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V. Methods for Euler and Navier-Stokes Equations (B. Müller)

Testcase Inviscid Flow over a Parabolic Arc Airfoil

Objective

To check the Euler solver for subsonic, transonic and supersonic inviscid flow over a parabolic
arc airfoil by means of the analytical solution of the Prandtl-Glauert equation and by means
of other numerical solutions.

Grid

61 × 21 grid, equidistant in x, xmin = −1, 20 points ahead of leading edge x = 0, 20
points behind trailing edge x = 1, xmax = 2, ymax = 1. Lower boundary given by y0(x) =
max(0, h(x)), where h(x) = 2τ(x− x2), x ∈ [0, 1] , describes the upper side of the parabolic
arc airfoil with thickness τ = 0.1. Points in y-direction clustered near y = y0 by

yj = y0 + (ymax − y0)

(
1 + β

1− βj

1 + βj

)
(1)

where βj =
(

β+1
β−1

)(j−1)/(jmax−1)
, j = 1, 2, ..., jmax , and β = 1.1.

Flow Cases

M∞ = 0.5, 0.85 and 2 .
External flow over a symmetric airfoil at zero angle of attack; inviscid, steady, 2D.

Initial Conditions

U = U∞.

Boundary Conditions

Symmetry (x < 0, y = 0 and x > 1, y = 0): ∂ρ
∂y

= ∂u
∂y

= ∂p
∂y

= v = 0 .

Wall (x ∈ [0, 1], y = 2τ(x− x2)): u · n = 0 = ∂p
∂n

= 0 .
Inflow (x = −1):
Outflow (x = 2):
Farfield (y = 1):

Time Integration

Local time stepping, CFL = |RK| = 1.5, nmax = 2000 for M∞ = 0.5, nmax = 1000 for
M∞ = 0.85, nmax = 500 for M∞ = 2 .
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Exercises

1. Which boundary conditions are used at inflow, outflow, and farfield? How are they
implemented?

2. Suppose you introduce two layers of ghost cells next to each boundary. Which values
of the flow variables would you prescribe in the ghost cells to satisfy the boundary
conditions? (optional)

3. (a) Generate a grid with the code bump.f.

(b) Compute the present flow case by running the code navier fvm.f.

(c) Visualize the results in MATLAB. You may use

plot1d.m to plot pressure coefficient cp in cells J = 1, Mach number M in cells
J = 1, temperature T in cells J = 1, convergence history of residuals,

plot2d.m to plot Mach number contours,

plot2dc.m to plot density, velocity (u and v) and pressure contours,

plot2ds.m to plot density, velocity (u and v) and pressure surface plots.

4. Compute the drag coefficient

cD = 2
1

L

∫ L

0
cp

dh

dx
dx,

with the nondimensional length L = 1. Note that the factor 2 accounts for the pressure
force on the lower side of the symmetric airfoil at zero angle of attack. cp = pw−p∞

1
2
ρ∞u2∞

is

the wall pressure coefficient.
Compare with the result cD = 0, if M∞ < 1 and cD = 16

3
τ2√

M2∞−1
, if M∞ > 1 of the

Prandtl-Glauert theory.

5. Plot u−u∞
u∞

in the cells J = 1 as a function of x
L
, and compare with the Prandtl-Glauert

theory

u(x, 0)− u∞
u∞

=
4

π

τ√
1−M2∞

(
1−

(
1

2
− x

)
ln

∣∣∣∣
1− x

x

∣∣∣∣
)

, 0 6= x 6= 1 if M∞ < 1 ,

u(x, 0)− u∞
u∞

=




−2 τ√

M2∞−1
(1− 2x) : x ∈ [0, 1]

0 : x /∈ [0, 1]



 , if M∞ > 1 .

6. Plot v
u∞

in the cells J = 1 as a function of x
L
, and compare with the Prandtl-Glauert

theory
v(x, 0)

u∞
=

{
dh
dx

= 2τ(1− 2x) : x ∈ [0, 1]
0 : x /∈ [0, 1]

}
.

7. Characterize the subsonic, transonic and supersonic flow cases. Describe the numerical
difficulties in computing each of them. Try to find the limits of the code by running it
at a very low and a very large Mach number. Does the code give results, and are they
reliable?

8. Vary the grid, and check the grid dependence of the results. Give recommendations
on the grid (distance of boundaries from airfoil, clustering, number of grid points) to
obtain grid converged results.
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