitable for the capturing of

shocks and contact discontinuities, but also of smooth flow. Even for

smooth flow, unresolved wave numbers > �
∆x , grid discontinuities and

boundary conditions can lead to numerical instability, unless numerical

dissipation is employed. Numerical dissipation is inherent in upwind

methods and must be added to central methods.

16

2.1. Riemann Solvers

In order to determine the flux at a cell interface, Godunov (1959)

proposed to solve the Riemann problem for the Euler equations, i.e.

the 1D Euler equations (obtained from (1) in 2D) with discontinuous

initial data given by the cell averages in the cells on the left and right

sides of the interface (here at x = 0) at the old time level:�U�t +

�F
1�x = 0 (10)

U(x; 0) =

8<: UL x < 0

UR x > 0

In the Godunov scheme, the Riemann problem (10) is solved exactly to

yield U(x; t) for t > 0. The flux at the interface x = 0 is determined by

F

1(U(0; t)) .

17

Example of Riemann problem: shock tube problem (1D: v = w = 0)uL = uR = 0 ; �L > �R ; pL > pR

0
x

t

expansion fan discontinuity
contact

shock

x
0

ρ(∆

∆

t)

t

ρ

ρ

L

R

18

Approximate Riemann Solvers

Exact solution of Riemann problem� expensive in terms of CPU time because of iterations,� not needed, because accuracy limited by the following integration.

Popular approximate Riemann solvers:

Roe (1981) selects an appropriate linear equivalent Riemann

problem and solves it exactly.

Osher (1982) approximates a shock by a compression fan, i.e.

isentropic flow across shock assumed. The waves are coming to

(0; t) in the x-t-diagram.

Pandolfi (1984) approximates a shock by a compression fan (same as

Osher). The waves are coming from the origin in the x-t-diagram.

19

2.2. Roe’s Approximate Riemann Solver

Consider the quasi-linear form of (10)�U�t + A

�U�x = 0 ; (11)

where A =

�F
1�U

is the Jacobian matrix of F

1 . Note that A = A(U) .

Define the linear problem �U�t + Â
�U�x = 0 ; (12)

where Â = Â(UL;UR) = onstant , such that� Â(UL;UR) ! A(U) for UL ! U and UR ! U ,� F

1(UR)� F

1(UL) = Â(UR �UL) ,� Â has real eigenvalues and linear independent eigenvectors.

20

These conditions are satisfied for

Â = A(Û) ; (13)

where Û is determined by the Roe-averages

ˆ� =

p�L�R ; û =
p�LuL +

p�RuRp�L +

p�R ; ˆH =

p�LHL +

p�RHRp�L +

p�R : (14)

We get the Roe-averaged speed of sound from ˆ2 = (� 1)(ˆH � 1
2

jûj2) .

Roe’s approximate Riemann solver is exact, if UL and UR are

connected by a single shock or by a single contact discontinuity.

We can express (11) in primitive variables V = (�; u; v; p)T as�U�V

�V�t + A

�U�V

�V�x = 0

or �V�t + M�1AM

�V�x = 0 ;
21

where in 3D M =

0BBBBBBBB�
1 0 0 0 0u � 0 0 0v 0 � 0 0w 0 0 � 0juj2
2

�u �v �w 1�1

1CCCCCCCCA .

Comparing with the non-conservative Euler equations (cf. II. 2.3.), we

see that B1 = M�1AM . Since B1 can be diagonalized, also A can:

R�1 A R = Λ̂ ; (15)

where here R = MT(e1) . Thus, we can diagonalize Â and express

(12) as 4 linear equations in 2D�Wj�t + ˆ�j �Wj�x = 0 ; j = 1; 2; 3; 4; ; (16)

22

where W = R̂�1U =

0BBBBB�
� ˆ�

2ˆu + 1
2ˆ2p�� 1

ˆ2p
ˆ�v
ˆ�

2ˆu + 1
2ˆ2p

1CCCCCA are the characteristic variables.

ˆ�1 = ˆu� ˆ ; ˆ�2 = ˆ�3 = ˆu ;̂ �4 = ˆu + ˆ are the constant wave speeds.

Let ÆWj denote the strength of the j-th wave, i.e. the j-th component

of R̂�1(UR �UL) = T̂�1(e1)(VR �VL) . Then, the exact solution of

(16) at the interface can be expressed asWj(0; t) =

8<: WjL = WjR � ÆWj if ˆ�j > 0WjR = WjL + ÆWj if ˆ�j < 0
.

23

0
x

t

discontinuity
contact

shock

x
0

ρ(∆

∆

t)

t

ρ

ρ

L

R

expansion
shock

dx
dt

=
^ ^
u - c u

^
u + c
^ ^

Roe’s approximate Riemann solver.

24

The flux difference can be written as

F
1(UR)� F

1(UL) = R̂Λ̂R̂�1(UR �UL) =
4Xj=1

ÆWjˆ�j r̂j

where r̂j is the jth right eigenvector of Â , i.e. the jth column of R̂ .

Thus, Roe expresses the flux at the interface by

F

1(0; t) = F
1(UL) + Â�(UR �UL) (17)

F

1(0; t) = F
1(UR) � Â+(UR �UL) (18)

F

1(0; t) =
1

2
[F

1(UL) + F
1(UR) � jÂj(UR �UL)] ; (19)

where (19) is obtained by averaging (17) and (18). Â� = R̂Λ̂

�

R̂�1

and jÂj = R̂jΛ̂jR̂�1 , where Λ̂

�
= diag(ˆ��j) with ˆ��j = 1

2
(ˆ�j � jˆ�jj)

and jΛ̂j = diag(jˆ�jj) .

The approximation of the expansion fan by an expansion shock

25

violates the entropy condition and leads to a wrong flux at the

interface, if the expansion fan straddles the time axis, i.e. if the

expansion fan has a sonic condition u� = 0 . E.g. an expansion

shock at the interface will not spread as an expansion fan, but will

erroneously stay unchanged with Roe’s approximate Riemann solver.

We can enforce the entropy condition by introducing a sonic state for a

sonic expansion fan, i.e. if u� = 0 or u + = 0 , or by adding

numerical dissipation to the acoustic waves, if ju� j or ju + j become

small. The latter approach is employed by Harten’s entropy fix:jˆ�1;4j = jˆu� ˆj are replaced by Q(ˆ�1;4) = Q(ˆu� ˆ) , where

Q(�) =

8<: j�j if j�j � Æ
1
2

��2Æ + Æ� if j�j < Æ ; (20)

where e.g. Æ = 0:1ˆ . Note there is no change for a shock.

26

Application to 1D Euler equations

For a structured 1D grid with grid points xi+1=2 ; i = 0; 1; 2; :::; I;xi�1=2 < xi+1=2 ; and cells Ωi = [xi�1=2; xi+1=2] with lengths

∆xi = xi+1=2 � xi�1=2 (equal volume of corresponding control volume

with ∆y = ∆z = 1) and normals S1 = 1 , the cell-centered finite

volume discretization of the 1D Euler equations without source term

can be expressed as, cf. (5):dUidt ∆xi + F
1i+1=2

� F
1i�1=2

= 0 : (21)

If we define UL = Ui and UR = Ui+1 ; we can compute the flux

F

1i+1=2
over the right interface i + 1=2 of cell i by Roe’s approximate

Riemann solver using either right hand side of (17), (18) or (19).

Analogously, F

1i�1=2
is computed with UL = Ui�1 and UR = Ui .

This upwind discretization is first-order accurate.

27

2.3. Total Variation Diminishing Schemes

We shall illustrate the extension of Roe’s approximate Riemann solver

to a second-order Total Variation Diminishing (TVD) method using

the MUSCL approach and slope limiters. The approach can be used

for any Riemann solver. Note that the TVD property and thus

convergence can only be shown for 1D scalar hyperbolic conservation

laws. However, TVD schemes have proved to work fine even for

multidimensional nonlinear hyperbolic systems like the Euler

equations.

With constant reconstruction of the flow variables inside a cell by the

cell average, we obtain a first-order spatial discretization. Employing

adjacent cell averages, we can obtain a linear or quadratic

reconstruction and thus second- or third-order accurate schemes. With

such reconstructions, we can determine the flow variables on either

28

side of a cell interface more accurately. With a quadratic ansatz, van

Leer’s MUSCL (Monotone Upwind-centered Schemes for Conservation

Laws) approach yields for the extrapolated primitive variables at the

interface i + 1=2:

VLi+1=2 = Vi +
1

2
[(1 + �)ÆxVi+1=2 + (1� �)ÆxVi�1=2]

∆xi

2
(22)

VRi+1=2 = Vi+1 � 1

2
[(1 + �)ÆxVi+1=2 + (1� �)ÆxVi+3=2]

∆xi+1

2
(23)

where ÆxVi+1=2 = Vi+1�Vixi+1�xi approximates the x-derivative across the

interface i + 1=2 . The midpoint of cell i is xi = 1
2
(xi+1=2 + xi�1=2) .� = 1 corresponds to central discretization, which leads to Gibb’s

phenomenon. But even the upwind schemes, e.g. the second-order

pure upwind scheme with � = �1 , Fromm’s second-order scheme with� = 0, and the third-order upwind-biased scheme with � = 1
3

, lead to

oscillations at discontinuities. Therefore, the slopes are limited by

29

slope limiters. Thereby, the slope across a discontinuity is set to zero,

and the non-oscillatory first-order method is recovered, while in

smooth flow regions higher accuracy is obtained.

Limiting the slopes in (22) and (23) yields the slope limited MUSCL

approach of the primitive variables V (better than U)

VLi+1=2 = Vi +
1

2
[(1 + �)Æ+x Vi + (1� �)Æ�x Vi]∆xi

2
(24)

VRi+1=2 = Vi+1 � 1

2
[(1 + �)Æ�x Vi+1 + (1� �)Æ+x Vi+1]

∆xi+1

2
(25)

where the limited slopes Æ�x can be defined by different limiters, e.g.Æ+x Vi = minmod(ÆxVi+1=2; � ÆxVi�1=2) ;Æ�x Vi = minmod(ÆxVi�1=2; � ÆxVi+1=2) ;
where �1 � � < 1 and 1 � � � 3��

1�� are required for at least

second-order TVD schemes. The popular minimum-modulus limiter is

30

defined by

minmod(a; b) =

8>><>>: a if jaj � jbj and ab > 0b if jbj < jaj and ab > 0

0 if ab � 0

= sgn(a)maxf0;minfjaj; sgn(a)bgg :
x

u

| | | | |
x i-1/2 xi+1/2

xi
o

o

o

o

o

Ui+1/2
L

Ui+1/2
R

Limited MUSCL approach for u at xi+1=2 with � = �1 and � = 1 .

31

Knowing VL;Ri+1=2, we can compute UL;Ri+1=2 , if we need it. While Roe’s

approximate Riemann solver (17), (18) or (19) yields a first-order

spatial discretization with F
1i+1=2

= F
1i+1=2

(Ui;Ui+1) used in (21), we

obtain a second-order (third-order for � = 1
3
) spatial discretization

(except at discontinuities) with

F
1i+1=2

= F
1i+1=2

(ULi+1=2;URi+1=2) (26)

used in (21), i.e. if Roe’s approximate Riemann solver is applied with

UL = ULi+1=2 given by (24) and UR = URi+1=2 given by (25).

32

2.4. Multidimensional Application

Suppose we want to compute the inviscid flux F � S in (5) at face ij

separating cell i on the left and cell j on the right side using Roe’s

approximate Riemann solver. Using (19), we can express the Roe flux

as:

(F � S)ij =
1

2
[(F(UL) + F(UR)) � Sij � jÂijj(UR �UL)] ; (27)

where jÂijj = R̂(nij)jΛ̂(Sij)jR̂�1(nij) with the outer unit normal

nij =
SijjSij j and using the Roe-average (14). Remember R̂(n) = M̂T̂(n)

and R̂�1(n)(UR �UL) = T̂�1(n)(VR �VL) .

For UL = Ui and UR = Uj in (27), we obtain the first-order Roe flux.

To get a TVD scheme, we can employ the flux limited MUSCL

approach (22) and (23). On a structured grid, we can use that ansatz

simply in the normal direction, i.e. replace x by n.

33

o o
o

o
i - 1 i

i + 1 i + 2

j
ij

Sij

Interface ij between cells i and j for structured grid.

On an unstructured grid, we can compute cell gradients rVi using the

Green-Gauss theorem (6) and approximating the surface integrals by

the midpoint rule with the midpoint values on the cell interfaces

approximated by the averages of the adjacent cells. Then, ÆxVi+1=2 can

be replaced by (Vj �Vi)(xj � xi)=jxj � xij2 , ÆxVi�1=2 by rVi ,ÆxVi+3=2 by rVj , ()∆xi

2
by () � (xij � xi) and �()∆xi+1

2
by

() � (xij � xj) , where xij is the midpoint on face ij .

34

o

o
i

j

ij

Sij

Interface ij between cells i and j for unstructured grid.

If the extrapolated variables are obtained by the slope limited MUSCL

approach, Roe’s approximate Riemann solver (27) is applied with

UL = ULi+1=2 and UR = URi+1=2 .

The inviscid fluxes across the other interfaces of cell i in (5) are

determined analogously.

35

2.5. Numerical Dissipation

In general, approximate Riemann solvers yield quite accurate results

for the Euler and Navier-Stokes equations in a wide range of Mach

numbers. If one is not interested in high accuracy for strong shocks,

contact discontinuities or shear layers, one can save CPU time by

replacing an approximate Riemann solver by central inviscid flux

discretization plus numerical dissipation. Jameson (1981) proposes for

a structured grid:

(F � S)i+1=2 =
1

2
[F(Ui) + F(Ui+1)] � Si+1=2 + Di+1=2 ; (28)

where the numerical dissipation is defined by

Di+1=2 = ��i+1=2 [�(2)i+1=2 (Ui+1 �Ui) ��(4)i+1=2 (Ui+2 � 3Ui+1 + 3Ui �Ui�1)] (29)

36

with the spectral radius of the Jacobian matrix of the inviscid flux�i+1=2 = j1
2

(ui + ui+1) � Si+1=2j+ 1

2
(i + i+1)jSi+1=2j

and the nonlinear coefficients of the first- and third-order numerical

dissipation (finally of second and fourth differences)�(2)i+1=2 = �(2) maxf�i; �i+1g ;�(4)i+1=2 = maxf0; �(4) � �(2)i+1=2g ;
The pressure sensor �i =

jpi+1 � 2pi + pi�1jpi+1 + 2pi + pi�1

is relatively large near shocks and zero for linear pressure distributions.

For transonic flow, typical values of the parameters are �(2) � 1
4

and�(4) � 1
256

. If �(2)i+1=2 > �(4) , the third-order numerical dissipation is

37

turned off. Thus, near shocks, only the first-order numerical

dissipation is active. That procedure corresponds to limiting in the

MUSCL approach for TVD schemes.

Note that numerical dissipation introduces artificial viscosity. Since it

scales with the grid spacing, it is reduced with grid refinement. In

shear layers, we must make sure that the artificial viscosity is

negligible compared with the true physical viscosity.

38

2.6. Boundary Conditions

2.6.1. Solid Wall

At a stationary solid wall next to cell i, only the average wall pressurepwi needs to be determined, becauseZ
Γwi F � n dA = pwi 0BB� 0

Swi
0

1CCA (30)

where Swi is the outer wall face normal
R

Γwi ndA .

MacCormack: “All you need is p .“

Often, pwi can be approximated by the pressure pi in cell i. The

approximation is justified for the Euler equations, if the wall is plane,

and for the Navier-Stokes equations, if the boundary layer

39

approximation applies (i.e. Re1L � 1 and no separation nor

reattachment). Otherwise, the normal momentum equation for inviscid

and viscous flow, respectively, has to be discretized.

o

o

oo

a

b
c

d

1

2

3

4

Ωi

Swi

Control volume 1234 to compute gradients at wall point a .

40

The gradients at the wall points a and d can be computed as indicated

in 1.4. using the above control volume for a and the wall boundary

conditions for viscous flow, e.g. uw = 0 and Tw given, on 4� a� 1 . A

simpler approximation is obtained from e.g.

�Twi�n � T4�T3jx4�x3j SwijSwi j . If Tw

is given, �w and �w can be computed directly. Otherwise, �w and �w

can be approximated by adjacent cell values.

Thus, the viscous wall flux for a stationary wall can be computed fromZ

Γwi Fv � n dA =

0BB� 0�wi � Swikwi(rT)wi � Swi
1CCA : (31)

For an adiabatic wall, the wall heat flux is zero, i.e. the last

component of (31) is zero.

41

2.6.2. Inflow and Outflow

The boundary conditions indicated in II. 2.6.2 can be used. Instead of

employing the compatibility relations for the outgoing waves, one can

often simply extrapolate the corresponding Riemann invariants.

C +

C

C -

0

∆

Ω i

t

t

tangential to b

normal to bb

Let us consider a subsonic outflow boundary b (0 < ub � n < b)

adjacent to cell i with outer unit normal vector n. Assume that the

42

time step ∆t is chosen such that the characteristics C+ withdndt = ub � n + and C0 with dndt = ub � n come from cell i. Then the

corresponding Riemann invariants can be approximated (remember we

are neglecting tangential derivatives and source terms) bypb�b =

pi�i
ub � (ub � n)n = ui � (ui � n)n (32)

ub � n +
2 � 1

b = ui � n +
2 � 1

i : (33)

Using the boundary condition pb = pa , where pa is the ambient

pressure, we can determine Vb and thus compute the inviscid boundary

flux F(Ub) . The viscous boundary flux Fv(Ub) is usually neglected.

43

3. Time Discretization

The cell-centered finite volume discretization in cell i (5) can be

expressed in semi-discrete formdUidt = R(t;Ui;Uj) ; (34)

where the residual

R(t;Ui;Uj) = � 1Vi 4Xl=1

[F1 S1 + F2 S2]l! + Fei

is defined by the particular flux and source term discretizations. The

fluxes and source term are functions of the cell average Ui and

neighboring cell averages denoted by Uj . Time dependent boundary

conditions enter via the boundary fluxes and make the residual a

function of time, too.

44

Thus, the finite volume discretization leads to a large system of ODEsdUdt = R(t;U) ; (35)

where U denotes the vector with all the cell averages Ui in the

computational domain. The i-th vector equation of (35) is defined by

(34).

The system of ODEs (35) can be solved by any suitable ODE-solver.

We shall outline examples of two popular classes: explicit Runge-Kutta

methods and implicit linear multistep methods.

45

3.1. Explicit Runge-Kutta Methods

Unsteady non-stiff flow problems, i.e. the Euler and Navier-Stokes

equations with moderate Mach and Reynolds numbers, can be

integrated in time using the classical fourth-order Runge-Kutta

method:

U(1) = Un + ∆t
2

R(tn;Un) ;
U(2) = Un + ∆t

2
R(tn +

∆t
2

;U(1)) ;
U(3) = Un + ∆t R(tn +

∆t
2

;U(2)) ;
Un+1 = Un + ∆t

6
(R(tn;Un) + 2R(tn +

∆t
2

;U(1))+ ;
2R(tn +

∆t
2

;U(2)) + R(tn + ∆t;U(3))) : (36)

When applied to the scalar test problem dudt = �u , � 2 C constant,

46

the Runge-Kutta method (36) is stable, if �∆t 2 S , where S is the

kidney shaped stability domain. If � is real, the stability condition is�2

p
2 � �∆t � 0. If � is imaginary , the stability condition is�2

p
2 � �∆t � 2

p
2.

−5 −4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

Re (λ ∆ t)

Im
 (

 λ
 ∆

 t
)

Stability Domain of Classical Runge−Kutta Method

S

47

A linear stability condition for the Navier-Stokes equations can be

derived from the von Neumann stability analysis applied to the

second-order central finite difference method (Müller (1990)):

∆t � mini f∆ti ;∆tvi g : (37)

The inviscid time step ∆ti is defined by

∆ti = 2CFLVi�i (38)

with CFL depending on the Runge-Kutta method (see below) and �i

determined by summing the spectral radii of the Jacobian matrices of

the inviscid fluxes over the faces ij of the control volume Ωi (4 faces

for quadrilateral) �i =
4Xj=1

(ju � Sj+ jSj)ij :
48

The viscous time step ∆tvi is approximated by

∆tvi = 2 jRKjVi�vi (39)

with RK depending on the Runge-Kutta method (see below) and �vi

determined by summing the simplified spectral radii of the Jacobian

matrices of the viscous fluxes over the faces ij of the control volume Ωi

(4 faces for quadrilateral)�vi =
1

4Vi 4Xj=1

(�jSj2)ij
with � = �� maxf4

3

; Prg : If we approximate the cell face values by the

values in cell i, we obtain on a Cartesian grid:

∆ti = CFL � juij+ i
∆x +

jvij+ i
∆y ��1 ;

49

∆tvi = jRKj ��i� 1

∆x2
+

1

∆y2

���1 :

The stability bounds CFL and RK of the Runge-Kutta method are

chosen such that the setfz 2 C jRK � Re(z) � 0 and jIm(z)j � CFLg

is contained in the stability domain S of the Runge-Kutta method.

E.g. for the classical Runge-Kutta method (36): CFL = 2 andRK = �1:5 .

Steady state problems R(U) = 0 are often calculated by solvingdUdt = R(U) for the steady state. Then, low-storage Runge-Kutta

50

methods like the following one are preferred:

U(1) = Un + ∆t

4
R(Un) ;

U(2) = Un + ∆t
3

R(U(1)) ;

U(3) = Un + ∆t
2

R(U(2)) ;

Un+1 = Un + ∆t R(U(3)) : (40)

This four-stage Runge-Kutta method has the same stability domain as

the classical one (36). (40) is fourth- and second-order accurate for

linear and nonlinear ODEs, respectively. Many other Runge-Kutta

methods may be found in the literature, e.g. a third-order one for

TVD methods by Shu (SIAM J. Sci. Comput., 9(6):1073-1084, 1988).

51

Local Time Stepping

The convergence to steady state can be enhanced by local time

stepping, i.e. by choosing the time step for each cell individually to get

optimal local stability (e.g. good damping for multigrid):

∆ti = min f∆ti ;∆tvi g : (41)

Here, the minimum of the local inviscid and viscous time steps is

taken, whereas in (37) the minimum over the local time steps in all

cells is taken. Instead of (41), one can use the geometric average to get

a smoother transition between inviscid and viscous time steps:

∆ti =
∆ti ∆tvi

∆ti + ∆tvi :
A considerable convergence acceleration can be achieved with a

multigrid method, cf. e.g. Wesseling (1992).

52

3.2. Implicit Linear Multistep Methods

To avoid restrictive time step conditions, implicit methods are

preferred for stiff problems, e.g. large Reynolds number flows, and for

steady state problems.

To solve (35) for the steady state, the implicit Euler method is suitable:

Un+1 � Un
∆t = R(Un+1) : (42)

For time dependent problems, the second-order backward differencing

formula
3
2
Un+1 � 2Un + 1

2
Un�1

∆t = R(tn+1;Un+1) (43)

is preferred over the second-order trapezoidal rule

Un+1 � Un

∆t =
1

2
(R(tn;Un) + R(tn+1;Un+1)) ; (44)

53

because the former has a much larger stability domain.

The nonlinear equation (42) for Un+1 (analogously (43) and (44)) can

be solved by Newton’s method (often called the Newton-Raphson

method) starting with U�=0 = Un :�

1

∆t � �R(U�)�U

�
∆U� = �U� �Un

∆t + R(U�) ; � = 0; 1; 2; ::: (45)

where ∆U� = U�+1 �U� , until a convergence criterion likek∆U�k � � is reached. Then, U�+1 is accepted as Un+1 . The

Jacobian matrix of the residual �R(U�)�U
is usually simplified, e.g. for the

Roe-flux in (21) by

Â��i+1=2(∆U�i+1 �∆U�i) + Â+�i�1=2(∆U�i �∆U�i�1) :
Often, only the first iteration of Newton’s method is computed, i.e.

(45) for � = 0 only.

54

For each �, (45) represents a sparse linear system. For 1D flow

problems, the linear system has a small bandwidth and can be solved

directly by LU factorization. For multidimensional flow problems, (45)

can be solved by any suitable iterative method, cf. Saad (1996).

Popular methods have been:� Beam and Warming scheme (1978).

The matrix is factorized into 1D systems in each grid direction.

E.g. (I + Lx + Ly)∆U � (I + Lx)(I + Ly)∆U . Each 1D system is

solved directly.� Lower-upper symmetric Gauss-Seidel (LU-SGS) method by Yoon

and Jameson (1988). Symmetric Gauss-Seidel relaxation method

starting in the lower left corner of the structured grid indices (i; j)
and going back and forth to upper right corner on diagonalsi + j = onstant . In 2D, only 4� 4 systems have to be solved.

55

� Generalized minimum residual (GMRES) method by Saad and

Schultz (1986). Generalization of the conjugate gradient method.

The solution of the linear system Ax = b is sought in the Krylov

subspace spanned by the residual r0 = b� Ax0 of the initial guessx0 and a certain number of powers of A applied to r0. Only

matrix-vector and vector-vector operations are involved, but

enough memory and preconditioning is needed.

To solve (43) for unsteady problems, Jameson (1991) introduces a dual

time � and replaces the corresponding left hand side of (45) by the

dual time derivative. The resulting equationdUd� = � 3
2
U � 2Un + 1

2
Un�1

∆t + R(tn+1;U) (46)

is solved for the steady state using all available convergence

accelerations (local time stepping, Runge-Kutta method of type (40)

with residual smoothing, multigrid) to determine the steady state

56

solution of (46), i.e. Un+1 , in O(10) multigrid cycles for the unsteady

Euler equations.

57

3.3. Time Derivative Preconditioning

The objective of the time derivative preconditioning is to modify the

compressible flow equations such that the convergence to steady state

is faster with the modified equations than with the original equations

when using a time marching method for their numerical solution. The

approach has been developed for low Mach number flow, for which the

wave speeds are very disparate. We consider the 2D Euler equations�U�t +

�F
1(U)�x +

�F
2(U)�y = 0 (47)

where U = (�; �u; �v; �E)T ;F
1 = (�u; �u2 + p; �vu; �Hu)T ;

F
2 = (�v; �uv; �v2 + p; �Hv)T .

The eigenvalues of a linear combination of the Jacobian matrices

A1 =

�F

1�U
and A2 =

�F

2�U
, i.e. C(k) = k1A1 + k2A2 with jkj = 1, are�1 = u � k� ; �2 = �3 = u � k; �4 = u � k + (48)

58

Thus, the hyperbolic system is ill-conditioned for M ! 0, because the

characteristic condition number of C(k), i.e. j�max=�minj, reads�(C(k)) =
ju � kj+ ju � kj � 1 +

1M �!1 for M �! 0 (49)

Thus, for low Mach number flows, the systems are ill-conditioned,

when using implicit methods. For explicit methods, the stability

condition requires very small time steps, and very many time levels are

needed for steady state calculations of low Mach number flows.

In order to obtain a well-conditioned hyperbolic system without

changing the steady state, the time derivative in (47) is multiplied by a

preconditioning matrix P�1, cf. E. Turkel, “Preconditioning

Techniques in CFD”, Annu. Rev. Fluid Mech. 1999, 31:385-416.

P�1�U�t +

�F
1�x +

�F
2�y = 0 : (50)

59

As an example, we consider the Weiss-Smith preconditioner

P�1 =

�U�W
P�1w �W�U

; (51)

where dW =

�dp� ; du; dv; dp� 2d��T are the symmetrizing variables

and

P�1w =

0BBBBB�
M�2 0

1

1

0 1
1CCCCCA : (52)

60

The eigenvalues of PC(k) are
�1 =

1

2
(1 + M2)u � k� �1

4
(1�M2)2(u � k)2 + M22

� 1

2

�2 = �3 = u � k (53)�4 =
1

2
(1 + M2)u � k +

�
1

4
(1�M2)2(u � k)2 + M22

� 1

2

The system (50) with (51) is well conditioned in the incompressible

limit, because the characteristic condition number of PC(k) for

u � k 6= 0 behaves as�(PC(k)) �! p
5 + 1p

5� 1
= 2:618 for M �! 0 (54)

When employing the time derivative preconditioning, the Riemann

solver, artificial viscosity and characteristic boundary conditions

61

should be designed for the system�U�t + P

�F

1�x + P

�F

2�y = 0 (55)

and not for the original Euler equations, because the eigenvalues and

eigenvectors are changed by time derivative preconditioning. Using the

correct formulation of the numerical dissipation (either inherent in

upwind schemes or added to central schemes) for (55), the numerical

viscosity scales according to (54) and no longer according to (49).

Thus, the accuracy of low Mach number computations is considerably

increased, when solving the preconditioned system (55) or (50) with

the correctly scaled numerical dissipation.

62

3.4. Perturbation Formulation

In non-reacting low speed flow, the changes in pressure, density and

temperature are usually extremely small, e.g. ∆pp = O(M) and O(M2)

for unsteady and steady flow, respectively. The computation of such a

small change, e.g. ∆p = pR � pL, leads to cancellation, if j∆pjp < �m,

where �m is the machine accuracy of the computer. �m = 2�24 � 10�7

and �m = 2�53 � 10�16 for IEEE single and double precision, resp.

In order to avoid cancellation for compressible low Mach number

computations and in order to retain the conservative form of the

governing equations, we introduce the perturbed conservative variables

cf. J. Sesterhenn, B. Müller, H. Thomann, JCP 151, 597-615 (1999),

U0(x; t) = U(x; t)�U0; (56)

where U0 = (�0; 0; p0�1
)T is the vector of the conservative variables at

63

stagnation conditions. We have the following relations

u0 =
(�u)0�0 + �0 ;p0 = (� 1)[(�E)0 � 1

2
(�u)0 � u0];

(�H)0 = (�E)0 + p0:
The Euler equations in perturbation formulation read��0�t +r � (�u)0 = 0 ;�(�u)0�t +r � (�u)0u0 +rp0 = 0 ; (57)�(�E)0�t +r � ((�H)0u0 + (�H)0u

0) = 0 :
We recommend the perturbation formulation for steady and unsteady

compressible low Mach number flow.

64

4. Finite Volume Methods on Structured
and Unstructured Grids

Finite volume methods on structured grids are in general more

accurate but less flexible for complex geometries and for grid

adaptation than finite volume methods on unstructured grids. To

retain accuracy in thin shear layers, e.g. boundary layers, unstructured

grid methods usually use quadrilaterals in 2D and prisms or hexahedra

in 3D shear layers. Outside shear layers, unstructured finite volume

methods prefer triangles and tetrahedra, respectively.

4.1. Structured Finite Volume Method

We consider the cell-centered finite volume method discussed in section

1. on a structured grid. For a 2D structured grid, there exists a

coordinate transformation from the physical x-y plane to the

computational �-� plane, i.e. the i-j plane. In the figure below, I = 7

65

and J = 5 grid points in the i- and j-directions, respectively,

constitute a 7� 5 H-type grid for a bump.

1

J

1 I

i, j
1, j

2, j
I−1,j

i, 1

i, J−1

i, 2

3, j I−2,j

y

x

j+1

j

i
i+1

Structured 7� 5 H-type grid for a bump.

66

4.1.1. Metric Terms

Suppose the coordinates of the grid points xi;j, i = 1; :::; I, j = 1; :::; J ,

have been provided by a grid generation program. The face normals SI

in the i-direction are determined by (cf. p. 9 and figure above)

SIi;j =

0� yi;j+1 � yi;j�(xi;j+1 � xi;j)
1A ; i = 1; :::; I; j = 1; :::; J � 1:

Similarly, the face normals SJ in the j-direction are determined by

SJi;j =

0� yi;j � yi+1;j�(xi;j � xi+1;j)
1A ; i = 1; :::; I � 1; j = 1; :::; J:

67

The areas V of the quadrilateral cells are computed as

Vi;j = 0:5j(xi+1;j+1 � xi;j)(yi;j+1 � yi+1;j)� (yi+1;j+1 � yi;j)(xi;j+1 � xi+1;j)j ;i = 1; :::; I � 1; j = 1; :::; J � 1:

Thus, with two loops, one over i and one over j, the metric terms of a

2D structured grid can be determined. The formula for 3D are given in

the appendix.

4.1.2. Numerical Fluxes

With the cell averages Ui;j; i = 1; :::; I � 1; j = 1; :::; J � 1; at time

level n and the face normals, the numerical fluxes in the interior can

be determined. The left MUSCL extrapolation (24) at the face Γi+1=2;j

with normal SIi+1;j, cf. the structured grid figure above, needs Ui�1;j,
Ui;j, Ui+1;j. Thus, at all interior faces in the i-direction, except for

Γ1+1=2;j with normal SI2;j, the left MUSCL extrapolation (24) can be

68

computed. At Γ1+1=2;j with normal SI2;j, we simply use the zeroth

order extrapolation UL
1+1=2;j = U1;j. Similarly, the right MUSCL

extrapolation (25) at the face Γi+1=2;j with normal SIi+1;j needs Ui;j,
Ui+1;j, Ui+2;j and can therefore be determined at all interior faces in

the i-direction, except for ΓI�3=2;j, where URI�3=2;j = UI�1;j is used.

Then, an approximate Riemann solver can be used to compute the

inviscid flux FIi+1;j over face Γi+1=2;j with normal SIi+1;j. Roe’s

approximate Riemann solver (27) yields

FIi+1;j = 0:5[(F(ULi+1=2;j)+F(URi+1=2;j))�SIi+1;j � jÂi+1;jj(URi+1=2;j�ULi+1=2;j)] ;

(58)

where jÂi+1;jj is computed with the Roe-average (14) of ULi+1=2;j and

URi+1=2;j and the face normal SIi+1;j.
The inviscid flux FJi;j+1 over face Γ1;j+1=2 with normal SJi;j+1 can be

determined analogously.

69

The viscous fluxes FIvi+1;j and FJvi;j+1 can be computed as described in

section 1.4. If a shear layer is aligned in the i-direction, e.g.

approximately parallel to the grid line j = 1 for a boundary layer, the

viscous variations in the i-direction can often be neglected, because

they are much smaller than those in the j-direction. That viscous flux

approximation is called thin layer approximation. Then, the gradients

at face Γi;j+1=2 with normal SJi;j+1 can be approximated by a

simplification of (8):

(rT)i;j+1=2 � 2Vi;j + Vi;j+1
(Ti;j+1 � Ti;j)SJi;j+1 : (59)

With the viscosity average �i;j+1=2 � 0:5(�i;j + �i;j+1), the viscous

flux in the j-direction is approximated by

FJvi+1;j = Fvi;j+1=2 � SJi;j+1 : (60)

The inviscid and viscous flux approximations are added to yield the

70

numerical fluxes in the i- and j-directions, i.e. FI = FI + FIv and

FJ = FJ + FJv.
The numerical fluxes at the boundaries are computed as discussed in

section 2.6.

Then, the flux balance of cell i; j, cf. pp. 10-11, is computed as

FBi;j = FIi+1;j � FIi;j + FJi;j+1 � FJi;j (61)

by looping over i = 1; :::; I � 1 and j = 1; :::; J � 1.

The ODE system (34) becomesdUi;jdt = R(t;Ui;j;Ui�1;j;Ui�2;j;Ui;j�1;Ui;j�2) ; (62)

with the residual R(t;Ui;j;Ui�1;j;Ui�2;j;Ui;j�1;Ui;j�2) = � 1Vi;j FBi;j.
71

4.2. Unstructured Finite Volume Method

The cell-centered finite volume method outlined for quadrilateral cells

and structured grids in the previous sections can be applied for

polygonal cells and unstructured grids, because the number of faces of

a cell can be arbitrary and the numerical flux approximation only

depends on adjacent cell averages.

However, vertex (i.e. node-centered) finite volume methods have been

preferred for triangular unstructured grids, because for a I � J

structured grid the unknowns at only IJ vertices (i.e. nodes) need to

be stored, while the cell averages in 2(I � 1)(J � 1) triangles need to

be stored for a cell-centered finite volume method. In 3D, the vertex

finite volume methods need about 5 to 7 times less memory than the

cell-centered finite volume method, because there are about 5� 7 more

tetrahedra than vertices in 3D tetrahedral grids.

72

For a grid, the corresponding dual grid can be defined, cf. figure 1.

−1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Unstructured grid and dual grid for bump

Figure 1: Unstructured grid (solid lines) and dual grid (���).

73

The median dual is often chosen, because it is defined elementwise by

the centroids of adjacent cells and the midpoints of adjacent edges, cf.

figure 2.

Dual Mesh

Figure 2: Median dual.

74

For the edge ij from vertex i to vertex j of the grid, the corresponding

face ij of the dual grid consists of the union of a left and right line

(union of several surfaces in 3D) with the face normal Sij, cf. figure 3.

i

j

Sij

Edge And Face

r

l

Edge Face

Figure 3: Edgeij, faceij and face normal Sij.
75

The computational work of a finite volume discretization is

proportional to the number of faces. Since a face of the dual grid

corresponds to an edge of the grid and the number of edges is equal to

the number of faces (except for the boundaries) for a 2D grid, the

computational work is about the same for vertex and cell-centered

finite volume methods in 2D. In 3D grids, however, there are about

twice as many faces than edges, cf. T.J. Barth, in AGARD-R-787,

May 1992, pp. 6-1 - 6-61. Therefore, the computational work for the

cell-centered finite volume method is about twice as much as for the

vertex finite volume method. On the other hand, the cell-centered

finite volume method is expected to be more accurate, because its grid

cells (tetrahedra) are smaller than the dual grid cells (polyhedra).

4.2.1. Edge-Based Data Structure

Here, we consider the dual-based vertex finite volume method in 2D.

We define an edge-based data structure, cf. T.J. Barth, in

76

AGARD-R-787, May 1992, pp. 6-1 - 6-61. The integer array

ND(NEDGE,4) for NEDGE edges contains, cf. D.J. Mavripilis and A.

Jameson, AIAA J., Vol. 28, No. 8, Aug. 1990, pp. 1415-1425, and

figure 3

i = ND(n,1) % number of origin vertex

j = ND(n,2) % number of destination vertex

l = ND(n,3) % number of left cell

r = ND(n,4) % number of right cell

where n = 1,...,NEDGE is the edge number.

The element connectivity NEL(NELEMENT,3) for NELEMENT elements

(i.e. cells) is employed as for standard finite element methods, cf. C.

Johnson’s book (1987), pp.45-46, and figure 4

77

i = NEL(m,1) % number of first vertex

j = NEL(m,2) % number of second vertex

l = NEL(m,3) % number of third vertex

where m = 1,...,NELEMENT is the element number. Once the first

vertex is chosen, the second and third vertices of the element are

determined in counter-clockwise direction.

78

i

j

k

m

Figure 4: Element m and its vertices i, j, k.

79

4.2.2. Metric Terms

The face normals S of the dual grid associated to the edges of the grid

(figure 3) and the areas V of the polygonal cells (figure 2) can be

computed by looping over all edges. We assume that the boundary

edges are oriented such that the interior is to the left and that the

number to the right, i.e. the exterior, is flagged with 0. The control

volume associated with a boundary point is shown in figure 5.

80

w

V

S

wi

i

wi

wi

Figure 5: Control volume at boundary point wi.
The areas V of the median dual cells associated with the vertices are

first set to zero. Then, we loop over all edges, compute the left parts of

the face normals and for interior edges also the right parts. The area

81

contributions associated with the edge ij, i.e. two triangles defined by

vertex i - midpoint of edge ij - centroid l and centroid r, respectively,

are assembled. The coordinates of grid point np are given byGP (np; 1 : 2).

V = 0

for n=1,NEDGE

i = ND(n,1)

j = ND(n,2)

nl = ND(n,3)

nr = ND(n,4)

%Centroid, 3 points of left triangle.

p1 = GP(NEL(nl,1),:) % coordinates of first vertex

p2 = GP(NEL(nl,2),:) % coordinates of second vertex

p3 = GP(NEL(nl,3),:) % coordinates of third vertex

82

cl = [(p1(1)+p2(1)+p3(1))/3, (p1(2)+p2(2)+p3(2))/3]

% coordinates of centroid

%Midpoint m on edge i j.

pi = GP(i,:) % coordinates of vertex origin i

pj = GP(j,:) % coordinates of vertex destination j

pm = 0.5*(GP(i,:)+(GP(j,:)) % coordinates of midpoint m

%Face normal, left part.

Sl = [cl(2)-pm(2), -(cl(1)-pm(1))]

S(n) = Sl

%Area of triangle i - m - l assembled.

Vl=0.5*|(pm(1)-pi(1))*(cl(2)-pm(2))-(pm(2)-pi(2))*(cl(1)-pm(1))|

V(i) = V(i) + Vl

V(j) = V(j) + Vl

83

IF (nr.NE.0) THEN

% similar for right triangle

...

Sr=...

S(n) = S(n) + Sr

Vr = ...

V(i) = V(i) + Vr

V(j) = V(j) + Vr

END IF

END

4.2.3. Numerical Fluxes

For a first-order method, the inviscid flux balance is computed by

looping over all edges, because the edges of the grid correspond to the

faces of the dual grid. The program of p. 11 becomes:

84

DO n=1,NEDGE

i = ND(n,1)

j = ND(n,2)Sij = S(n)FLUXij = flux (U (i), U (j), Sij)

FB (i) = FB (i) + FLUXij
FB (j) = FB (j) - FLUXij
END DO

The boundary conditions are considered in the boundary fluxes, which

are added to the flux balances at the boundary vertices. As numerical

flux function, we can for example choose Roe’s approximate Riemann

solver (27). A simpler but less accurate flux approximation is based on

the Lax-Friedrichs method. For unstructured grids, the Lax-Friedrichs

numerical flux can be computed as, cf. D. Kröner’s book (1997), p.182:

85

(F � S)ij =
1

2
[(F(UL) + F(UR)) � Sij � �(Âij)CFL (UR �UL)] ; (63)

where �(Âij) = jûij � Sijj+ ˆjSijj denotes the spectral radius of Âij andCFL =
∆ti
2Vi Pj2N(i) �(Âij) is the CFL number, cf. p. 48. N(i) is the

set of vertices, which have a common edge with vertex i. Instead of the

Roe-average, the arithmetic averages may be taken.

Second-order accuracy can be obtained by a linear reconstruction, cf.

M. Nilsing’s Master’s thesis, Uppsala University, Jan. 2002. With van

Leer’s MUSCL approachU�ij = Ui + R 1

2

ij � rUiU+ij = Uj �R 1

2

ij � rUj (64)

where R 1

2

ij is the position vector on edgeij from vertex i to the

midpoint of edgeij and �R 1

2

ij is the corresponding position vector

86

from vertex j. U�ij is the linear extrapolation of U from vertex i andU+ij is the linear extrapolation of U from vertex j. See fig. 3 and 6.

Position Vectors

i

j

−R R

Figure 6: Position vector R = R 1

2

ij and �R = �R 1

2

ij.
87

The x- and y-derivatives are approximated with the Green-Gauss

theorem: ru � 1V ZΩ

rudV =
1V Z�Ω

undA (65)

and the trapezoidal rule:rUi � 1Vi Xj2N(i) 1

2
(Ui + Uj)Sij : (66)

To suppress oscillations at discontinuities, the approximated values

must not exceed maximum or minimum values of adjacent cells.

Therefore, the slopes are limited by slope limiters. Those applied to

(64) yield: U�ij = Ui + ΦiR 1

2

ij � rUiU+ij = Uj � ΦjR 1

2

ij � rUj; (67)

where the limiter Φ is defined as Barth-Jesperson limiter, cf. T.J.

88

Barth and D.C. Jesperson, AIAA-89-0366, 1989:

Φij =

8>>><>>>:
min�1; umaxi �ui

¯uij�ui � ; if ¯uij � ui > 0 umaxi = max(ui; uj); j 2 N(i)min�1; umini �ui
¯uij�ui � ; if ¯uij � ui < 0 umini = min(ui; uj); j 2 N(i)

1; if ¯uij � ui = 0

(68)

where Φi = min(Φij), j 2 N(i), and ¯uij = u�ij from the linear

reconstruction (64). The Venkatakrishnan limiter, cf. V.

Venkatakrishnan, JCP 118 (1995), pp. 120-130, is defined as:

Φij =

8>>><>>>:

∆2max+�2i+2∆�∆max
∆2max+2∆2�+∆�∆max+�2i ; if ∆� > 0

∆2min+�2i+2∆�∆min

∆2min+2∆2�+∆�∆min+�2i ; if ∆� < 0

1 if ∆� = 0

∆� = ¯uij � ui

∆max = umaxi � ui

∆min = umini � ui�2i = (k∆̄i)3

(69)

89

where ∆̄i is the local grid spacing. The control volume is approximated

as a circle and then ∆̄i is defined as its diameter. k is a constant and

signifies a threshold: oscillations below this value are allowed to exist

in the solution whereas large values imply no limiting at all. Thus, ask is increased from 0, the convergence will improve until an unstable

solution occurs. Here k = 5. ¯uij, umini ,umaxi and Φi are defined as in

the Barth-Jesperson limiter.

The solution variables are reconstructed componentwise and the

primitive variables are used in the reconstruction step. The

conservative variables can reduce the accuracy at contact

discontinuities and therefore the use of the primitive variables is

recommended.

90

The gradients for the viscous flux approximation can be computed by

averaging the gradients computed at the vertices withrUij =
1

2
(rUi +rUj) : (70)

However, this approximation leads to a wide stencil with poor

accuracy (double spacings) and stability (odd-even decoupling)

characteristics. Therefore, more compact viscous flux approximations

are preferred, cf. A. Haselbacher, J.J. McGuirk, G.J. Page, AIAA J.,

Vol. 37, No. 2, Febr. 1999, pp. 177-184, and A. Haselbacher, J.

Blazek, AIAA J., Vol. 38, No. 10, Oct. 2000, pp. 2094-2102. We can

get a compact approximation by applying the Green-Gauss theorem in

each element, i.e. each cell of the grid and not the dual grid, cf. figure

7, e.g. the gradient of temperature T :rTa � 1Va ZΩarTdV =
1Va Z�Ωa TndA : (71)

91

Using the trapezoidal rule, the cell-averaged gradient becomes:
rTa � 1Va kiXlm=ij 1

2
(Tl + Tm)Slm; (72)

where the sum is over the faces ij, jk, ki of cell a. The viscosity is

averaged as �a � 1
3

Pkm=i �m, where the sum is over the vertices i, j, k

of cell a. The thermal conductivity k is approximated similarly.

92

i

j

k

ab

c

d

e

Figure 7: Median dual i and elements a to e.
The viscous flux function at face ij of the dual grid, associated with

93

edge ij of the grid, is approximated by e.g.kijrTij � 1

2
(klrTl + krrTr) ;

where l and r denote the cells to the left and right of the edge ij,
respectively, cf. section 4.2.1. In figure 7, l = a and r = e for edge ij.
Then, the viscous flux, here the heat flux over the median dual Ωi, can

be approximated byZ�Ωi krT dA � Xl2E(i)(klrTl) � Sl ; (73)

where E(i) denotes the edges, which have vertex i in common.

94

High order reconstructions of structured and unstructured finite

volume methods can be obtained by essentially non-oscillatory (ENO)

and weighted essentially non-oscillatory (WENO) schemes, cf. C.-W.

Shu, pp. 439-582, and R. Abgrall, T. Sonar, O. Friedrich, and G.

Billet, pp. 1-67, in T.J. Barth and H. Decononck (Eds.), “High-Order

Methods for Computational Physics, Springer-Verlag, Berlin, 1999.

95

