
II. Governing Equations

by Bernhard Müller

Outline

The conservation laws for mass, momentum and energy of a

compressible fluid flow are derived. In CFD, this mixed hyperbolic-

parabolic system is called the Navier-Stokes equations. We consider

perfect gas and discuss different forms of the equations.

For inviscid flow, the Navier-Stokes equations simpify to the

hyperbolic Euler equations. The characteristic relations and Riemann

invariants normal to a boundary allow the formulation of boundary

conditions at artificial boundaries and will be used in module V. to

derive Riemann solvers. Simplified forms of the Euler equations like

the potential and wave equations are derived.
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1. Navier-Stokes Equations

We derive the Navier-Stokes Equations, i.e. the conservation laws for

mass, momentum and energy.

In a fluid flow, consider a time dependent control volume Ω(t) moving

with the fluid velocity u. Denote the boundary by ∂ Ω and the outer

unit normal by n.

n

Ω

δ Ω
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1.1. Continuity Equation

Conservation of mass:

total rate of mass change in Ω(t) is zero, i.e.

dM
dt

=
d

dt

∫

Ω(t)

ρ dV = 0 ,

where M is the mass in Ω(t), t time and ρ density.

Mathematically identical and valid also for a stationary control volume

Ω:

rate of mass change in Ω + mass flow over ∂Ω = 0 , i.e.

∫

Ω

∂ρ

∂t
dV +

∫

∂Ω

ρu · n dA = 0 . (2)
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1.2. Momentum Equation

Newton’s second law of motion:

total rate of momentum change in Ω(t) is equal to sum of acting forces

K, i.e.

dm

dt
=

d

dt

∫

Ω(t)

ρu dV = K ,

where m is the momentum in Ω(t).

Thus, for a stationary control volume Ω considering pressure, viscous

and volume forces:

rate of momentum change in Ω + momentum flow over ∂Ω =

pressure and viscous forces on ∂Ω + volume force on Ω , i.e.
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∫

Ω

∂ρu

∂t
dV +

∫

∂Ω

ρuu ·n dA = −
∫

∂Ω

pn dA +

∫

∂Ω

τ ·n dA +

∫

Ω

ρfdV ,

(4)

where p pressure, τ shear stress tensor and ρf external force density,

e.g. ρg for gravity.

τ . n

ρ
- p n

g

Surface and volume forces
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Shear Stress Tensor of a Newtonian Fluid

τ = µ[∇u + (∇u)T ] − 2

3
µ∇ · u I (5)

with the (dynamic) viscosity µ and assuming Stokes’ hypothesis

µ′ = −2
3
µ for the second viscosity coefficient µ′.

Sutherland’s formula yields µ in SI units:

µ = C1
T 3/2

T + C2

, (6)

where C1 = 1.458× 10−6 kg

ms
√

K
and C2 = 110.4K for air at moderate

temperatures T .
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I = (δij) is the unit tensor defined by the Kronecker delta

δij =





1 if i = j

0 if i 6= j

In Cartesian coordinates (xi) = (x, y, z)T :

∇u = (
∂uj

∂xi

)

and

∇ · u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
,

where u = (ui) = (u, v, w)T and ∇ = ( ∂
∂xi

) = ( ∂
∂x

, ∂
∂y

, ∂
∂z

)T .
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1.3. Energy Equation

First law of thermodynamics:

total rate of total energy change in Ω(t) is equal to the rate of work L
done on the fluid by the acting forces K plus the rate of heat added

W , i.e.

dE
dt

=
d

dt

∫

Ω(t)

ρE dV = L + W ,

where E is the total energy in Ω(t) and ρE the total energy per unit

volume. Thus, for a stationary control volume Ω:

rate of total energy change in Ω + total energy flow over ∂Ω =

rate of work of pressure and viscous forces on ∂Ω + rate of work of

volume force on Ω + the rate of heat added over ∂Ω , i.e.
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∫
Ω

∂ρE
∂t

dV +
∫

∂Ω
ρE u · n dA =

− ∫
∂Ω

pu · n dA +
∫

∂Ω
(τ · u) · n dA +

∫
Ω

ρf · u dV − ∫
∂Ω

q · n dA(8)

The specific total energy E is the sum of internal energy e and kinetic

energy:

E = e +
1

2
|u|2 .

Fourier’s heat conduction law yields the heat flux q as

q = −k∇T ,

where k is the thermal conductivity. For constant Prandtl number

Pr = cpµ

k
, where cp is the specific heat at constant pressure, e.g.

Pr = 0.72 for air at standard conditions, k is obtained from

k =
cp

Pr
µ .
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1.4 Equations of State for Perfect Gas

For perfect gas, pressure p, density ρ, temperature T and internal

energy e are related by the equations of state

p = ρR T (9)

e = cv T . (10)

R = cp − cv is the specific gas constant, cp and cv the (constant)

specific heats at constant pressure and volume, respectively.

γ = cp

cv
is the ratio of specific heats.

γ = 1.4 and R = 287 m2

s2K
for air at standard conditions.

Thus, cv = R
γ−1

= 717.5 m2

s2K
and cp = γR

γ−1
= 1004.5 m2

s2K
.
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With the equations of state and the definition of E, we get

p = (γ − 1) ρe = (γ − 1) [ρE − 1

2
ρ|u|2] . (11)

Using u = ρu
ρ

in (11), p is a function of the conservative variables

U = (ρ, ρu, ρE)T . (12)

With similar arguments, T = T (U).

Thus, all flow variables in the conservation laws (2), (4) and (8), the

Navier-Stokes equations, can be expressed as functions of the

conservative variables U.

Note that
∫
Ω
U dV is the vector of mass, momentum and energy in

control volume Ω.
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1.5 Forms of Navier-Stokes Equations

1.5.1. Integral Form

Defining the inviscid (i.e. convective) and viscous normal flux vectors

by

Fc·n =




ρu · n
ρuu · n + pI · n
(ρE + p)u · n


 ,Fv·n =




0

τ · n
(τ · u) · n + k(∇T ) · n


 ,

the flux tensor by F = Fc − Fv and the (external) source strength

vector by Fe = (0, f , f · u)T , the Navier-Stokes equations in integral

form read:

∫

Ω

∂U

∂t
dV +

∫

∂Ω

F · n dA =

∫

Ω

ρFe dV. (13)
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1.5.2. Conservative and Non-Conservative
Forms

Provided the flux tensor F is differentiable, we obtain from (13) with

the Gauss theorem
∫

Ω

(
∂U

∂t
+ ∇ · F − ρFe) dV = 0 .

Since this integral equation is valid for arbitrary control volumes Ω, we

obtain the differential conservative form of the Navier-Stokes equations

∂U

∂t
+ ∇ · F = ρFe . (14)

In Cartesian coordinates (xi) = (x, y, z)T :
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∂U

∂t
+

∂(Fc
1 − Fv

1)

∂x1

+
∂(Fc

2 − Fv
2)

∂x2

+
∂(Fc

3 − Fv
3)

∂x3

= ρFe , (15)

where

U =




ρ

ρu1

ρu2

ρu3

ρE




, Fc
j =




ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

ρHuj




, Fe =




0

f1

f2

f3

f · u




,
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where H = E + p
ρ

is the total enthalpy, (ui) = (u, v, w)T ,

Fv
j =




0

τ1j

τ2j

τ3j

τj1u1 + τj2u2 + τj3u3 + k ∂T
∂xj




,

with τij = µ(
∂uj

∂xi
+ ∂ui

∂xj
)− 2

3
µ(

∑3
l=1

∂ul

∂xl
)δij .

With the product rule, the continuity and momentum equations and

the equations of state, we can derive from (14)
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the following non-conservative form of the Navier-Stokes equations:

Dρ

Dt
+ ρ∇ · u = 0 ,

Du

Dt
+

1

ρ
∇p =

1

ρ
∇ · τ + f , (16)

Dp

Dt
+ γp∇ · u = (γ − 1)[(τ ·∇) · u + ∇ · (k∇T )] ,

where
Dρ

Dt
=

∂ρ

∂t
+ (u ·∇)ρ

denotes the substantial derivative of ρ, etc.
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1.6. Boundary Conditions

1.6.1. Solid Wall

If a solid wall is moving with the velocity v, the no-slip boundary

condition states that the fluid velocity at the wall coincides with the

wall velocity, i.e. uw = v. Thus, for a stationary solid wall

uw = 0 ,

Usually, either the wall temperature or the normal wall heat flux are

given.

Example isothermal wall with constant temperature const:

Tw = const .
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Example adiabatic wall, i.e. (q · n)w = 0:

∂Tw

∂n
= 0 .

A boundary condition for the wall pressure is not needed, because the

wall pressure can be determined by means of the normal momentum

equation, e.g. for a stationary solid wall:

∂pw

∂n
= [(∇ · τ ) · n + ρf · n]w

Without external forces, i.e. f = 0, and for high Reynolds numbers,

the wall normal momentum equation can be simplified to the

boundary layer approximation ∂pw

∂n
= 0 , except for the neighbourhood

of separation and reattachment points.
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1.6.2. Inflow and Outflow

At inflow and outflow boundaries, the energy method yields well-posed

boundary conditions for the Navier-Stokes equations, cf.

B. Gustafsson, A. Sundström, “Incompletely Parabolic Problems in

Fluid Dynamics”, SIAM J. Appl. Math, Vol. 35, No. 2, Sept. 1978,

pp. 343-357.

However, since these rigorous boundary conditions require information

often not available, the artificial boundaries are usually placed in

regions where simplified boundary conditions, e.g. for the Euler or

boundary layer equations, can be employed.
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1.7. Nondimensional Form

The nondimensional form of the Navier-Stokes equations

• yields conditions for similar flow patterns, e.g. for airplane and

windtunnel model,

• allows the derivation of simplified equations.

Choose reference conditions, e.g. u∞, ρ∞, T∞, µ∞, k∞, and a

characteristic length scale L. For external and internal flow, freestream

and stagnation conditions, respectively, are often chosen. Then, define

the nondimensional flow varaiables. For example:

x∗ =
x

L
, t∗ =

t

L/u∞
,

u∗ =
u

u∞
, ρ∗ =

ρ

ρ∞
, p∗ =

p

ρ∞u2∞
, T ∗ =

T

T∞
, e∗ =

e

u2∞
, E∗ =

E

u2∞
.
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If we then define (for zero source term f = 0)

µ∗ =
1

Re∞L

µ

µ∞
, k∗ =

1

(γ − 1)M2∞Pr∞Re∞L

k

k∞
,

the nondimensional equations take the same form as the corresponding

dimensional equations, e.g. (15) with nondimensional variables ρ∗ etc.

instead of the dimensional variables ρ etc.

The reference Reynolds, Mach and Prandtl numbers are defined by

Re∞L =
ρ∞u∞L

µ∞
, M∞ =

u∞
c∞

, P r∞ =
cpµ∞
k∞

with c∞ =
√

γ p∞
ρ∞

=
√

γRT∞ the reference speed of sound.
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2. Euler Equations

If viscous stresses and heat conduction are neglected, i.e. µ ≡ 0 and

k ≡ 0, the Navier-Stokes equations degenerate to the Euler equations.

2.1. Integral and Differential Forms

Integral form of the Euler equations (cf. (13)):

∫

Ω

∂U

∂t
dV +

∫

∂Ω

Fc · n dA =

∫

Ω

ρFe dV, (17)

where the conservative variables U and the inviscid flux tensor Fc are

U =




ρ

ρu

ρE


 ,Fc(U) =




ρu

ρuu + pI

ρH u


 .
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Differential conservative form of the Euler equations (cf. (14)):

∂U

∂t
+ ∇ · Fc = ρFe . (18)

In Cartesian coordinates (xi) = (x, y, z)T (cf. (15)):

∂U

∂t
+

∂Fc
1

∂x1

+
∂Fc

2

∂x2

+
∂Fc

3

∂x3

= ρFe ,

Fc
1 =




ρu

ρuu + p

ρvu

ρwu

ρHu




, Fc
2 =




ρv

ρuv

ρvv + p

ρwv

ρHv




, Fc
3 =




ρw

ρuw

ρvw

ρww + p

ρHw




.
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Non-conservative form of the Euler equations (cf. (16)):

Dρ

Dt
+ ρ ∇ · u = 0 ,

Du

Dt
+

1

ρ
∇p = f , (19)

Dp

Dt
+ γp∇ · u = 0 .
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2.2. Rankine-Hugoniot Relations

Opposed to the Navier-Stokes equations, the Euler equations allow for

discontinuities, namely shocks and contact discontinuities.

Suppose a flow discontinuity is propagating with the constant velocity

v. Consider a control volume Ω containing the discontinuity and

moving with that velocity v. The Euler equations (17) become:

∫

Ω

∂U

∂t
dV +

∫

∂Ω

(U (u− v) + P) · n dA =

∫

Ω

ρFe dV , (20)

where P = p




0

I

u


 . Note that Fc = Uu + P .
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Ω

ε

S
δ Ω v

n

1

2

Control volume Ω moving with velocity v of flow discontinuity S.

Let the front faces shrink to zero, i.e. ε −→ 0. Then, the volume

integrals in (20) become zero, and the boundary ∂Ω becomes the

upstream (state (1)) and downstream (state (2)) sides of the

discontinuity S.
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Since n1 = −n2, the Euler equations (20) reduce to
∫

S

[U (u− v) + P] · n dA = 0 ,

where [u] = u2 − u1 denotes the jump of u across the discontinuity,

etc. As that relation holds for any surface S along the discontinuity,

we obtain the Rankine-Hugoniot relations:

[Uu + P] · n = [U]v · n . (21)

For a stationary discontinuity, v = 0 and the Rankine-Hugoniot

relations (21) simplify to

[Uu + P] · n = 0 . (22)
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If the discontinuity is moving with the velocity v in the inertial frame

of reference, the discontinuity is stationary in the frame of reference

moving with v. The velocities in the moving and inertial frames are

related by umovingframe = uinertialframe − v .

The Rankine-Hugoniot relations for a stationary discontinuity (22) can

be expressed as

[ρu · n] = 0 ,

[u]ρu · n + [p]n = 0 ,

[H]ρu · n = 0 .
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If there is no mass flow through the discontinuity, i.e. ρu · n = 0 , it is

a contact discontinuity:

[un] = 0, [p] = 0, [s] 6= 0, but in general [ρ] 6= 0, [ut] 6= 0, [H] 6= 0 ,

un = u · n and ut = u− unn normal and tangential velocities, resp.

u

u1

2

Contact discontinuity.
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For mass flow through the discontinuity, i.e. ρu · n 6= 0 , it is a shock:

[ut] = 0, [H] = 0, [un] < 0, [ρ] > 0, [p] > 0, [s] > 0 ,

where s is entropy.

u
u2

1

u

u

u

u

t

t

n1

n2

Shock.
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2.3. Hyperbolic System

We consider the non-conservative form of the Euler equations (19) in

Cartesian coordinates (xi) = (x, y, z)T ( V primitive variables):

∂V

∂t
+ B1

∂V

∂x1

+ B2
∂V

∂x2

+ B3
∂V

∂x3

= Ge (23)

where V = (ρ, u1, u2, u3, p)T , Ge = (0, f1, f2, f3, 0)T ,

k1B1 + k2B2 + k3B3 =




k · u k1ρ k2ρ k3ρ 0

0 k · u 0 0 k1

ρ

0 0 k · u 0 k2

ρ

0 0 0 k · u k3

ρ

0 k1γp k2γp k3γp k · u




,

k = (k1, k2, k3)
T . Other choices of V: e.g. T or s instead of ρ.
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The Euler equations (23) are a hyperbolic system, because:

1. For all directions k ∈ R3, the eigenvalues λi of

P(k) = k1B1 + k2B2 + k3B3

are real, namely

λ1(k) = k · u− c|k|,
λ2(k) = λ3(k) = λ4(k) = k · u (24)

λ5(k) = k · u + c|k| .

These eigenvalues signify the wave speeds in the k-direction.

2. For all directions k ∈ R3, |k| = 1, there is a uniformly bounded,

non-singular, real transformation matrix T(k), i.e.
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∃K ∀|k| = 1 ∃T(k) ‖T(k)‖+ ‖T−1(k)‖ ≤ K, such that the

transformed matrix is diagonal, i.e.

T−1(k)P(k)T(k) = Λ(k) =




λ1(k) 0

λ2(k)

λ3(k)

λ4(k)

0 λ5(k)




(25)

For k ∈ R3, |k| = 1, choose l,m ∈ R3 such that k, l,m are

orthogonal and |l| = |m| = 1. Choose e.g.
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T(k) =




1 1 0 0 1

−k1
c
ρ

0 l1
ρ

m1

ρ
k1

c
ρ

−k2
c
ρ

0 l2
ρ

m2

ρ
k2

c
ρ

−k3
c
ρ

0 l3
ρ

m3

ρ
k3

c
ρ

c2 0 0 0 c2




,

T−1(k) =




0 −k1
ρ
2c

−k2
ρ
2c

−k3
ρ
2c

1
2c2

1 0 0 0 − 1
c2

0 l1ρ l2ρ l3ρ 0

0 m1ρ m2ρ m3ρ 0

0 k1
ρ
2c

k2
ρ
2c

k3
ρ
2c

1
2c2




.

In 2D: k ∈ R2, |k| = 1, l = (−k2, k1)
T , and skip 4th columns and

4th rows of matrices. In 1D: k1 = 1, and skip 3rd and 4th columns

and 3rd and 4th rows of matrices.
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2.4. Characteristic Formulation

Multiplying the non-conservative Euler equations (23) from the left by

T−1(k), we obtain the characteristic form of the Euler equations:

∂W(k)

∂t
+ T−1(k)B1T(k)

∂W(k)

∂x1

+ T−1(k)B2T(k)
∂W(k)

∂x2

+ T−1(k)B3T(k)
∂W(k)

∂x3

= T−1(k)Ge , (26)

where the characteristic variables W(k) are defined by

∂W(k) = T−1(k)∂V.

If we choose k = e1 = (1, 0, 0)T , the first coefficient matrix in (26) will

be diagonal because of (25) T−1(e1)B1T(e1) = Λ(e1). Thus:
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∂W(e1)

∂t
+ Λ(e1)

∂W(e1)

∂x1

+ T−1(e1)B2T(e1)
∂W(e1)

∂x2

+ T−1(e1)B3T(e1)
∂W(e1)

∂x3

= T−1(e1)Ge . (27)

The jth component of this equation is called the compatibility

equation for the eigenvalue λj(e1). We shall study (27) for the

simplified equation, where the y- and z-derivatives and the source term

are neglected:

∂W(e1)

∂t
+ Λ(e1)

∂W(e1)

∂x1

= 0 . (28)
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2.5. Characteristics, Riemann Invariants

Equation (28) corresponds to the 5 decoupled equations

(l = e2,m = e3 used in T−1(e1) to get ∂W = T−1(e1)∂V ):

∂Wj

∂t
+ λj

∂Wj

∂x
= 0 , j = 1, ..., 5 , (29)

where ∂W1 = − ρ
2c

∂u + 1
2c2

∂p , λ1 = u− c ,

∂W2 = ∂ρ− 1
c2

∂p , λ2 = u ,

∂W3 = ρ∂v , λ3 = u ,

∂W4 = ρ∂w , λ4 = u ,

∂W5 = ρ
2c

∂u + 1
2c2

∂p , λ5 = u + c .

Note that we may multiply each equation (29) by an arbitrary value,

as we can multiply each left eigenvector of B1, i.e. each row of
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T−1(e1), by an arbitrary value.

On the characteristic Cj, i.e. the curve x = x(t) defined by dx
dt

= λj ,

each scalar PDE (29) simplifies to the ODE

dWj

dt
= 0 , j = 1, ..., 5 , (30)

because
dWj

dt
=

∂Wj

∂t
+

∂Wj

∂x
dx
dt

=
∂Wj

∂t
+

∂Wj

∂x
λj = 0 .

Thus, the characteristic variable Wj is constant on the characteristic

Cj. Such a quantity that is invariant along a characteristic is called

Riemann invariant.

The Euler equations have 3 different eigenvalues and therefore 3

different characteristics.
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Riemann Invariants

On the path line C0 := C2 = C3 = C4, i.e. dx
dt

= u, entropy s and the

tangential velocity components v and w are Riemann invariants. To

see that ds
dt

= 0 on the path line, multiply dW2

dt
= 0 by −cp/ρ and use

the equations of state for perfect gas and the Gibbs relation

T ds = de + p d

(
1

ρ

)
. (31)

On the Mach lines C := C1, i.e. dx
dt

= u− c, and C+ := C5, i.e.
dx
dt

= u + c, we have du
dt
∓ 1

ρc
dp
dt

= 0 . For homentropic flow, i.e.

s = constant throughout the flow, that relation can be integrated and

yields that u− 2
γ−1

c and u + 2
γ−1

c are Riemann invariants on C and

C+ , respectively.

39



Characteristics

x

t

∆ t

C + C C -0

Characteristics in subsonic flow.
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Domain of Dependence

x
0

P

C +
C 0

C -

domain   of    dependence

t

The solution at P depends on the domain of dependence of P .
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Domain of Influence

x

t

C - C 0 C +

P

domain of influence of  P

The values at P influence any point in the domain of influence of P .
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Acoustic and Entropy Waves

t

acoustic
  wave

acoustic
  wave

entropy
  wave

L

D

inlet

acoustic
  wave

outlet

y

entropy
  wave

acoustic
  wave

M =
u
c

<< 1
x

x
( u - c ) ∆ t u∆ t ( u + c ) ∆ t

∆ t

∗

43



Method of Characteristics

x

t

1

2

0

u = 0
piston path

C +
C -
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The method of characteristics is illustrated for flow expansion behind a

piston in a cylinder.

Suppose in a gas at rest (i.e. u = 0 , c = c0), a piston is moved with

velocity v < 0 to the left. Assuming 1D homentropic flow, the flow

expansion can be computed by the method of characteristics as

follows. On the right of the characteristics C+ from the origin, the flow

is at rest.

u1 = v(t1) , because of the boundary condition.

u1 − 2
γ−1

c1 = − 2
γ−1

c0 , because it is a Riemann invariant on C through

point 1. Since c0, v and γ are known, u1 and c1 can be determined.

u2 + 2
γ−1

c2 = u1 + 2
γ−1

c1 , because it is a Riemann invariant on C+

through point 1.

u2 − 2
γ−1

c2 = − 2
γ−1

c0 , because it is a Riemann invariant on C through

point 2. Since u1 and c1 have already been determined, u2 and c2 can

be computed.
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In this particular case, u2 − 2
γ−1

c2 = u1 − 2
γ−1

c1, because both

C -characteristics originate from the same flow state. Thus, we get

u2 = u1 and c2 = c1. The same argument holds for any point on the

C+-characteristics through point 1. Since dx
dt

= u + c on C+ and 1 is an

arbitrary point on the piston path, the C+-characteristics are straight

lines.

This is an example of a simple wave solution: all Riemann invariants

except for one are constant.

ds = cv(
dT
T
− (γ − 1)dρ

ρ
) = cv(

dp
p
− γ dρ

ρ
) from the Gibbs relation (31).

Thus, if the entropy is constant between two states 1 and 2,

integration yields T2

T1
=

(
ρ2

ρ1

)γ−1

and p2

p1
=

(
ρ2

ρ1

)γ

. If we know flow state

1 and either p2 , ρ2, T2 or c2(=
√

γRT2), all thermodynamic variables

at state 2 are determined for s2 = s1.
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2.6. Boundary Conditions

2.6.1. Solid Wall

If a solid wall is moving with the velocity v, the impermeability

boundary condition states: uw · nw = v · nw. Thus, for a stationary

solid wall

uw · nw = 0 .

If a stationary solid wall is plane, it is a symmetry boundary, e.g.

vw = ∂uw

∂y
= ∂ww

∂y
= ∂ρw

∂y
= ∂pw

∂y
for nw = e2 . For a curved stationary

solid wall with radius of curvature Rw, the wall normal momentum

equation yields (without source terms)

∂pw

∂r
=

ρw|uw|2
Rw

,

where r is the radial coordinate in 2D polar or 3D spherical

coordinates. Since Rw −→∞, if a curved wall becomes plane, ∂pw

∂n
= 0
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is correctly recovered.

For steady flow without source terms, total enthalpy H and except for

shocks also entropy s are constant along streamlines, i.e. (u ·∇)H = 0

and except for shocks also (u ·∇)s = 0 . Since stationary solid walls

are streamlines (as impermeability implies wall tangential flow), we

have conditions for Hw and sw .
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2.6.2. Inflow and Outflow

We look at the characteristics normal to an artificial boundary, where

we may have inflow or outflow. If we choose k = n in (26), where n is

the outer normal unit vector, and neglect the tangential derivatives

and the source term, we obtain instead of (28)

∂W(n)

∂t
+ Λ(n)

∂W(n)

∂n
= 0 . (32)

where ∂
∂n

= n ·∇ . We obtain relations similar to (29) and (30) with u

replaced by the normal velocity component u · n and v and w replaced

by the velocity components tangential to the boundary.

At the boundary, the characteristics tell us, where the waves come

from. If a characteristics comes from the interior, the corresponding

Riemann invariant is known from previous time and a boundary
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condition must not be prescibed. If a characteristics comes from the

exterior, the corresponding Riemann invariant is unknown from

previous time and a boundary condition must be prescibed.

We distinguish 4 cases:
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(i) Supersonic Outflow c < u · n

interior exterior
boundary

t

n

C +
C 0 C -

All waves come from the interior. No boundary condition must be

given. The Euler equations can be used at the boundary.

(ii) Subsonic Outflow 0 < u · n < c
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interior exterior
boundary

t

n

C +
C 0

C -

All waves except for the one on C come from the interior. For the

outgoing waves, no boundary condition must be given. Instead,

the compatibility equations for the eigenvalues λj(n) , j = 2, 3, 4, 5

(cf. (27)) may be used. For the incoming wave on C , a boundary
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condition must be provided. Often, the ambient pressure pa is

prescribed, i.e.

p = pa .

In the farfield, the Riemann invariant for homentropic flow

u · n− 2

γ − 1
c = u∞ · n− 2

γ − 1
c∞

may be presribed, where subscript ∞ denotes uniform farfield flow.

Non-reflecting 1D boundary conditions require ∂W1

∂t
= 0 or

∂p

∂t
− ρc

∂u · n
∂t

= 0 .
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(iii) Subsonic Inflow −c < u · n < 0

interior exterior
boundary

t

n

C +
C 0

C -

All waves except for the one on C+ come from the exterior. For

the outgoing wave on C+, no boundary condition must be given.

Instead, the compatibility equation for the eigenvalue λ5(n) (cf.
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(27)) may be used. For each incoming wave, a boundary condition

must be provided. For internal flow, often total enthalpy

H = γp
(γ−1|ρ + 1

2
|u|2, entropy s and either the tangential velocity

components or the flow angles are prescribed, e.g. for a boundary

with x = constant:

H = H0 ,
p

ργ
=

p0

ργ
0

,
v

|u| = αy ,
w

|u| = αz,

where the subscript 0 denotes stagnation conditions. In the farfield

of external flow, one often uses the Riemann invariants

u · n− 2
γ−1

c = u∞ · n− 2
γ−1

c∞ ,
p
ργ = p∞

ργ
∞

,

u− (u · n)n = u∞ − (u∞ · n)n .

Non-reflecting 1D boundary conditions require
∂Wj

∂t
= 0 ,
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j = 1, 2, 3, 4 , or

∂p

∂t
− ρc

∂u · n
∂t

= 0 , c2∂ρ

∂t
− ∂p

∂t
= 0 ,

∂u− (u · n)n

∂t
= 0 .
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(iv) Supersonic Inflow u · n < −c

interior exterior
boundary

t

C + C 0
C -

n

All waves come from the exterior. Thus, for each wave, a

boundary condition must be provided, e.g. in the farfield

V = V∞
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or equivalently

U = U∞ .
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2.6.3. Well-Posedness

With these boundary conditions, the Euler equations are expected to

be well-posed, i.e.

1. a unique solution exists, and

2. the solution depends continuously on the data.

The latter condition says that small perturbations of the source term,

the initial or boundary conditions lead to small perturbations of the

solution. Cf. Kreiss, Lorenz (1989) and Gustafsson, Kreiss, Oliger

(1995) for details, e.g. proof of well-posedness for the linearized Euler

equations with characteristic boundary conditions.
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2.7 Simplified Forms

2.7.1. Potential Equation

Assumptions:

1. steady flow, i.e. ∂
∂t

= 0,

2. irrotational flow, i.e. ω = 0 , where ω = ∇× u is called vorticity,

3. homentropic flow, i.e. s = constant ,

4. no external force, i.e. f = 0 .

Since ∇× u = 0 , there exists a scalar function φ such that

u = ∇ φ . (33)

φ is called the velocity potential. By definition, it satisfies

60



∇× u = ∇× (∇φ) = 0 . In Cartesian coordinates, we have

u =
∂φ

∂x
, v =

∂φ

∂y
, w =

∂φ

∂z
.

In Cartesian coordinates, the continuity equation, i.e. the 1st

component of (18), reads for steady flow:

∂

∂x

(
ρ
∂φ

∂x

)
+

∂

∂y

(
ρ
∂φ

∂y

)
+

∂

∂z

(
ρ
∂φ

∂z

)
= 0 . (34)

Using the identity (u ·∇)u = ∇(1
2
|u|2) + ω × u, the relation

dp = c2 dρ for homentropic flow and the assumptions above, the

inviscid momentum equation, i.e. 2nd, 3rd and 4th components of

(23), simplifies to

∂

∂xi

(
1

2
|u|2

)
= −c2

ρ

∂

∂xi

ρ , i = 1, 2, 3 .
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Using (33) and the above relations to replace the density derivatives in

(34), we obtain

(
1− φ2

x

c2

)
φxx +

(
1− φ2

y

c2

)
φyy +

(
1− φ2

z

c2

)
φzz −

2
φxφy

c2
φxy − 2

φxφz

c2
φxz − 2

φyφz

c2
φyz = 0 , (35)

where φx = ∂φ
∂x

, φxy = ∂2φ
∂x∂y

, etc.

Using the compressible Bernoulli equation H = H∞ or

c2

γ − 1
+

1

2
|u|2 =

c2
∞

γ − 1
+

1

2
|u∞|2 ,

we can express c2 as a function of |u|2 = φ2
x + φ2

y + φ2
z and the known

states c∞ and |u∞| . Using the isentropic relation between ρ and c, cf.

derivation of Riemann invariants for s = constant, ρ in (34) can be
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expressed as function of |∇φ|2 . In numerical applications, the

conservative form (34) is usually preferred.

Both the conservative and non-conservative forms of the potential

equation (34) and (35) reduce to Laplace’s equation ∆φ = 0 for

incompressible flow because of ρ → constant and c →∞ , respectively.
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2.7.2. TSP and Prandtl-Glauert Equations

Thin airfoils cause only small disturbances of uniform flow. Denoting

the velocity disturbance in 2D by (u′, v′)T , the velocity components

can be expressed as

u = u∞ + u′ , v = v′

or with the perturbation potential

u = φx = u∞ + φ′x , v = φy = φ′y .

Using the compressible Bernoulli equation, c2 can be expressed as a

function of the perturbation potential and the reference state. Inserting

the ansatz for u , v and c2 into the potential equation (35) and

neglecting small perturbation terms like (φ′x)
2/c2

∞ and (φ′y)
2/c2

∞ (and

using the order of magnitude argument: v′
u∞

= O(ε) , ∂
∂x

= O(1) and

irrotationality ∂v′/u∞
∂x

= ∂u′/u∞
∂y

imply u′
u∞

= O(ε2/3) , ∂
∂y

= O(ε1/3) ) ,
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we obtain the transonic small-perturbation (TSP) equation

[1−M2
∞ − (γ + 1)M2

∞
φ′x
u∞

]φ′xx + φ′yy = 0 (36)

where M∞ = u∞
c∞

is the Mach number of the uniform flow. The

nonlinear term is only important for transonic flow M ≈ 1 .

Thus, for pure subsonic or supersonic flow, the TSP equation (36)

reduces to the linear Prandtl-Glauert equation

(1−M2
∞)φ′xx + φ′yy = 0 (37)

The equation is either elliptic, parabolic or hyperbolic, depending on

whether the flow is subsonic, sonic (where it is not valid) or supersonic.
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Using H = H∞ (cf. 2.7.1), p
p∞

=
(

ρ
ρ∞

)γ

and the TSP ansatz, the

pressure coefficient can be determined by

cp =
p− p∞
1
2
ρ∞u2∞

=
2

γM2∞

(
p

p∞
− 1

)
≈ −2

φ′x
u∞

.

2.7.3. Linearized Euler Equations

Sound propagation can usually be described by the linearized Euler

equations. These equations for the perturbations (ρ′,u′, p′)T are

obtained from the Euler equations (23) without source term linearized

around the mean state (ρ0,u0, p0)
T = constant:
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∂ρ′

∂t
+ (u0 ·∇)ρ′ + ρ0∇ · u′ = 0 (38)

∂u′

∂t
+ (u0 ·∇)u′ +

1

ρ0

∇p′ = 0 (39)

∂p′

∂t
+ (u0 ·∇)p′ + γp0∇ · u′ = 0 (40)

Thus,

ρ = ρ0 + ρ′, u = u0 + u′, p = p0 + p′ (41)
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2.7.4. Wave Equation

For stagnant mean flow u0 = 0, we obtain from (38 to 40) the acoustic

approximation of the Euler equations, from which the wave equation

for the velocity potential ϕ can be derived for the irrotational acoustic

flow:

1

c2
0

∂2ϕ

∂t2
−4ϕ = 0 . (42)

Velocity, pressure and density perturbations are obtained from

u = ∇ϕ, p′ = −ρ0
∂ϕ

∂t
, ρ′ =

1

c2
0

p′ . (43)
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