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Abstract

This dissertation focuses on the approximation problem of models in the
form of linear operators and in the form of polynomial dynamical systems.
For approximation of linear operators, Schmidt and Mirsky have shown the
existence of an optimal approximant which minimizes the induced Euclidean
norm distance between the original operator and all possible lower rank ap-
proximant. This result is regarded as an important step in the development
of model approximation for dynamical systems. In this thesis, a possibility
of extending the result of Schmidt and Mirsky to a general induced norm
is discussed. For approximation of dynamical systems, three computational
schemes are introduced for several classes of polynomial nonlinear systems.
The main contribution of this thesis lies on these three schemes.

The first computational scheme is heuristic in nature. The second one is
derived based on a reachability approach. These two schemes are mainly to
compute a reduced order model for a certain class of polynomial nonlinear
systems such that the error model is finite gain L2 stable. The third scheme
is an approach to generalize the balanced truncation method of linear sys-
tems to a class of polynomial nonlinear systems. The three schemes utilize
the power of sum of squares programming which is amenable to computer
solution.
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Chapter 1

Introduction

1.1 Background

Model approximation plays an important role in various applications where
reducing complexity of a model is needed. This can be formulated differently
depending on

• measure of complexity

• measure of accuracy

with the goal of finding a less complex model while keeping the accuracy
of the less complex model as close as possible to the original one. There
are many ways to quantify complexity of a model. For example, number of
grids in power distribution networks, simulation time in computer systems,
number of states in differential equations, memory capacity in circuits and
number of equations in process optimization can be regarded as measures of
complexity. As with accuracy of the less complex model, we want to keep
some properties of the original model. For example, small error between a
certain variable in the original model and the less complex model for any
admissible condition can be a measure of accuracy. Additionally, we may
want the less complex model to preserve certain structure from the original
system.

This thesis considers models which are represented by input-output relation
with intrinsic information given by state space representation. Here, com-
plexity of the models is measured by the number of states. As the number
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1. Introduction

of states for a particular model is usually increasing in parallel with accu-
racy, we often encounter that we are only interested in some properties of
input-output behavior rather than all information of the states. In this case
reducing the number of states while preserving certain properties is essen-
tial because of a number of reasons, such as less complex model is easier to
analyze and synthesize and is cheaper from computational perspective.

An important step in the development of model approximation in this di-
rection can be traced back to the well known result by Schmidt and Mirsky
[3]. It was shown that the minimum misfit between a matrix operator and
all possible lower rank approximators in induced Euclidean norm is exactly
equal to one of the singular values of the matrix. In this case there exists a
lower rank optimal approximator to the given matrix which is viewed as a
linear operator.

Inspired by this, Adamjan, Arov and Krein generalized the idea to linear
dynamical systems [2]. A linear system induces an operator, Hankel operator,
as a map from past inputs to future outputs. This operator is compact and
has finite rank. Similarly like the result by Schmidt and Mirsky for linear
operator, Adamjan, Arov and Krein have shown that the minimum misfit
between a Hankel operator and all possible lower rank approximators in
Hankel norm is exactly equal to one of Hankel singular values of the operator.
The existence of a lower rank optimal approximator is also guaranteed in
this case. Later on Glover shows a systematic way of computing the optimal
Hankel approximator [11].

Moore introduced a balanced truncation scheme as another means of model
reduction of linear dynamical systems [25]. Moore has shown that combi-
nation of reachability and observability is needed to obtain a reduced order
model for a linear system. This can be achieved by computing a similarity
transformation such that the transformed system has a balanced representa-
tion of the reachability and observability gramians. The reduced order model
is obtained by truncating the transformed system to remove the least reach-
able and observable part simultaneously. The result from this scheme can
be shown to be related with the result of Adamjan, Arov and Krein. Subse-
quently many schemes for model reduction of linear system were introduced,
c.f. [13], [17], [21], [24], [26], [27], [28], [45].

While model reduction in linear systems is more or less well developed, model
reduction for nonlinear systems lacks efficient strategies in its development
and implementation. Scherpen [38] has introduced balancing method for a
class of nonlinear systems where nonlinear version of the gramians need to
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be balanced. The drawback of this method is on the computation of the
gramians which is very difficult in general. Another approach which relies
heavily on snapshots of data is given by the proper orthogonal decomposition
(POD) method where a subspace generated by the data is constructed and
a reduced order model is obtained by projecting the original model to the
subspace [34]. Within this direction the authors in [20] have introduced an
empirical approach for truncating nonlinear systems. A systematic scheme
for constructing a reduced order model for polynomial nonlinear systems has
been introduced in [33]. The method is easy to implement computationally
due to sum of squares programming [30] and shows a promising direction in
efficient computation for model reduction of polynomial nonlinear systems.

The fact that there are only a few results for nonlinear systems is due to sev-
eral reasons such as the difficulty of the problem and computational aspects.
Therefore a strategy which is easy to be implemented computationally will
give benefit to the community. The results in this dissertation are mainly to
serve this purpose. In particular, the power of sum of squares programming
for model reduction of polynomial nonlinear systems is exploited.

1.2 Contributions

This dissertation contributes toward the understanding of approximation
problems for models in the form of linear operators and dynamical systems.
For model approximation of linear operators, a possibility of extending the
result of Schmidt and Mirsky to a general induced norm is shown. For model
approximation of dynamical systems which is the focus of this thesis, the em-
phasis is on developing computational schemes to get a reduced order model
for continuous-time polynomial nonlinear systems. The schemes employ sum
of squares (SOS) programming which is the LMI (linear matrix inequality)
version of polynomial inequality. In particular, L2-gain model reduction and
approximate balanced truncation for a certain class of polynomial nonlinear
systems are presented. These results are generalization of the H∞-model re-
duction and balanced truncation for linear systems, respectively. The table
below shows indication of how the methods for polynomial nonlinear systems
in this thesis are compared to those for linear systems.

Linear Systems (LMI) Polynomial Nonlinear Systems (SOS)
Balanced Truncation Approximate Balanced Truncation

H∞ L2-gain
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1. Introduction

In summary, the contributions of this dissertation are as follows.

1.2.1 Main Contribution

Optimal Approximation of Linear Operators from a Singular
Value Decomposition Approach

The purpose of this part is to propose a definition of a set of singular val-
ues and a singular value decomposition associated with a linear operator
defined on arbitrary normed linear spaces. This generalizes the usual notion
of singular values and singular value decompositions to operators defined
on spaces equipped with the p-norm, where p is arbitrary. Basic properties
of these generalized singular values are derived and the problem of optimal
rank approximation of linear operators is investigated in this context. We
give sufficient conditions for the existence of optimal rank approximants in
the p-induced norm and discuss an application of this concept for the iden-
tification of dynamical systems from data.

L2 Gain Approximation of Nonlinear Systems: a Heuristic
Approach

This part considers a computational mechanism to approximate a restricted
class of polynomial nonlinear systems with reduced order models. First a
necessary condition for a nonlinear system to have a reduced order model is
given. Then a heuristic approach which utilizes the necessary condition is
established. The method computes a reduced order model for the nonlinear
system such that the error model is finite gain L2 stable.

Reachability-Based Approach for L2 Gain Approximation of
Polynomial Systems

This part considers another computational mechanism to approximate a class
of polynomial nonlinear systems with reduced order models. The approach
is based on estimate of the reachability set and a finite gain L2 stability con-
dition. The approach benefits from the use of sum of squares programming
where the computation is rendered tractable.

4
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Approximate Balanced Truncation of Polynomial Nonlinear
Systems

The approach of model reduction for polynomial nonlinear systems in this
part is based on balancing generalized gramians of the system and trun-
cate the system based on the balanced generalized gramians. The approach
utilizes sum of squares programming for its computational purposes.

1.2.2 Additional Contribution

In addition to the topic of model approximation, another topic of research
was conducted during the period of PhD work. This work is not related to
the topic of model approximation, but more on stabilization of multiphase
flow in the riser pipeline experiencing slugs. The aim of stabilization is to
suppress oscillation which occurs in the riser. One of the author’s main
contribution in this area is as follow.

Suppressing Riser-Based Slugging in Multiphase Flow by State
Feedback

This part proposes a state feedback design method for attenuating severe
slugging in multiphase flow pipeline systems. The feedback is designed based
on the input output linearization method, and incorporates the saturation
effect on the input. The designed feedback can suppress the slugging phe-
nomena provided some sufficient conditions are satisfied. Finally, checking
the conditions leads to the selection of the variable which is more relevant
to be controlled.

1.3 List of Papers

The following is the list of publications related to the main contribution of
model approximation.

1. H.B. Siahaan, O.M. Aamo and B.A. Foss. Approximate Balanced
Truncation of a Class of Polynomial Nonlinear Systems, submitted
to Automatica.
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2. H.B. Siahaan. A Balancing Approach to Model Reduction of Polyno-
mial Nonlinear Systems, accepted for publication in Proceedings 17th
IFAC World Congress, Seoul, Korea, 2008.

3. H.B. Siahaan, O.M. Aamo and B.A. Foss. Reachability-Based Ap-
proach for L2 Gain Approximation of Polynomial Systems, Proceedings
European Control Conference 2007, Kos, Greece, pp. 1119-1125, 2007.

4. H.B. Siahaan, L2 Gain Approximation of Nonlinear Systems: a Heuris-
tic Approach, Proceedings 45th IEEE Conference on Decision and Con-
trol, San Diego, USA, pp. 3696-3701, 2006.

5. H.B. Siahaan, S. Weiland and A.A. Stoorvogel, Optimal Approxima-
tion of Linear Operators: a Singular Value Decomposition Approach,
Proceedings 15th International Symposium on Mathematical Theory of
Networks and Systems (MTNS), Notre Dame, USA, 2002.

The following is the list of publications related to the additional contribution
in riser-based slugging in multiphase flow.

1. H.B. Siahaan, O.M. Aamo and B.A. Foss. Suppressing Riser-Based
Slugging in Multiphase Flow with State Feedback, Proceedings 44th
IEEE Conference on Decision and Control and European Control Con-
ference 2005, Seville, Spain, 2005.

2. O.M. Aamo, G.O. Eikrem, H.B. Siahaan and B.A. Foss, Observer De-
sign for Multiphase Flow in Vertical Risers with Gas-Lift - Theory and
Experiments, Journal of Process Control, Vol. 15, Issue 3, 2005.

3. O.M. Aamo, G.O. Eikrem and H.B. Siahaan, B.A. Foss, Observer De-
sign for Gas Lifted Oil Wells, Proceedings 2004 American Control Con-
ference, Boston, USA, 2004.

4. G.O. Eikrem, O.M. Aamo, H.B. Siahaan and B.A. Foss, Anti-Slug
Control of Gas Lift Well - Experimental Results, Proceedings IFAC
Nonlinear Control Conference (NOLCOS) 2004, Stuttgart, Germany,
2004.

1.4 Structure

The dissertation is structured as follows. Chapter 2 contains a selection of
results from literature study which is important for the rest of the thesis.
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Chapter 3 covers approximation of linear operator from a singular value de-
composition approach. Model reduction for polynomial systems and several
computational schemes using sum of squares programming are described in
chapter 4-6. Chapter 7 consists of additional contribution on stabilization of
multiphase flow in the riser pipeline. Chapter 8 contains concluding remarks
of the thesis.

1.5 Notations

The following notations are fairly standard and will be used throughout
the thesis. The set of real numbers is denoted by R. The collection of all
real matrices of size n × m is denoted by Rn×n. The superscript T stands
for real valued matrix transposition. The superscript ∗ stands for complex
valued matrix transposition. The notation Ip means the identity matrix of
dimension p × p. The set of symmetric matrices in Rn×n is denoted by Sn.
The matrix inequality W Â 0 (≺ 0) means that W is a positive (negative)
definite symmetric matrix while W º 0(¹ 0) means that W is a positive
(negative) semidefinite symmetric matrix. The p-norm of the vector x ∈ Rn

is given by

‖x‖p :=
{

(Σn
i=1 |xi|p)1/p if p < ∞

maxi=1,...,n |xi| if p = ∞ .

For p = 2 we sometimes drop the index and write ‖·‖ to refer to the Euclidean
norm of the vector involved. The p-norm space is a linear vector space
equipped with p-norm. The induced p-norm of a matrix M ∈ Rn×n is

‖M‖p−ind := sup
06=x∈Rn

‖Mx‖p

‖x‖p

.

Lp [to, tf ] means the vector space of function v : [to, tf ] → Rq that satisfies

‖v‖Lp[to,tf ] :=
(∫ to

tf
‖v (t)‖p dt

)1/p
< ∞ if p ∈ [1,∞) ,

‖v‖L∞[to,tf ] := max
t∈[to,tf ]

‖v (t)‖ < ∞ if p = ∞.

The set of polynomial in x with real coefficient is denoted by R [x] . For
polynomial p ∈ R [x] we define µmin (p (x)) and µmax (p (x)) as the mini-
mum and maximum degree, respectively, of its monomials. For example
p (x) = x2 + x1x2 + x3

1x2 will give µmin (p (x)) = 1 from the monomial x2

and µmax (p (x)) = 4 from the monomial x3
1x2. The set of matrices of size

7



1. Introduction

n×m whose entries are polynomial in x with real coefficient is denoted by
Rn×m [x] . A scalar function w (x) is said to be positive definite if w (0) = 0
and w (x) > 0 for all x 6= 0. The matrix inequality W (x) Â 0 (≺ 0) means
that W is a positive (negative) definite symmetric matrix for all x while the
matrix inequality W (x) º 0(¹ 0) means that W is a positive (negative)
semidefinite matrix for all x. For any matrix Γ we denote NΓ as the full
rank matrix satisfying Im NΓ = ker Γ. A linear system Ĝ with realization
{Â, B̂, Ĉ, D̂} of order n can be written in a state space form

˙̂x = Âx̂ + B̂û,

ŷ = Ĉx̂ + D̂û,

where x̂ is the state, û is the input and ŷ is the output. The system Ĝ is
said to be controllable if the controllability matrix




Ĉ

ĈÂ
...

ĈÂn−1




has full rank. The system Ĝ is said to be observable if the observability
matrix [

B̂ ÂB̂ . . . Ân−1B̂
]

has full rank. The square matrix Â is Hurwitz if all of its eigenvalues have
strictly negative real part. The ball in Rn is denoted by

Br =
{

x ∈ Rn| ‖x‖2 ≤ r
}

.

For a scalar function ξ (x) = ξ (x1, . . . , xn) , the function is said to belong to
class Ck for some positive integer k if all of its partial derivative of order ≤ k
with respect to x1, . . . , xn exist and continuous. A matrix-valued function
belongs to class Ck if each of its element belongs to class Ck.

8



Chapter 2

Preliminaries

2.1 Introduction

This chapter discusses some well known results on model approximation
which are relevant for the thesis (for a survey on model reduction techniques,
see [3]). We will begin with the problem of approximation of linear operators
with lower rank linear operators. For the case when the operators work
in the standard Euclidean space, Schmidt and Mirsky [3] have shown that
there exists an optimal approximant which minimizes the distance between
the original operator and all lower rank approximants. Here, the distance is
quantified by the standard Euclidean induced norm.

The result of Schmidt and Mirsky is more or less seen as the inspiration
to generalize the problem to linear systems where we seek to approximate
a stable linear dynamical system with another lower order stable linear dy-
namical system. Based on the same spirit, Adamjan, Arov and Krein [2] have
shown the existence of a lower order optimal approximant to the linear sys-
tem. In this case the linear system and the lower order optimal approximant
are viewed as operators with special structure. Though these operators, the
Hankel operators, operate in infinite dimensional space they have finite rank.
The Hankel operator of the optimal approximant has a lower rank than that
of the original linear system. The optimal operator itself minimizes the dis-
tance quantified by the Hankel norm.

The Hankel operator of a linear system is closely related to the reachability
and observability gramians of the system. The gramians are fundamental
for another means of obtaining a reduced order model, known as balanced

9



2. Preliminaries

truncation [25]. The method first computes the gramians from Lyapunov
equations and then compute a transformation such that the reachability and
observability gramians are balanced. The reduced order model is obtained
by truncating the transformed system such that the least reachable and
observable part is removed.

Another approach for model reduction of linear systems is by computing a
generalized version of the gramians. The generalized gramians are computed
from Lyapunov inequalities instead of equations. It can be further shown
that for a stable linear system there exists a lower order stable system such
that the approximation error in H∞-norm is bounded by any given constant
provided a certain coupling constraint between the generalized reachability
and observability gramians is satisfied [9].

2.2 Approximation of Linear Operators

We consider the problem of approximating a full rank matrix M ∈ Rn×n by
another matrix M ′ ∈ Rn×n of lower rank where all the matrices are viewed as
maps from the p-norm space to the p-norm space. To be precise the problem
is given by

OPT − p : min
rank(M ′)≤k<n

∥∥M −M ′∥∥
p−ind

.

For general p, the problem OPT − p is discussed in more detail in the next
chapter. For the special case of p = 2 the problem has been solved by
Schmidt and Mirsky in [3]. Indeed, if

M = USV T

is the singular value decomposition (SVD) of the matrix M where U =[
u1 . . . un

] ∈ Rn×n, V =
[

v1 . . . vn

] ∈ Rn×n are orthogonal matri-
ces and S = diag(σi) ∈ Rn×n with σ1 ≥ . . . ≥ σn > 0, then the solution M ′

k

which satisfies
∥∥M −M ′

k

∥∥
2−ind

= min
rank(M ′)≤k<n

∥∥M −M ′∥∥
2−ind

is given by
M ′

k = σ1u1v
T
1 + . . . + σkukv

T
k

with ∥∥M −M ′
k

∥∥
2−ind

= σk+1.
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Reachability and Observability Maps

2.3 Reachability and Observability Maps

In this part we review the reachability and observability maps of linear sys-
tems. These maps are of fundamental importance for model approximation.
We consider an LTI system G of the form

ẋ = Ax + Bu (2.1a)
y = Cx (2.1b)

where x ∈ Rn, u ∈ Rnu , y ∈ Rny , A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n. The
order of the system is given by n. Throughout the thesis we assume that (2.1)
is a minimal representation (observable and controllable) and A is Hurwitz.
The materials in this part are based on generalization of the reachability and
observability maps from [43] on Lp-space.

Indeed, for an initial condition x (t0) at time t0, the solution to (2.1) at time
t can be written as

x (t) = eA(t−to)x (to) +
∫ t

to

eA(t−τ)Bu (τ) dτ.

Suppose that the initial condition is set to zero (x (to) = 0). For the class of
input u ∈ Lp [to, tf ] the set of solutions given by

Rp ([to, tf ]) =
{

x ∈ Rn| x = ϕ[to,tf ] (u) =
∫ tf

to

eA(tf−τ)Bu (τ) dτ, u ∈ Lp [to, tf ]
}

is a set containing all states at time tf reachable from the origin. The
reachability map ϕ[to,tf ] is a linear map from Lp [to, tf ] to Rn.

Next we focus at the event of no input to the system (u = 0), that is

ẋ = Ax,

y = Cx.

For an initial condition set to x (to) = x the output will be

y (t) = Cx (t) = CeA(t−to)x (to) = CeA(t−to)x

and the set containing all type of this output is given by

Op (x, [to, tf ]) =
{

y ∈ Lp [to, tf ] | y = (φto (x)) (t) = CeA(t−to)x, to ≤ t ≤ tf

}
.

The observability map φto is a linear map from Rn to Lp [to, tf ].

11



2. Preliminaries

2.4 Hankel Operator

In this section we will discuss the relation between the observability and
reachability maps with an operator known as Hankel operator. Furthermore
we will see that we can define the quality of an approximant based on this
operator. This section is largely based on [9] and [10].

Consider an LTI system G with impulse response given by g (t) . The output
of the system with respect to the response u (t) satisfies the convolution given
by

y (t) =
∫ ∞

−∞
g (t− τ) u (τ) dτ.

Now let us consider the following input

û (t) = P−u (t) =
{

u (t) , if t ≤ 0
0, if t > 0

.

Then the output with respect to this type of input is given by

ȳ (t) =
∫ ∞

−∞
g (t− τ) û (τ) dτ =

∫ 0

−∞
g (t− τ) û (τ) dτ.

We are interested in the output

ŷ (t) = P+ȳ (t) =
{

0, if t < 0
ȳ (t) , if t ≥ 0

.

The Hankel operator of the system G is a map ΓG : Lp (−∞, 0] → Lp [0,∞)
which satisfies ŷ = ΓGû. Here, the operator maps past inputs to future
outputs. The induced norm of the operator is defined by

‖ΓG‖H,p := sup
û∈Lp(−∞,0]

‖ΓGû‖Lp[0,∞)

which is referred to as Hankel norm.

For the system G = (A,B,C) in (2.1) the impulse response is given by
g (t) = CeAtB with Hankel operator given by

ŷ (t) = (ΓGû) (t) =
{

0, if t < 0∫ 0
−∞CeA(t−τ)Bû (τ) dτ, if t ≥ 0

We can decompose the operator into two parts

ŷ (t) = (φ0 (x0)) (t) = CeAtx0, t ≥ 0,

x0 = ϕ(−∞,0] (û) =
∫ 0

−∞
e−AτBû (τ) dτ,

12
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which shows that
ŷ = ΓGû = φ0

(
ϕ(−∞,0] (û)

)
.

Hence the Hankel operator is given by

ΓG = φ0ϕ(−∞,0].

Furthermore, we can even determine the upper bound of the rank of ΓG.
Here, the rank of ΓG refers to the maximum number of linearly independent
outputs of the operator.

Proposition 2.1 [9] For the system G of order n then rank (ΓG) ≤ n.

Let us consider the following Lp-induced norm of the system G : Lp (−∞,∞) →
Lp (−∞,∞)

‖G‖Lp−ind := sup
u∈Lp(−∞,∞)

‖Gu‖Lp(−∞,∞) .

The following proposition shows that the distance of the original system
from any approximant of order nr is bounded below by the minimum value
of ‖ΓG − ΓG′‖H,p over all possible Hankel operators ΓG′ of rank not larger
than nr.

Proposition 2.2 For the system G of order n, it follows that

‖G−Gr‖Lp−ind ≥ min
rank(ΓG′ )≤nr

‖ΓG − ΓG′‖H,p

for all system Gr of order nr < n.

Proof. For any system Ξ of order n it follows that

‖Ξ‖Lp−ind ≥ sup
û∈Lp(−∞,0]

‖Ξû‖Lp(−∞,∞) ≥ sup
û∈Lp(−∞,0]

‖P+Ξû‖Lp(−∞,∞)

= sup
û∈Lp(−∞,0]

‖P+Ξû‖Lp[0,∞) = sup
û∈Lp(−∞,0]

‖ΓΞû‖Lp[0,∞) = ‖ΓΞ‖H,p .

Similarly,

‖G−Gr‖Lp−ind ≥ ‖ΓG−Gr‖H,p = ‖ΓG − ΓGr‖H,p .

By Proposition 2.1, rank(ΓGr) ≤ nr and

‖ΓG − ΓGr‖H,p ≥ min
rank(ΓG′ )≤nr

‖ΓG − ΓG′‖H,p .

13
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This proposition shows the limit of how good an approximant Gr can be
where it is shown that the approximation error can not be better than the
lower bound given by the minimum value of ‖ΓG − ΓG′‖H,p.

2.5 Special Case for p = 2

For p = 2 all the operators involved are working on Hilbert space which has
nice properties to be exploited.

2.5.1 Gramians

In view of the fact that a Hilbert space is equipped with an inner product
we can obtain the adjoint of reachability and observability maps and show
that they are related to the reachability and observability gramians defined
as follows.

Definition 2.1 [43] The reachability and observability gramians of (2.1) are
given, respectively by

Y[to,tf ] =
∫ tf

to

eA(tf−t)BBT eAT (tf−t)dt,

X[to,tf ] =
∫ tf

to

eAT (t−to)CT CeA(t−to)dt.

The adjoint reachability map ϕ∗tf satisfying

〈
υ, ϕ∗tf (z)

〉
L2[to,tf ]

=
〈
ϕ[to,tf ] (υ) , z

〉
Rn

is given by (
ϕ∗tf (z)

)
(τ) = BT eAT (tf−τ)z.

Then we have the following.

Proposition 2.3 [43] The reachability gramian is given by Y[to,tf ] = ϕ[to,tf ]ϕ
∗
tf
.

14
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Proposition 2.4 [43] Given x, suppose that z is any solution of Y[to,tf ]z =
x. Let uopt = ϕ∗tf (z) . Then

∫ tf

to

‖uopt (t)‖2 dt ≤
∫ tf

to

‖u (t)‖2 dt

for all u ∈ L2 [to, tf ] such that x = ϕ[to,tf ] (u).

The result shows that uopt is the minimum energy of input to reach state x
at time tf from the origin. In this case we have

∫ tf

to

‖uopt (t)‖2 dt = 〈uopt, uopt〉L2[to,tf ] =
〈
ϕ∗tf (z) , ϕ∗tf (z)

〉
L2[to,tf ]

=
〈

ϕ[to,tf ]ϕ
∗
tf

Y †
[to,tf ]

x, Y †
[to,tf ]

x

〉

Rn

= xT Y †
[to,tf ]

x.

Remark 2.1 When Y[to,tf ] = ϕ[to,tf ]ϕ
∗
tf

is invertible we have Y †
[to,tf ]

=

Y −1

[to,tf ]
.

Here, the reachability gramian determines the states which are hard to reach
by looking at the minimum energy xT Y †

[to,tf ]
x required to reach the state x

from the origin. Throughout the thesis, whenever referred to, the term
reachability gramian is for t0 = −∞ and tf = 0. The reachability gramian
can then be computed by solving the following equation.

Proposition 2.5 [9] For t0 = −∞ and tf = 0 the reachability gramian
Y = Y[−∞,0) is the solution to the Lyapunov equation

AY + Y AT + BBT = 0. (2.2)

Furthermore, Y Â 0.

The adjoint observability map φ∗[to,tf ] satisfying

〈
φ∗[to,tf ] (υ) , z

〉
Rn

= 〈υ, φto (z)〉L2[to,tf ]

is given by

φ∗[to,tf ] (υ) =
∫ tf

to

eAT (τ−to)C ′υ (τ) dτ.

Then we have the following.
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Proposition 2.6 [43] The observability gramian is given by X[to,tf ] = φ∗[to,tf ]φto.

For initial condition x (to) = x we have
∫ tf

to

‖y (t)‖2 dt = 〈φto (x) , φto (x)〉L2[to,tf ] =
〈
x, φ∗[to,tf ] (φto (x))

〉
Rn

= xT X[to,tf ]x.

Here, the observability gramian determines the states which are difficult
to observe by looking at the output energy xT X[to,tf ]x produced when the
initial state is at x. Throughout the thesis, whenever referred to, the term
observability gramian is for t0 = 0 and tf = ∞. The observability gramian
can then be computed by solving the following equation.

Proposition 2.7 [9] For t0 = 0 and tf = ∞ the observability gramian
X = X[0,∞) is the solution to the Lyapunov equation

AT X + XA + CT C = 0. (2.3)

Furthermore, X Â 0.

The existence and uniqueness of positive definite solutions Y and X to (2.2)
and (2.3), respectively are guaranteed by the asymptotic stability and mini-
mality (observability and controllability) of the system.

2.5.2 Hankel Singular Values

The relation of Hankel operator with the gramians is described as follows.
The Hankel norm of the system G = {A,B,C} in (2.1) for p = 2 is given by
the square root of the largest eigenvalue of cross gramian XY , that is

‖ΓG‖H,2 =
√

λmax (XY ).

In fact all eigenvalues of XY are equal to all nonzero eigenvalues of finite
rank operator ΓG. The square roots of these eigenvalues denoted by

σH
1 ≥ . . . ≥ σH

n > 0

are called the Hankel singular values of the system G.
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Furthermore, by Proposition 2.2 for p = 2, any approximant Gr of order
nr < n for the system G of order n satisfies

‖G−Gr‖L2−ind ≥ min
rank(ΓG′ )≤nr

‖ΓG − ΓG′‖H,2

The exact value of the lower bound is given by

min
rank(ΓG′ )≤nr

‖ΓG − ΓG′‖H,2 = σH
nr+1

which is due to Adamjan, Arov and Krein [2]. This is a generalization of the
matrix rank minimization due to Schmidt and Mirsky (see Section 2.2) for
linear dynamical systems.

2.5.3 Balanced Truncation Approach

Model reduction by balancing approach was introduced for the first time
in [25]. The method is performed in two steps. The first step is by trans-
forming the original system (2.1) such that the new system has balanced
representation of the gramians. The transformation is constructed from the
gramians Y and X obtained from Proposition 2.5 and 2.7, respectively. For
the transformed system we have the following well-known result.

Theorem 2.1 [9] Consider G = {A, B,C} in (2.1). There exists a nonsin-
gular matrix T such that the gramians of the transformed system {Â, B̂, Ĉ} =
{TAT−1, TB, CT−1} are identical. In this case the positive definite matrix
Σ = diag

(
σH

i

)
with ordered Hankel singular values σH

1 ≥ . . . ≥ σH
n > 0

is the balanced reachability and observability gramian for the transformed
system and satisfies

ÂΣ + ΣÂT + B̂B̂T = 0,

ÂT Σ + ΣÂ + ĈT Ĉ = 0.

The second step of the approach is by truncating the transformed system
such that the least important structure is removed. The least important
ones are related to the lower values of the Hankel singular values. In this
case we truncate the transformed system at order nr < n where there is a
gap between the adjacent Hankel singular values σH

nr
> σH

nr+1. The trunca-
tion can be done as follows. Suppose we partition the transformed system
conformally into

Â =
[

Â11 Â12

Â21 Â22

]
, B̂ =

[
B̂1

B̂2

]
, Ĉ =

[
Ĉ1 Ĉ2

]
.
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The reduced order model is then given by representation Gr = {Â11, B̂1, Ĉ1}
of order nr. The reduced order model Gr has balanced gramians and pre-
serves asymptotic stability of the original model, that is Â11 being Hurwitz.
Furthermore, the error model is guaranteed to satisfy

σH
nr+1 ≤ ‖G−Gr‖L2−ind ≤ 2

(
σH

1 + . . . + σH
nr

)
.

2.5.4 H∞ Model Reduction

Another means of quantifying the quality of a reduced model is defined by
the H∞-norm, which is equivalent to the L2-induced norm. In this case, the
existence of reduced order model for a linear system is given by the following.

Proposition 2.8 [9] Given G with a realization {A,B, C, D} where A ∈
Rn×n is Hurwitz, there exists Gr of order nr < n with a realization {Ar, Br, Cr, Dr}
where Ar ∈ Rnr×nr is Hurwitz such that ‖G−Gr‖H∞ := ‖G−Gr‖L2−ind <
ε̂ if and only if there exist generalized gramians X Â 0 and Y Â 0 satisfying

• AY + Y AT + BBT ¹ 0,

• AT X + XA + CT C ¹ 0,

• X − ε̂2Y −1 º 0, rank
(
X − ε̂2Y −1

) ≤ nr.

Here, the generalized gramians X and Y are coupled with rank condition
while the gramians X and Y in the balanced truncation approach are inde-
pendent of each other.

2.6 Sum of Squares

We define a polynomial in the form

p(x) = Σ
i
p2

i (x)

as a sum of squares (SOS) polynomial when pi(x) are polynomials. It is
obvious that any polynomial which can be expressed as an SOS of other
polynomials is nonnegative everywhere. One way to express an SOS equiv-
alently is by

p(x) = zT (x)Mz(x)
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where M is a positive semidefinite symmetric matrix and z (x) is a mono-
mial of degree less than or equal to half of the degree of p(x). For the same
monomial z (x) it might be possible to have similar representation with dif-
ferent M with M being not positive semidefinite. Thus if the intersection
of

{
M ∈ Sn|p(x) = zT (x)Mz(x)

}
with {M ∈ Sn|M º 0} is not empty then

p(x) = zT (x)Mz(x) is an SOS. Within this direction, in [30] the author
has showed that determining whether a polynomial can be expressed as an
SOS is an LMI problem. Hence the problem of testing whether a polyno-
mial is sum of squares becomes relatively easy as it can be computed using
semidefinite programming. In view of the fact that verifying nonnegativity
of a polynomial is very difficult, throughout the thesis, we will relax most
polynomial inequalities by replacing nonnegativity with SOS condition.
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Chapter 3

Optimal Approximation of
Linear Operators: a Singular
Value Decomposition Approach

3.1 Introduction

Singular values and singular value decompositions are among the most im-
portant tools in linear algebra that have played a key role in systems analysis,
control system design, model reduction, data compression, perturbation the-
ory, signal analysis and many applications in numerical linear algebra. Unlike
eigenvalues and eigenvalue decompositions, singular values and singular value
decompositions provide structural information on the spacial distribution of
mutually orthogonal amplification directions in the domain and co-domain
of a linear map. As such, the singular value decomposition defines a nu-
merically well conditioned basis for both the domain and the co-domain of
a linear operator and is, in fact, the core numerical tool to implement basic
algebraic concepts such as rank, null space, range, orthogonal complements,
etc.

A basic algebraic treatment of singular values and their applications can be
found in the standard works [12], [40]. In short, every matrix M ∈ Cm×n

admits a decomposition of the form

M = Y ΣX∗ (3.1)

where X ∈ Cn×n and Y ∈ Cm×m are orthogonal matrices and Σ ∈ Rm×n is
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a matrix whose diagonal entries (Σ)ii = σi, i = 1, . . . ,min(m,n), and which
is zero elsewhere. Here, σi are non-negative real numbers, ordered according
to σ1 ≥ . . . ≥ σmin(m,n) ≥ 0 and called the singular values of M . The
column vectors xi of X and yi of Y are the right and left singular vectors
and equation (3.1) is referred to as a singular value decomposition of M .
From (3.1) it follows that M allows a diadic expansion M = Σr

k=1σiyix
∗
i ,

where r = rankM .

The decomposition (3.1) proves useful for a wide variety of problems. It is
the purpose of this chapter to propose a generalization of this traditional
notion of a singular value decomposition and to establish a number of its
properties. In addition, we consider the approximation problem to find lower
rank approximants M ′ of M which are optimal in that the error M − M ′

has minimal induced norm when viewed as an operator on arbitrary normed
spaces.

The chapter is organized as follows. In section 3.2 we introduce singular
values in a general fashion and establish some of its elementary properties.
Problem formulations are collected in section 3.3. The main results on opti-
mal rank approximations are given in section 3.4. An application on optimal
system identification is discussed in section 3.5.

3.2 Generalized Singular Values

Let X and Y be two finite dimensional vector spaces over the field of scalars
F. Let n = dimX and m = dimY and define the p-norm of elements x ∈ X
as

‖x‖p :=

{
(
∑n

i=1 |xi|p)1/p if p < ∞
maxi=1,...,n |xi| if p = ∞

Here, xi denotes the ith component of x. Let (X , ‖·‖p) and (Y, ‖·‖p) be
normed linear vector spaces and let M : X → Y be a linear mapping. The
induced p-norm of M is

‖M‖p-ind := sup
06=x∈X

‖Mx‖p

‖x‖p

.

Throughout, the notation L ⊆ X is understood to mean that L is a linear
subspace of X . If L ⊆ X , then M |L denotes the restriction of M to L, i.e.,
M |L : L → Y is defined as M |Lx = Mx for x ∈ L.
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Definition 3.1 The p-norm induced singular values of M are the numbers

σ
(p)
k := inf

L⊆X ,
dimL≥n−k+1

sup
06=x∈L

‖Mx‖p

‖x‖p

(3.2)

where k runs from 1 till n. The set of these numbers is denoted by σ(p)(M).

Note that the induced p-norm singular values are non-negative real numbers.
For k = 1, . . . , n we will also be interested in the arguments of the infimum
in (3.2). For this purpose, define

L(p)
k := {L ⊆ X | dimL ≥ n− k + 1 and sup

06=x∈L

‖Mx‖p

‖x‖p

= σ
(p)
k }. (3.3)

Note that L(p)
k is non-empty for all k and all p and that L(p)

1 = X for all p.
Whenever p is understood from the context we omit the superscript (p) and
write σk, σ(M) and Lk. It is easy to see that

σ
(p)
1 = ‖M‖p-ind

σ
(p)
k = ‖M |Lk

‖p-ind

σ(p)
n = inf

06=x∈X
‖Mx‖p

‖x‖p

where Lk ∈ L(p)
k and k = 1, . . . , n. Some elementary results pertaining to the

p-norm induced singular values are summarized in the following Proposition.

Proposition 3.1 For all p ∈ [1,∞] there holds

1. σ
(p)
1 ≥ σ

(p)
2 ≥ . . . ≥ σ

(p)
n ≥ 0.

2. rank(M) = r < n if and only if σ
(p)
r+1 = · · · = σ

(p)
n = 0.

3. rank(M) = n if and only if σ
(p)
n > 0.

4. σ
(∞)
1 ≥ σ

(p)
1 .

Proof. Fix p ∈ [1,∞] and let Sk := {L ⊆ X | dimL ≥ n− k + 1}.
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1. Obviously σk ≥ 0 for all k = 1, . . . , n. Since Sk ⊆ Sk+1 it is immediate
that

σk = inf
L∈Sk

sup
0 6=x∈L

‖Mx‖p

‖x‖p

≥ inf
L∈Sk+1

sup
0 6=x∈L

‖Mx‖p

‖x‖p

= σk+1.

2. Suppose rank(M) = r < n and define K := kerM . Then dimK = n−r
so that K ∈ Sk for k = r + 1, . . . , n. But then

σk = inf
L∈Sk

sup
06=x∈L

‖Mx‖p

‖x‖p
≤ sup

0 6=x∈K
‖Mx‖p

‖x‖p

= 0

for k = r + 1, . . . , n. Since, σk ≥ 0 (statement 1), it follows that
σr+1 = · · · = σn = 0.

3. Since M is linear and since Sn consists of one dimensional subspaces
of X we have that σn = inf06=x∈X

|Mx‖p

‖x‖p
is strictly larger than zero if

M has rank n.

4. It is shown in the Appendix C.2.16 of [8] that ‖M‖∞-ind ≥ ‖M‖p-ind.
This is equivalent to σ

(∞)
1 ≥ σ

(p)
1 .

3.3 Problem Formulations

In this section we consider a number of problems where the p-norm induced
singular values play a natural role.

3.3.1 Rank Deficiency

An important application of singular values stems from the numerical dif-
ficulty to determine the rank of a matrix M . In particular, for situations
where M is near rank deficient, a numerically reliable calculation of rank(M)

24



Problem Formulations

is sensitive to errors. Most numerical implementations to determine rank(M)
calculate the numerical rank, defined as

r′ = rank(M, ε) := min
‖M−M ′‖p-ind≤ε

rank(M ′)

where ε > 0 is an accuracy level. In fact, this problem is a special case of
the optimal rank approximation problem, which we formulate next.

3.3.2 Optimal Rank Approximation

Let (X , ‖ · ‖p) and (Y, ‖ · ‖p) be finite dimensional normed linear vector
spaces of dimension n and m, respectively, and let M : X → Y be a linear
mapping of rank r. Consider the problem of approximating M by a linear
map M ′ : X → Y of rank at most k (k < r), such that the p-induced norm

‖M −M ′‖p-ind

is minimal. We refer to this problem as the optimal rank approximation
problem and to solutions M ′ as optimal rank k approximants.

3.3.3 Optimal System Identification

Consider the problem to model the (real scalar valued) observed time series
w̃(t), t = 0, . . . N , by an auto-regressive linear model of the form

n∑

i=0

xiw(t + i) = 0

where xi ∈ R are the model coefficients and n ≥ 0 is the model order. Let
x = (x0, . . . , xn)> denote the model coefficient vector and define the misfit
between model x and the data w̃ by

µ(x, w̃) :=
‖e‖p

‖x‖p

where e is the vector of residuals e(t) =
∑n

i=0 xiw̃(t + i), t = 0, . . . N − n.
Given w̃, n ≥ 0 and ε ≥ 0, the identification problem amounts to finding
all model coefficient vectors x ∈ Rn+1 which have a guaranteed misfit in
that µ(x, w̃) ≤ ε, i.e., we wish to characterize all models that can not be
distinguished if one tolerates a misfit level ε. Note that this set may be
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empty. A model x∗ ∈ Rn+1 is said to be optimal if it minimizes the misfit
µ(·, w̃).

Note the importance and interpretation of this problem for different values
of p. The usual phrasing of this problem is in a stochastic context where the
variance of e is to be minimized. This is equivalent of setting p = 2. Less
conventional is the case where p = ∞. Solutions of the identification problem
then have guaranteed upperbounds on the amplitude of their residuals, which
seems of considerable interest for many applications in modeling.

We remark that the assumption that w̃(t) and xi are scalar valued has been
made to simplify exposition only. Multivariable generalizations of this iden-
tification problem can be incorporated in a straightforward way. See Sec-
tion 3.5 below.

3.4 Optimal Rank Approximation

If p = 2, the optimal rank optimization problem is well understood and
has a simple solution. Indeed, let (3.1) be a singular value decomposition
of M and, in the notation of Section 3.1, set Mk :=

∑k
i=1 σixiy

∗
i . Then

rankMk ≤ k and

min
rank(M ′)≤k

‖M −M ′‖2-ind = ‖M −Mk‖2-ind = σ
(2)
k+1

which shows that Mk is an optimal rank k approximant of M . In particular,
any truncation of the diadic expansion of M defines an optimal lower rank
approximant of M . Optimal rank k approximants are by no means unique.
Indeed, if δi, i = 1, . . . , k, satisfy |δi| ≤ σk+1 then

M ′
k :=

k∑

i=1

(σi + δi)yix
∗
i (3.4)

satisfies ‖M − M ′
k‖2-ind = σ

(2)
k+1 and is therefore also an optimal rank k

approximant of M .

3.4.1 A Lower Bound on the Error

If p 6= 2, the problem is more difficult. We first establish a lower bound on
the mismatch between a matrix M and its lower rank approximations in the
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p-induced norm. We then derive a sufficient condition for which this lower
bound becomes sharp. Finally, we show that optimal rank n−1 approximants
always attain this lower bound. Throughout this section, X and Y will be
finite dimensional vector spaces of dimension n and m, respectively.

Proposition 3.2 Let M : X → Y have rank r and let Mk : X → Y have
rank at most k with k < r. Then

‖M −Mk‖p-ind ≥ σ
(p)
k+1.

Proof. Let Kk = kerMk. Then dimKk ≥ n− k and we note that

‖M −Mk‖p-ind = sup
06=x∈X

‖(M −Mk)x‖p

‖x‖p

≥ sup
06=x∈Kk

‖(M −Mk)x‖p

‖x‖p

= sup
06=x∈Kk

‖Mx‖p

‖x‖p

Since dimKk ≥ n− k, it follows that

sup
06=x∈Kk

‖Mx‖p

‖x‖p

≥ inf
L∈X

dimL≥n−k

sup
06=x∈L

‖Mx‖p

‖x‖p

which shows that ‖M −Mk‖p-ind ≥ σ
(p)
k+1.

A natural question is whether the lower bound in Proposition 3.2 can actually
be attained for a rank k matrix Mk. To answer this question, recall that two
subspaces L′ and L′′ of X are said to be complementary if L′ ∩ L′′ = {0}
and L′ + L′′ = X . If (L′,L′′) is a complementary pair, every x ∈ X admits
a unique decomposition x = x′ + x′′ with x′ ∈ L′ and x′′ ∈ L′′. In that
case, we write x′ = ΠL′|L′′x and x′′ = ΠL′′|L′x where ΠL′|L′′ : X → L′ and
ΠL′′|L′ : X → L′′ define the natural projections on L′ along L′′ and on L′′
along L′, respectively.
The following theorem provides a sufficient condition under which the lower
bound in Proposition 3.2 will be sharp.

Theorem 3.1 Given M , and define the sets L(p)
k by (3.3). If there exist

L′ ∈ L(p)
k+1 and L′′ ⊆ X such that
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1. (L′,L′′) are complementary and

2. ‖ΠL′|L′′‖p-ind ≤ 1

then there exists Mk : X → Y of rank at most k such that

‖M −Mk‖p-ind = σ
(p)
k+1.

In particular, Mk given by Mk|L′ = 0 and Mk|L′′ = M |L′′ is an optimal rank
k approximant of M .

Proof. In view of Proposition 3.2, it suffices to show that Mk, as specified,
has rank ≤ k and satisfies ‖M−Mk‖p-ind ≤ σ

(p)
k+1. To see this, first note that

dimL′ ≥ n− k which means that dimL′′ ≤ k so that rankMk ≤ k. Second,
observe that

‖M −Mk‖p-ind = sup
06=x∈X

‖Mx−Mkx‖p

‖x‖p

= sup
x′∈L′;x′′∈L′′

x′+x′′ 6=0

‖Mx′‖p

‖x′ + x′′‖p

≤ sup
06=x′∈L′

‖Mx′‖p

‖x′‖p

= sup
06=x′∈L′

‖Mx′‖p

‖x′‖p

= σ
(p)
k+1.

Here, we used in the third inequality that ΠL′|L′′ is a contraction, i.e., ‖x′‖p =

‖ΠL′|L′′x‖p ≤ ‖x‖p. The last equality follows from the definition of L(p)
k+1. It

follows that Mk is an optimal rank k approximant of M .

The main issue of the above result is the existence of a subspace L′′, comple-
mentary to L′ ∈ L(p)

k+1 such that the projection ΠL′|L′′ defines a contraction
on X . We will investigate these conditions for a number of special cases.

3.4.2 Nonexistence of Contractive Projection

Theorem 3.1 provides sufficient conditions for which the lower bound in
Proposition 3.2 will be attained. These conditions will not always be satis-
fied. In fact, to see how strict these conditions are, consider the case where
n = 3, p is even, p 6= 2, and L′ is a two dimensional subspace of X = R3,
spanned by the non-zero vectors x and y, i.e. L′ = span(x, y). A subspace
L′′ of X will satisfy the conditions 1 and 2 of Theorem 3.1 if and only if
L′′ = span(z) with z 6= 0 such that
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1. det (x, y, z) 6= 0 and

2.
∑3

i=1(αxi + βyi + γzi)p − (αxi + βyi)p ≥ 0 for all α, β, γ ∈ R.

In particular, the latter condition implies that

3∑

i=1

xp−1
i zi = 0

3∑

i=1

yp−1
i zi = 0

3∑

i=1

(x1 + yi)p−1zi = 0

which yields (generically) that z1 = z2 = z3 = 0; i.e. z = 0. Hence there does
not exist a complementary subspace L′′ such that the projection ΠL′|L′′ is
contractive. Alternatively, from geometrical point of view, Figure 3.1 shows
a two dimensional subspace L′ in three dimensional space X = R3, which
does not satisfy the sufficient conditions in Theorem 3.1 when p = ∞. In
this case it is not possible to project every point on infinity ball, along any
one dimensional subspace, to the subspace L′ in Figure 3.1 such that the
projection point is inside or on the ball.

3.4.3 The Case p = 2 and Arbitrary k

If p = 2, X becomes a Hilbert space with the natural inner product 〈·, ·〉. For
every subspace L ⊆ X , its orthogonal complement L⊥ := {x ∈ X | 〈x, y〉 =
0 for all y ∈ L} is complementary to L and the orthogonal projection ΠL|L⊥
is obviously a contraction. Hence, optimal rank k approximants always exist
in this case and are given by the expression (3.4). This case is well understood
and can be found in many text books (e.g. [12, 40]).

3.4.4 The Case k = n− 1 and Arbitrary p

Let p be arbitrary, suppose that n = rankM and consider the optimal rank
approximation problem with k = n − 1. The set L(p)

n then consists of sub-
spaces of dimension ≥ 1 only. Let L′ ∈ L(p)

n be a one dimensional subspace
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Figure 3.1: Nonexistence of contractive projection for the case p = ∞

and let x′ ∈ L′ be a nonzero element. Then L′ = span(x′). The following
lemma is easily seen.

Lemma 3.1 If L′ = span(x′) for a nonzero x′ ∈ X then L′′ ⊆ X will be
complimentary to L′ if and only if

L′′ = {x′′ ∈ X | 〈w, x′′〉 = 0} (3.5)

where w ∈ X is a nonzero vector such that 〈w, x′〉 6= 0.

Hence, Lemma 3.1 provides a parametrization of all complements of a given
one-dimensional subspace spanned by a nonzero vector x′ ∈ X . In order
to characterize complementary suspaces (L′,L′′) for which the projection
ΠL′|L′′ is contractive, we resort to some terminology from convex analysis
[35].

Definition 3.2 Let f : X → R be a convex function. A vector w ∈ X is
said to be a subgradient of f at x ∈ X if

f(z) ≥ f(x) + 〈w, z − x〉 (3.6)
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for all z ∈ X . The set of all subgradients of f at x ∈ X is called the
subdifferential of f at x and denoted by ∇f(x), i.e.,

∇f(x) := {w ∈ X | f(z) ≥ f(x) + 〈w, z − x〉
for all z ∈ X} .

Inequality (3.6) is usually referred to as the subgradient inequality and has
the simple geometric interpretation that the graph of f lies on or above the
affine function g(z) := f(x) + 〈w, z − x〉 which is the tangent hyperplane of
f at x. We remark that the subdifferential of f at x is a closed convex set.
If ∇f(x) is non-empty, f is said to be subdifferentiable at x.

The next proposition shows that subdifferentials of the mapping f : x 7→
‖x‖p precisely parameterize the complements of L′ for which ΠL′|L′′ is con-
tractive. The following lemma shall be used to prove the proposition.

Lemma 3.2 Consider f : x 7→ ‖x‖p. Then w ∈ ∇f(x) if and only if
〈w, x〉 = ‖x‖p and 〈w, z〉 ≤ ‖z‖p for all z ∈ X .

Proof. (if). Obvious.

(only if). Substitute z = αx (0 ≤ α ≤ 1) into (3.6) then we have 〈w, x〉 ≥
‖x‖p. Take z = αx where α > 1 then we have 〈w, x〉 ≤ ‖x‖p. Thus we have
〈w, x〉 = ‖x‖p and 〈w, z〉 ≤ ‖z‖p for all z ∈ X .

Proposition 3.3 Let x′ ∈ X be nonzero and L′ = span(x′). Then the pair
(L′,L′′) is complementary and ‖ΠL′|L′′‖p-ind ≤ 1 if and only if L′′ is given
by (3.5) with 0 6= w ∈ ∇‖x′‖p.

Proof. (if). From Lemma 3.2 we have 〈w, x′〉 = ‖x′‖p 6= 0 which yields
that the pair (L′,L′′) is complimentary. Now the subgradient inequality (3.6)
yields

‖z‖p ≥ ‖x′‖p + 〈w, z − x′〉
For any given nonzero λ ∈ R we have

‖λz‖p ≥ ‖λx′‖p +
|λ|
λ
〈w, λz − λx′〉

=⇒ ‖z̄‖p ≥ ‖λx′‖p + 〈v, z̄ − λx′〉 (3.7)

where we set z̄ = λz and v = |λ|w/λ. Since z is arbitrary and λ 6= 0, (3.7)
yields the subgradient inequality for all z̄ ∈ X with z̄ 6∈ L′′. By the fact that
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the pair (L′,L′′) is complimentary any z̄ ∈ X has a unique decomposition
z̄ = z̄′ + z̄′′ with z̄′ = ΠL′|L′′ z̄ and z̄′′ = z̄ − z̄′ ∈ L′′. Since z̄′ ∈ L′ it follows
that there exists λ ∈ R such that z̄′ = λx′. Now, from (3.7) we then have
‖z̄‖p ≥ ‖z̄′‖p. Since z̄ is arbitrary, it follows that ‖ΠL′|L′′‖p-ind ≤ 1.

(only if). By Lemma 3.1, there exists w ∈ X , with 〈w, x′〉 6= 0 such that L′′
is given by (3.5). Since 〈w, x′〉 is nonzero, we may as well assume that

‖x′‖p = 〈w, x′〉
By complimentary of (L′,L′′) we can decompose uniquely any z ∈ X in terms
of z = z′ + z′′ where z′ = λx′ for λ ∈ R and z′′ ∈ L. Since ‖ΠL′|L′′‖p-ind ≤ 1
we have ‖z‖p ≥ ‖z′‖p. Then

‖z‖p ≥ ‖λx′‖p ≥ λ‖x′‖p = λ〈w, x′〉 = 〈w, λx′〉 = 〈w, z〉
From this point we have obtained 〈w, x′〉 = ‖x′‖p and 〈w, z〉 ≤ ‖z‖p for all
z ∈ X . Consequently, by Lemma 3.2, w ∈ ∇‖x′‖p as desired.

The following theorem is an immediate consequence of Theorem 3.1 and
Proposition 3.3.

Theorem 3.2 Let M : X → Y have rank n. For every p there exists M∗ :
X → Y with rankM∗ < n such that

‖M −M∗‖p-ind = min
rank M ′≤n−1

‖M −M ′‖p-ind = σ(p)
n .

Moreover, any M∗ given by M∗|L′ = 0 with L′ = span(x′) ∈ Ln and M∗|L′′ =
M |L′′ with L′′ given by (3.5) with w ∈ ∇‖x′‖p is an optimal approximant of
rank < n.

At this stage it is unclear whether for arbitrary p, the p-induced singular
values σ(p)(M) precisely characterize the minimal achievable approximation
errors in that

min
rank(M ′)≤k

‖M −M ′‖p-ind = σ
(p)
k+1

holds for all k. This question is currently under investigation.

3.5 Optimal System Identification

Consider the optimal system identification formulated in Section 3.3. Let
w̃(t), t = 0, . . . N be a real valued observed time series of dimension q, i.e.,
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w̃(t) ∈ Rq, and suppose that we wish to find an optimal autoregressive model

n∑

i=0

xiw(t + i) = 0

where the model coefficients xi are row vectors of dimension q, and n is the
model order. Let x = (x0, . . . , xn)> ∈ Rq(n+1) denote the model coefficient
vector and set

M =




w̃>(0) · · · w̃>(n)
...

...
w̃>(N − n) · · · w̃>(N)


 .

It is immediate that the misfit

µ(x, w̃) =
‖Mx‖p

‖x‖p
.

Consequently, L ⊆ Rq(n+1) satisfies µ(·, w̃)|L ≤ ε if and only if ‖M |L‖p-ind ≤
ε. Hence, by definition, all subsets L ⊆ Rq(n+1) with this property are
characterized by L ∈ L(p)

j , j ≥ k where k is such that

σ
(p)
k−1(M) > ε ≥ σ

(p)
k (M). (3.8)

This proves the following result:

Theorem 3.3 If k satisfies (3.8), then all x ∈ L with L ∈ L(p)
j , j ≥ k, solve

the identification problem in that the misfit

µ(x, w̃) ≤ ε.

The identification problem has no solution if no such k exists. Furthermore,
every x∗ ∈ L with L ∈ L(p)

q(n+1) defines an optimal model of (minimal) misfit

µ(x∗, w̃) = σ
(p)
n+1.

Note that this result provides a complete solution to the system identification
problem for any p.
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Chapter 4

L2 Gain Approximation of
Nonlinear Systems: a Heuristic
Approach

4.1 Introduction

Modelling of physical systems may result in high dimension of states. In
many cases high dimension of states in a model is not desirable as analysis
can be much more difficult, not to mention synthesis for control. This has
prompted people to reduce the number of states by removing some of the
states, under certain mechanisms, while keeping the reduced model as close
as possible to the original one. Many techniques of reducing high dimen-
sional system have been developed for linear systems. Most of the works in
linear systems are related to balanced truncation [25, 29], Hankel norm ap-
proximation [11] and H∞-norm model approximation [13, 17]. On the other
hand, there are not many results for nonlinear version despite the fact that
many models in industry are nonlinear with large number of states.

While model reduction for nonlinear systems is essential for a wide range of
applications, it is still far away from maturity as the subject is more difficult
to understand and to solve than that of linear systems. As such, there are
only a few results on scheme for constructing a reduced order model for
nonlinear system, such as [20], [33] and [38].

In this chapter a computational method for obtaining a reduced order model
for a class of nonlinear system with polynomial vector fields is presented.
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The origin of the unforced original nonlinear system is globally asymptoti-
cally stable. First a necessary condition for the system to have a reduced
model is derived. The result only holds under a strict condition in that the
error model should have strong H∞ performance with a certain property.
The necessary condition is given by the existence of generalized reachability
and observability functions obtained from the same type of Hamilton-Jacobi
inequalities described in [33]. From this necessary condition an approach
to construct a reduced model such that the error model is finite gain L2

stable is deduced. The method is heuristic in nature as one of the step of
construction is based on that necessary condition. Thus if the condition is
satisfied it does not mean that a reduced model exists and the method may
sometimes fail to give a reduced model. The advantage of this method is
that it benefits from the use of sum of squares programming as the reachabil-
ity and observability functions to be computed should satisfy the same type
of Hamilton-Jacobi inequalities like in [33]. Moreover under an additional
condition the origin of the resulting reduced order model is guaranteed to be
globally asymptotically stable whenever the input is zero.

4.2 L2 Gain Approximation

This chapter is concerned with a polynomial nonlinear system

ẋ = f(x) + B (x) u, (4.1a)
y = h (x) + D (x) u, (4.1b)

where x = [x1, . . . , xn]T ∈ Rn is the state vector of the system, u ∈ Rnu is
the input to the system and y ∈ Rny is the output of the system. We assume
the functions f and h can be expressed in the form

f (x) = A (x) x,

h (x) = C (x) x,

with A (x) ∈ Rn×n [x] , C (x) ∈ Rny×n [x] are polynomial matrices in x while
B (x) ∈ Rn×nu [x] and D (x) ∈ Rny×nu [x] are also polynomial matrices in x,
and therefore smooth. In this case ways to represent A (x) and C (x) are not
unique. Furthermore, we assume that the origin is globally asymptotically
stable (in the sense of Lyapunov) whenever u = 0.

We consider a reduced order model

ẋr = Ar (xr) xr + Br (xr) u, (4.2a)
yr = Cr (xr) xr + Dr (xr) u, (4.2b)
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where xr = [xr1, . . . , xrnr ]
T ∈ Rnr with nr < n, Ar (xr) ∈ Rnr×nr [xr] ,

Br (xr) ∈ Rnr×nu [xr] , Cr (xr) ∈ Rny×nr [xr] and Dr (xr) ∈ Rny×nu [xr]. The
error system is given by

χ̇ = F (χ) + B (χ) u, (4.3a)
e = H (χ) +D (χ) u, (4.3b)

where

χ =
[

x
xr

]
, F (χ) = A (χ) χ, H (χ) = C (χ) χ,

A (χ) =
[

A (x) 0
0 Ar (xr)

]
, B (χ) =

[
B (x)

Br (xr)

]
,

C (χ) =
[

C (x) −Cr (xr)
]
, D (χ) = D (x)−Dr (xr) .

This chapter aims at obtaining a reduced order model (4.2) such that e ∈
L2 [0, T ] whenever u ∈ L2 [0, T ] for T ∈ [0,∞). The quality of the approxi-
mant (4.2), in this case, is quantified by means of L2 gain of the error system
(4.3). The L2 gain is defined as follows.

Definition 4.1 [36] The error system (4.3) with χ (0) = 0 is finite gain L2

stable with gain at most ε ≥ 0 if
∫ T

0
‖e (t)‖2 dt ≤ ε2

∫ T

0
‖u (t)‖2 dt

for all u ∈ L2 [0, T ] and T ∈ [0,∞) .

Throughout the chapter, we assume that ε2Inu −D(χ)TD(χ) Â 0 for all χ is
always satisfied for the given ε.

The following condition is sufficient for the error system to be finite gain
L2 stable. Though the condition is only sufficient for finite gain L2 stable
we will employ this condition throughout the chapter because it has a nice
structure which can be exploited for computational purposes.

Proposition 4.1 [22] System (4.3) is finite gain L2 stable with gain at most
ε ≥ 0 if there exists a continuosly differentiable storage function V (χ) such
that ∂V (χ)

∂χ = 2χT M (χ) where M (χ) = M (χ)T is positive definite and sat-
isfies



A (χ)T M (χ) + M (χ)A (χ) M (χ)B(χ) C(χ)T

B (χ)T M (χ) −ε2Inu D (χ)T

C (χ) D (χ) −Iny


 ¹ 0 (4.4)
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for all χ ∈ Rn+nr .

Proof. The short version of the proof is as follows. The sufficient condition
implies

∂V (χ)
∂χ

F (χ) +H (χ)T H (χ) +
(

1
2

∂V (χ)
∂χ

B (χ) +H (χ)T D (χ)
)
×

(
ε2Inu −D (χ)′D (χ)

)−1

(
1
2
B (χ)T ∂V (χ)

∂χ

T

+D (χ)T H (χ)

)
≤ 0 (4.5)

for all χ. By completion of square, (4.5) implies that the system (4.3) is
finite gain L2 stable with gain at most ε ≥ 0

In [22], whenever ε = 1, this sufficient condition for finite gain L2 stability
is referred to as strong H∞ performance. Throughout, the system (4.3) is
said to have strong H∞ performance of gain ε whenever the condition in
Proposition 4.1 is satisfied for a prescribed ε which is not necessarily one.

We need to point out that any positive definite M (χ) = M (χ)T which satis-
fies (4.4) does not automatically guarantee that the system (4.3) is finite gain
L2 stable. Additionally, we require that the vector field ϑ (x) = 2M (χ) χ
should be conservative [19], that is there exists a scalar potential V (χ) such
that

ϑ (χ) =
∂V (χ)

∂χ

T

.

The following condition is necessary and sufficient for a vector field to be
conservative.

Proposition 4.2 [22] Suppose ϑ (χ) =
[

ϑ1 (χ) . . . ϑN (χ)
]T belongs to

class Ck for some positive integer k. Then there exists a Ck+1 function V (χ)
such that

∂V (χ)
∂χ

= ϑ (χ)T

if and only if
∂ϑi (χ)

∂χj
=

∂ϑj (χ)
∂χi

for all χ and i, j = 1, . . . , N. In this case V is given by

V (χ) = χT

∫ 1

0
ϑ (τχ) dτ

where V (0) = 0. In addition, if ϑ (x) = 2M (χ) χ where M (χ) is positive
definite then V (χ) is also positive definite function.
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4.3 A Necessary Characterization

In linear systems a necessary and sufficient condition for H∞ model reduc-
tion is given by the existence of the generalized gramians as described in
Proposition 2.8. Motivated by the relation of the generalized gramians of
linear systems with the H∞ model reduction problem in linear system as
stated in Proposition 2.8, the relation of generalized functions of nonlinear
systems with the strong H∞ model reduction problem in nonlinear systems
will be shown. In this case a necessary condition for the nonlinear system
(4.1) to have a reduced order model (4.2) with the error system (4.3) achiev-
ing strong H∞ performance is presented.

Definition 4.2 [33] A positive definite polynomial function Lo (x) with Lo (0) =
0 is a generalized observability function to the system (4.1) if it satisfies

∂Lo (x)
∂x

f (x) +
1
2
hT (x) h (x) ≤ 0 (4.6)

for all x ∈ Dx.

Definition 4.3 [33] A positive definite polynomial function Lc (x) with Lc (0) =
0 is a generalized reachability function to the system (4.1) if it satisfies

∂Lc (x)
∂x

f (x) +
∂Lc (x)

∂x
B (x) u− 1

2
uT u ≤ 0 (4.7)

for all x ∈ Dx and u ∈ Rnu .

Equivalently, (4.7) can be expressed by

∂Lc (x)
∂x

f (x) +
1
2

∂Lc (x)
∂x

B(x)B(x)T ∂Lc (x)
∂x

T

≤ 0 ∀x ∈ Dx. (4.8)

Throughout this chapter, we set Dx = Rn. The degree of the polynomial
generalized functions Lo (x) and Lc (x) should not be less than two to guar-
antee positive definiteness and being vanished at the origin. The result of
the following holds under strict condition on the structure of matrix M .

Theorem 4.1 Suppose that the system (4.3) has strong H∞ performance of
gain ε with

M (x) = M (x)T =
[

X (x) X2

XT
2 X3

]
Â 0
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where X2 ∈ Rn×nr , X3 = XT
3 ∈ Rnr×nr , X (x) = X (x)T ∈ Rn×n [x] with

xT X (x) being a conservative vector field then there exist a generalized ob-
servability function Lo(x) and a generalized reachability function Lc(x) to
the system (4.1).

Proof. The proof is a generalization of the proof of necessary condition in
Proposition 2.8. The proof can also be seen as a special case of the proof
of solvability conditions for the strong H∞ control problem in [22]. The
inequality



A (χ)T M (x) + M (x)A (χ) M (x)B(χ) C(χ)T

B (χ)T M (x) −ε2Inu D (χ)T

C (χ) D (χ) −Iny


 ¹ 0

can be expressed as

Φ(χ) := H (x) + QT Jr (xr) P + P T Jr (xr) Q ¹ 0

where

H (x) =




X (x) A (x) + A (x)T X (x) A (x)T X2 X (x) B (x) C (x)T

XT
2 A (x) 0 XT

2 B (x) 0
B (x)T X (x) B (x)T X2 −ε2Inu D (x)T

C (x) 0 D (x) −Iny


 ,

P =
[

0 Inr 0 0
0 0 Inu 0

]
,

Q =
[

XT
2 X3 0 0
0 0 0 −Iny

]
,

Jr (xr) =
[

Ar (xr) Br (xr)
Cr (xr) Dr (xr)

]
.

Let the inverse of M (x) be

M (x)−1 =
[

Y (x) Y2 (x)
Y2 (x)T Y3 (x)

]
.

By

NP =




In 0
0 0
0 0
0 Iny


 , NQ =




In 0
Y2 (x)T Y (x)−1 0

0 Inu

0 0


 ,
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which are full rank and satisfy

PNP = 0,

QNQ = 0,

it is necessary that

NT
P Φ(χ) NP = NT

P H (x) NP ¹ 0,

NQ
T Φ(χ) NQ = NQ

T H (x) NQ ¹ 0.

From

NT
P H (x) NP =

[
A (x)T X (x) + X (x)A (x) C (x)T

C (x) −Iny

]
,

NQ
T H (x) NQ =

[
A (x)T Y (x)−1 + Y (x)−1 A (x) Y (x)−1 B (x)

B (x)T Y (x)−1 −ε2Inu

]
,

and by Schur complement [6] we obtain

A (x)T X (x) + X (x) A (x) + C (x)T C (x) ¹ 0,

A (x)T Y (x)−1 + Y (x)−1 A (x) +
1
ε2

Y (x)−1 B (x)B (x)T Y (x)−1 ¹ 0,

which imply

xT A (x)T X (x)x + xT X (x) A (x) x + xT C (x)T C (x) x ≤ 0,

xT A (x)T Y (x)−1 x+x′Y (x)−1 A (x) x+
1
ε2

xT Y (x)−1 B (x) B (x)T Y (x)−1 x ≤ 0.

Next we define the positive semidefinite matrix Λ which has rank at most nr

Λ := X (x)− Y (x)−1 = X2X
−1
3 XT

2 .

From the fact that xT X (x) is conservative and X (x) is positive definite then
there exists a positive definite function L1 (x) such that ∂L1(x)

∂x = xT X (x).
By defining

Lo (x) := L1 (x) ,

Lc (x) :=
1
ε2

L1 (x)− 1
2ε2

xT Λx,
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we have

∂Lo (x)
∂x

= xT X (x) ,

∂Lc (x)
∂x

=
1
ε2

xT (X (x)− Λ) =
1
ε2

xT Y (x)−1 ,

and thus the result follows.

Theorem 4.1 basically says that if there exists a reduced order model (4.2)
for the nonlinear system (4.1) with the error system (4.3) having strong H∞
performance of gain ε with a particular structure of M then there always
exist generalized reachability and observability functions Lc(x) and Lo(x),
respectively satisfying the Hamilton-Jacobi inequalities (4.6-4.7). Here, the
structure of Lc(x) and Lo(x) is related to the structure of M(x) as shown in
the proof.

It is important to point that Theorem 4.1 is quite conservative in that we
do not consider a general structure of M. For simplification, the matrix M
is dependent only on x but not on xr. Moreover it is only the matrix X
which is dependent on x while X2 and X3 are independent of x. Hence, it
is sufficient to require xT X (x) to be a conservative vector field to guarantee
the existence of a storage function V.

A truncation scheme based on generalized reachability function Lc (x) and
generalized observability function Lo (x) satisfying (4.6-4.7) is introduced in
[33]. In the scheme the search of the functions Lc (x) and Lo (x) are com-
pletely independent with each other. In our case in Theorem 4.1 necessarily
the structure of Lc (x) and Lo (x) is identical modulo the quadratic form
xT Λx due to simplification of the matrix M . In this case the matrix Λ is
dependent on X2 and X3 which are the elements of M while the order nr of
the reduced model will be the upper bound for the rank of the matrix Λ.

A natural question arises whether, for a prescribed ε, there exists any re-
duced model (4.2) where its error system (4.3) satisfies (4.5) if there exist
positive definite functions Lc (x) and Lo (x) satisfying (4.6-4.7) without any
additional requirement on the structure of Lc (x) and Lo (x). And if the an-
swer is negative what kind of additional condition on the structure of Lc (x)
and Lo (x) should be imposed so that a reduced model exists. This is a very
difficult question and any answer on this will be paving the way towards a
better construction mechanism of a reduced model for the nonlinear system
(4.1). So far, we can only provide necessary characterization of a nonlinear
system which has a reduced model when the error system has strong H∞
performance with a certain structure of M, as described in Theorem 4.1.
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4.4 A Heuristic Approach

Construction of a reduced model is difficult in general. In this section we
propose a heuristic for constructing a reduced model (4.2) for the nonlinear
system (4.1) of order n where the order of the reduced model is nr < n such
that (4.5) is satisfied for a prescribed ε. The approach which is deduced from
Theorem 4.1 is given as follows.

1. Find a positive definite function L (x) and a positive semidefinite ma-
trix Λ ∈ Rn×n whose rank is at most nr < n such that

Lc (x) = L (x) ,

Lo (x) = ε2L (x) +
1
2
xT Λx,

and (4.6)-(4.7) are satisfied.

2. The matrix X2 ∈ Rn×nr can be obtained from

X2X
T
2 = Λ.

and we set X3 = Inr .

3. Define V (χ) := 2Lo (x) + 2xT X2xr + xT
r xr and construct Ar (xr),

Br (xr), Cr (xr), Dr (xr) satisfying (4.5).

In step 1 we employ the condition in Theorem 4.1 where we put a structure on
Lc (x) and Lo (x) in order to give the same structure of M as in Theorem 4.1.
The constraint on the structure of Lc (x) and Lo (x) makes step 1 only work
for a very restricted class of system. Moreover, as the nature of the condition
in Theorem 4.1 is of necessity it is important to note that even if step 1 is
satisfied it does not mean that the existence of a reduced model is guaranteed.

In step 3 we use another condition instead of the condition of strong H∞
performance. Condition (4.5) is sufficient for the system (4.3) to be finite
gain L2 stable with gain at most ε ≥ 0. But (4.5) is also a necessary condition
for strong H∞ performance of gain ε. Thus (4.5) is a better inequality to
characterise L2 gain stability of (4.3).

It is important to note that feasibility test of (4.5), (4.6) and (4.7) is a hard
problem for computation. Yet these inequalities have advantage from com-
putational point of view as they can be relaxed by means of sum of squares
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programming. It is very obvious that a polynomial expressed as a sum of
squares of other polynomials is nonnegative everywhere. The works of [30]
have showed that determining whether a polynomial can be expressed as a
sums of squares is an LMI problem. Thus the problem of testing whether a
polynomial is sum of squares becomes relatively easy while testing nonneg-
ativity of a polynomial is a hard problem. (A more detailed discussion on
sum of squares programming can be read from [30].) Within this direction
the requirements of (4.5), (4.6) and (4.7) can be relaxed by means of certain
polynomials being sum of squares (SOS). The relaxation is given as follows.

1. Find a positive definite L (x) and a positive semidefinite matrix Λ ∈
Rn×n whose rank is at most nr < n such that

Lc (x) = L (x) ,

Lo (x) = ε2L (x) +
1
2
xT Λx,

and

− ∂Lo (x)
∂x

f (x)− 1
2
h (x)T h (x) is SOS, (4.9)

vT

[
−∂Lc(x)

∂x f (x) ∂Lc(x)
∂x B (x)

B (x)T ∂Lc(x)
∂x

T
2Inu

]
v is SOS, (4.10)

where v ∈ R1+nu .

2. The matrix X2 ∈ Rn×nr can be obtained from

X2X
T
2 = Λ.

and we set X3 = Inr .

3. Define V (χ) := 2Lo (x) + 2xT X2xr + xT
r xr and construct Ar (xr),

Br (xr), Cr (xr), Dr (xr) such that

−wT




∂V (χ)
∂χ F (χ) 1

2
∂V (χ)

∂χ B (χ) H (χ)T

1
2B (χ)T ∂V (χ)

∂χ

T −ε2Inu D (χ)T

H (χ) D (χ) −Iny


w

is SOS for w ∈ R1+nu+ny . (4.11)

The requirements (4.10) of step 1 and (4.11) of step 3 are based on the
following. If a polynomial wT Ψ(χ) w is SOS, where Ψ(χ) is a matrix whose
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entries are polynomials, then Ψ(χ) º 0 for all χ [32]. By Schur complement
[6] the inequalities

[
∂Lc(x)

∂x f (x) ∂Lc(x)
∂x B (x)

B (x)T ∂Lc(x)
∂x

T −2Inu

]
¹ 0,




∂V (χ)
∂χ F (χ) 1

2
∂V (χ)

∂χ B (χ) H (χ)T

1
2B (χ)T ∂V (χ)

∂χ

T −ε2Inu D (χ)T

H (χ) D (χ) −Iny


 ¹ 0,

are equivalent to (4.8) and (4.5), respectively.

The rank condition of Λ in step 1 is hard to compute as it is nonconvex.
General computational procedure for rank condition is still an open problem
and will not be covered in this chapter. Though it will bring more conserva-
tiveness, to replace nonconvexity of rank condition we can set

Λ =




0 0 0
0 Λ1 0
0 0 0




where Λ1 ∈ Rnr×nr is positive semidefinite.

To determine stability properties of the reduced model it follows from (4.5)
that

∂V (χ)
∂χ

F (χ) ≤ −H (χ)T H (χ) (4.12)

for all χ. For x = 0, (4.12) gives

∂v (xr)
∂xr

fr (xr) ≤ −hr (xr)
T hr (xr)

for all xr, where v (xr) = xT
r xr and

fr (xr) = Ar (xr) xr, hr (xr) = Cr (xr)xr.

Invoking LaSalle’s invariance principle [18] if we require that no solution of
ẋr = fr (xr) can stay identically in

S = {xr ∈ Rnr | hr (xr) = 0}

other than the trivial solution xr (t) ≡ 0 then the origin of ẋr = fr (xr) is
globally asymptotically stable.
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4.5 Example

In this section a numerical example is given to illustrate the applicability of
the proposed approach. Consider the system

f (x) =
[ −x1 − x2

2x1 − 3x2 − x3
2

]
, g (x) =

[
0
1

]
,

h (x) = 2x2 − x1,

with L (x) and Λ in the following structure

L (x) = α1x
2
1 + α2x

2
2,

Λ =
[

0 0
0 γ

]
.

The equilibrium point at the origin is globally asymptotically stable when
u = 0. We want to construct a reduced order model of one dimension with
the structure

Ar = a1 + a2x
2
r, Br = b,

Cr = c, Dr = d,

where a1, a2, b, c, d ∈ R. Feasibility tests of (4.9), (4.10) and (4.11) are
carried out using SOS programming tools [23, 31]. For ε = 0.2 we obtain
Ar = −3.7141− 0.7793x2

r, Br = −1.2387, Cr = −1.8926, Dr = 0.0022 with

L = 8.4829x2
1 + 1.3206x2

2,

γ = 1.5203,

The origin of the reduced model is globally asymptotically stable whenever
u = 0. The response of the system and the reduced model to inputs u =
e−1.5tsin(1.5t) can be seen in Figure 4.1.

For comparison we consider linearization of the system around the origin.
The linearized system is controllable and observable. Now we resort to H∞
model reduction where we are to compute a reduced model of one dimension
for the linearized system by means of Proposition 2.8. All the conditions
in Proposition 2.8 can be casted in terms of LMIs but the rank condition.
In this case a numerical scheme based on alternating projection [13] is used
to approach the rank condition. As the algorithm will not give accurate
results for ε̂ < 0.06, the reduced model is computed for ε̂ = 0.06. The
resulting reduced model gives a good approximation for the original nonlin-
ear system when it is excited around the origin. But for the region which
include nonlinearity the reduced model shows poor performance as shown in
Figure 4.2.

46



Example

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time [sec]

y (solid) and y
r
 (dashed)

 

Figure 4.1: Response of the output to the input u = e−1.5tsin(1.5t)
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Figure 4.2: Response of the output to the input u = 50e−3t − 50e−1.5t
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Chapter 5

Reachability-Based Approach
for L2 Gain
Approximation of Polynomial
Systems

5.1 Introduction

In attempting to utilize the power of sum of squares programming a heuristic
approach is introduced in the previous chapter. The approach computes
a reduced model for the polynomial nonlinear system such that the error
model satisfies a finite gain L2 stability condition. Though verification of
this condition can be done through sum of squares programming, the method
suffers from the coupling of the unknown storage function with the unknown
structure of the reduced model which makes the computation untractable.
To avoid this coupling of the unknown variables, the generalized reachability
and observability functions which satisfy the same type of Hamilton-Jacobi
inequalities like in [33] are computed through sum of squares programming.
Based on the generalized functions, a storage function is constructed. The
reduced model can then be computed such that the error model satisfies the
finite gain L2 stability condition.

In this chapter we try a different approach to decouple the unknown variables
for verifying the finite gain L2 stability condition. Instead of constructing
the storage function as the first step to avoid the coupling of the unknown
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variables, we construct partially the structure of the reduced model which is
coupled with the storage function. The construction is based on an estimate
of the reachability set of the system when the initial condition is set to
the origin. In this case we seek the part of the system which is strongly
reachable. This part of the system will be the state space of the reduced
model while the output of the reduced model is obtained through sum of
squares programming of relaxation of the finite gain L2 stability condition.

The method in this chapter is restricted to a certain class of polynomial
nonlinear system (4.1) where B(x) = B ∈ Rn×nu , D(x) = D ∈ Rny×nu are
constant matrices and h(x) = Cx with C ∈ Rny×n. In this case we can write
the system

ẋ = f(x) + Bu, (5.1a)
y = Cx + Du. (5.1b)

We assume the following about the system.

Assumption 5.1 There exists Q = QT Â 0 such that

xT f (x) ≤ −xT Qx

for all x ∈ Rn.

By the assumption, the origin of the unforced system is globally asymptot-
ically stable. For the linear system f (x) = Ax the assumption means that
A + A

T should be negative definite. Assumption 5.1 is needed to guarantee
that the model reduction method in this chapter preserves global asymptotic
stability.

The reduced order model to be computed is in the form (4.2) where Br(xr) =
Br ∈ Rnr×nu , Dr(xr) = Dr ∈ Rny×nu are constant matrices. In this case we
can write the reduced order model

ẋr = fr (xr) + Bru, (5.2a)
yr = Crxr + Dru. (5.2b)

As in the previous chapter we also use the following assumption.

Assumption 5.2 ε2Inu −DTD Â 0.
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5.1.1 Estimate of the Reachable Set

Consider the inequality (4.7) or, equivalently

∂Lc (x)
∂x

f (x) +
∂Lc (x)

∂x
Bu ≤ 1

2
uT u ∀ (x, u)

where the function Lc (x) is a positive definite polynomial in x with Lc (0) =
0. By setting x (0) = 0 we obtain

Lc (x (t)) ≤ 1
2

∫ t

0
‖u (τ)‖2 dτ.

If we denote

Rc(δ) =
{

x ∈ Rn| Lc (x) ≤ 1
2
δ

}

then Rc(δ) is a set which contains all reachable states from the origin when
the input u to the system

ẋ = f (x) + Bu, x (0) = 0,

satisfies ∫ ∞

0
‖u (τ)‖2 dτ ≤ δ.

In this case we can use Rc(δ) as an estimate of the reachable set from the
origin. It is important to point out that there are many choices for Rc(δ) as
the function Lc (x) is nonunique. Since the estimates are not unique we may
consider the smallest set Rc(δ) which contains the reachable set.

5.1.2 Overview of the Approach

For a linear system G with a realization {A,B, C,D} where A + AT is neg-
ative definite the error system is given by the realization {A,B, C,D} where

A =
[

A 0
0 Ar

]
, B =

[
B
Br

]
,

C =
[

C −Cr

]
, D = D −Dr,

and {Ar, Br, Cr, Dr} is a realization of the reduced model Gr of order nr <
n. In this case the L2 gain approximation problem becomes H∞ model
reduction problem. Necessary and sufficient condition for the error system

51



5. Reachability-Based Approach for L2 Gain
Approximation of Polynomial Systems

to have the H∞-norm at most ε ≥ 0 is given by the existence of a positive
definite matrix M = MT ∈ R(n+nr)×(n+nr) such that [9]



AT M + MA MB CT

BT M −ε2I DT

C D −I


 ≺ 0. (5.3)

Indeed, the H∞ model reduction problem is to find {Ar, Br, Cr, Dr} and
positive definite M such that (5.3) is satisfied for a minimum value of ε. But
this problem is not easy to solve in terms of computation as the inequality
(5.3) is not convex in the unknown variables M, Ar, Br because of the
coupling terms MA and MB.
Bearing the nonconvexity of our condition in mind we introduce an approach
to avoid the problem of the coupling of the unknown variables M, Ar, Br in
(5.3). Our approach is divided into two steps:

1. Compute Ar and Br based on an estimate of the reachability set.

2. For the given Ar and Br, compute M, Cr and Dr which satisfy (5.3).

It is important to note that our approach will introduce conservatism as the
computation of the unknowns Ar and Br is based on an estimate instead of
the exact reachability set. Moreover Ar, Br, Cr, Dr and M are not simulta-
neously computed while minimizing ε in (5.3). So in this case the minimum
value of ε obtained through this scheme is not guaranteed to be optimum.

The rest of the chapter is devoted to discussing this approach. First, we
will elaborate this approach for linear systems. By using the same way of
reasoning we will extend the use of this approach to polynomial systems in
the form (5.1). Indeed, by Schur complement [6] and Assumption 5.2, the
inequality 


∂V (χ)

∂χ F (χ) 1
2

∂V (χ)
∂χ B H (χ)T

1
2BT ∂V (χ)

∂χ

T −ε2Inu DT

H (χ) D −Iny


 ¹ 0, (5.4)

is equivalent to (4.5). A relaxation of (5.4) in terms of sum of squares is
given in the previous chapter, that is

−wT




∂V (χ)
∂χ F (χ) 1

2
∂V (χ)

∂χ B H (χ)′

1
2BT ∂V (χ)

∂χ

T −ε2Inu DT

H (χ) D −Iny


w (5.5)

is SOS for w ∈ R1+nu+ny and χ ∈ Rn+nr .
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Yet this relaxation is not possible to verify by means of tractable computation
because of the coupling of the unknowns V (χ) , fr (xr) and Br in the terms
∂V (χ)

∂χ F (χ) and ∂V (χ)
∂χ B. Hence we face the same type of problem like in

linear systems where the coupling of the unknowns renders the computation
intractable. Like in linear part our approach to avoid the coupling terms
for nonlinear systems is to compute fr (xr) and Br independently from the
computational scheme of V (χ) , hr (xr) and Dr. To be more precise the
approach for the class of nonlinear systems we are considering is given as
follow.

1. Compute fr (xr) and Br based on an estimate of the reachability set.

2. For the given fr (xr) and Br, compute V (χ) , Cr, Dr and minimizing ε
which satisfy (5.5).

5.2 Reachability Based Approach

5.2.1 Linear System

We consider again
ẋ = Ax + Bu. (5.6)

For an estimate of the reachable set from the origin we can select the
quadratic Lc (x) = 1

2xT Ŷ −1x where Ŷ is a symmetric positive definite matrix
of size n by n. We can write (4.8) in the form

AT Ŷ −1 + Ŷ −1A + Ŷ −1BBT Ŷ −1 ¹ 0

or equivalently
Ŷ AT + AŶ + BBT ¹ 0.

The estimate of the reachable set from the origin when
∫∞
0 ‖u (τ)‖2 dτ ≤ δ

is given by
Rc(δ) =

{
x ∈ Rn| xT Ŷ −1x ≤ δ

}
.

Without loosing generality we can set δ = 1 and we denote

Rc =
{

x ∈ Rn| xT Ŷ −1x ≤ 1
}

.

Since Ŷ −1 is a symmetric positive definite matrix the set Rc is a hyper-
ellipsoid [5] where the directions and the lengths of its principal axes are
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defined by the eigenvectors and the inverse of the square root of the eigen-
values, respectively, of the matrix Ŷ −1. If we denote T as an orthogonal
matrix (T T T = I) whose columns are the normalized eigenvectors of the
matrix Ŷ −1 then we can define a new coordinate system z = T−1x where
its main axis coincide with the principal axis of the ellipsoid. By denot-
ing S = diag (λ1, . . . , λn) where λi is the eigenvalue of the matrix Ŷ −1 and
the i−th column of the matrix T is the eigenvector with respect to λi, we
have Ŷ −1T = TS. Indeed, the length of the axis with respect to the i−th
eigenvector is equal to 1/

√
λi.

With respect to the new coordinate system we can rewrite the linear system
(5.6) in the form

ż = Âz + B̂u

where Â = T−1AT and B̂ = T−1B. The estimate of the reachable set in the
new coordinate system is given by

Rc,z =
{

z ∈ Rn| zT T T Ŷ −1Tz ≤ 1
}

=
{
z ∈ Rn| zT Sz ≤ 1

}
.

Suppose we order the eigenvalues in such a way that λi ≤ λj whenever
i ≤ j ≤ n. Then from the set Rc,z we may claim that the trajectories of
the system are more accumulated around the zi-axis rather than zj-axis for
i ≤ j. This forms the foundation of our approach where we remove the axes
which are weakly reachable.

Next we partition the part of size n into two parts of size nr and n − nr

based on the following

z =
[

zT
[1] zT

[2]

]T
,

Â =
[

Â11 Â12

Â21 Â22

]
, B̂ =

[
B̂1

B̂2

]
,

S =
[

λ[1] 0
0 λ[2]

]
,

and the system can be expressed as

ż[1] = Â11z[1] + Â12z[2] + B̂1u,

ż[2] = Â21z[1] + Â22z[2] + B̂2u.

Removing the least reachable part z[2] we have the dynamics of our new
reduced model xr = z[1] represented by

ẋr = Â11xr + B̂1u, (5.7)
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where
Â11 = T T

1 AT1, B̂1 = T T
1 B.

with T being partitioned by

T =
[

T1 T2

]
. (5.8)

To sum up, we have approximated (5.6) with another system of lower dimen-
sion given by (5.7) with the argument that the least reachable part in (5.6)
is removed from (5.7) while the most influential part in (5.6) is preserved in
(5.7).

5.2.2 Extension to Nonlinear Systems

To extend the ideas in linear systems to nonlinear systems we consider again
(5.1) with all the assumptions. We assume the existence of a positive definite
polynomial function Lc (x) which satisfies (4.8). Associated with Lc (x) we
denote the set

Rc = {x ∈ Rn| 2Lc (x) ≤ 1} . (5.9)

As the function Lc (x) can be nonquadratic for a nonlinear system and if we
express such a function in a way like in the linear case, that is

Lc (x) =
1
2
xT Ŷ (x)−1 x,

we will have difficulties in computing the eigenvalues and eigenvectors of the
polynomial matrix Ŷ (x)−1 as it is not a constant matrix anymore. Instead
of dealing with nonquadratic Lc (x) to determine ’the most important’ axis
we introduce another quadratic function L̂c (x) = 1

2xT Ψ−1x where

Rc ⊆
{

x ∈ Rn| 2L̂c (x) ≤ 1
}

= R̂c.

Hence the set R̂c is also an estimate of the reachable set as R̂c contains Rc.
Though R̂c is more conservative than Rc, it has a nice shape in a way that
the set

R̂c =
{
x ∈ Rn| xT Ψ−1x ≤ 1

}

is a hyperellipsoid where the directions and the lengths of its principal axes
are defined by the eigenvectors and the inverse of square root of the eigen-
values, respectively, of the matrix Ψ−1. The rest will follow in the same way
with those in linear systems where we denote T as an orthogonal matrix
(T T T = I) whose columns are the normalized eigenvectors of matrix Ψ−1
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and we define a new coordinate system z = T−1x where its main axis coincide
with the principal axis of the ellipsoid. Indeed, we have Ψ−1T = TS where
S = diag (λ1, . . . , λn) . In line with that in linear systems the transformed
nonlinear system is given by

ż = T T f (Tz) + T T Bu, (5.10)

with
zT T T f (Tz) = xT f (x) ≤ −xT Qx = −zT T QTz. (5.11)

From the fact that T−1 = T T we have

Q̂ = T T QT Â 0.

The set R̂c can be written in terms of the new coordinate

R̂c,z =
{
z ∈ Rn| zT T ′Ψ−1Tz ≤ 1

}
=

{
z ∈ Rn| z′Sz ≤ 1

}
.

By ordering λi ≤ λj whenever i ≤ j ≤ n then the trajectories of the system
are more accummulated around the zi-axis rather than zj-axis. By removing
the weakly reachable parts of (5.10) we can truncate (5.10) to obtain a
reduced order model of dimension nr < n in the form

ẋr = fr (xr) + Bru (5.12)

where
fr (xr) = T T

1 f (T1xr) , Br = T T
1 B

and T comes in the form (5.8). Removing the least reachable part from
(5.11) and partitioning

Q̂ =
[

Q̂1 Q̂2

Q̂2 Q̂3

]

it follows that
xT

r fr (xr) ≤ −xT
r Q̂1xr

where Q̂1 Â 0 and thus the origin of the unforced truncated system (5.12) is
globally asymptotically stable.

To reduce conservatism of the set R̂c we require that the set R̂c should be
contained in as small ball Bγ as possible. Therefore we need to minimize
γ > 0 such that Rc ⊆ R̂c ⊆ Bγ . A sufficient condition for the required
containment is given as follows.
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Proposition 5.1 If

1
γ
‖x‖2

2 ≤ 2L̂c (x) ≤ 2Lc (x) (5.13)

for all x then Rc ⊆ R̂c ⊆ Bγ.

Proof. All x in Rc satisfies 2Lc (x) ≤ 1. From 2L̂c (x) ≤ 2Lc (x) it follows
that 2L̂c (x) ≤ 1. Hence x is in R̂c. Furthermore, from 1

γ ‖x‖2
2 ≤ 2L̂c (x) we

have 1
γ ‖x‖2

2 ≤ 1. Thus x is also in the ball Bγ .

It has been already indicated that verifying nonnegativity is a hard problem.
Instead, the inequalities (4.8) and (5.13) can be relaxed by means of sum of
squares (SOS). We summarize our approach as follows.

1. a) Maximize θ > 0 such that

Lc (x)− L̂c (x) is SOS for all x ∈ Rn

2L̂c (x)− θ ‖x‖2
2 is SOS for all x ∈ Rn,

vT

[
−∂Lc(x)

∂x f (x) ∂Lc(x)
∂x B

BT ∂Lc(x)
∂x

T
2Inu

]
v is SOS for all x ∈ Rn and v ∈ R1+nu ,

where Lc (x) is a polynomial in x and L̂c (x) is a quadratic poly-
nomial in x.

b) Compute the transformation T from

R̂c =
{

x ∈ Rn|2L̂c (x) = xT Ψ−1x ≤ 1
}

,

and truncate the transformed system z = T T x at nr < n. In this
case we obtain fr (xr) and Br.

2. Compute Cr, Dr and positive semidefinite V (χ) , and minimize ε such
that

−wT




∂V (χ)
∂χ F (χ) 1

2
∂V (χ)

∂χ B H (χ)′

1
2BT ∂V (χ)

∂χ

T −ε2Inu DT

H (χ) D −Iny


w

is SOS for all x ∈ Rn and w ∈ R1+nu+ny .
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It is important to point out that for the given fr (xr) and Br from step 1 it is
not clear so far whether step 2 will work. In this case it is not immediate that
we can guarantee the existence of Cr ∈ Rny×nr and Dr ∈ Rny×nu such that
the error system (4.3) is finite gain L2 stable. The following result resolves
this issue.

Proposition 5.2 Consider the system (5.1) and (5.12). For any Cr ∈
Rny×nr and Dr ∈ Rny×nu such that

∥∥[
C −Cr

]∥∥
2−ind < ∞,

‖D −Dr‖2−ind < ∞,

the error system (4.3) is finite gain L2 stable.

Proof. We have

χTF (χ) ≤ −xT Qx− x′rQ̂1xr ≤ −c ‖χ‖2

where c is the minimum eigenvalue of the positive definite symmetric matrices
Q and Q̂1. Denoting

L =
∥∥∥∥
[

B
Br

]∥∥∥∥
2−ind

,

η1 =
∥∥[

C −Cr

]∥∥
2−ind ,

η2 = ‖D −Dr‖2−ind ,

it follows from Theorem 5.1 of [18] that (4.3) is finite gain L2 stable with
gain bounded above by

ε̂ = η2 +
η1L

c
.

Proposition 5.2 shows that any bounded Cr and Dr will guarantee finiteness
of the L2 gain of the error system (4.3).
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Numerical Example

 

Figure 5.1: Response of the system in Example 1 to the input u =
e−1.5tsin(5t)

5.3 Numerical Example

5.3.1 Example 1

Consider the system

ẋ1 = −x2 − x3 − x1(x2
1 + x2

2 + x2
3 + 1),

ẋ2 = x1 − x3 − x2(x2
1 + x2

2 + x2
3 + 1),

ẋ3 = x1 + x2 − x3(x2
1 + x2

2 + x2
3 + 1) + u,

y = x1.

We want to compute a reduced model of order two. By feasibility test we
obtain

Lc (x) = L̂c (x) = 27x2
1 + 5x2

2 + 3x2
3 − 6x1x2 + 10x1x3 + 2x2x3

and θ = 2.5666. The transformation T is given by

T =



−0.2201 0.0256 −0.9752
−0.4151 0.9022 0.1174
0.8827 0.4306 −0.1879



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Figure 5.2: Response of the system in Example 1 to the input u = e−3t −
e−1.5t

and truncation of the transformed system gives

ẋr1 = 1.2804xr2 − xr1

(
x2

r1 + x2
r2 + 1

)
+ 0.8827u,

ẋr2 = −1.2804xr1 − xr2

(
x2

r1 + x2
r2 + 1

)
+ 0.4306u.

with

V (χ) = 0.68152x2
1 + 1.5916x2

2 + 0.4388x2
3 − 0.76919x1x2 − 0.73432x1x3

+ 0.65377x2x3 + 0.53614x2
r1 − 0.20907xr1xr2 + 1.816x2

r2 + 0.64768x1xr1

+ 1.011x1xr2 + 0.56639x2xr1 − 3.2278x2xr2 − 0.69682x3xr1 − 1.0061x3xr2

and
yr = −0.2498xr1 − 0.1297xr2

with ε = 0.1014. The response of the system and the reduced model to
inputs u = e−1.5tsin(5t) and u = e−3t − e−1.5t can be seen in Figure 5.1
and Figure 5.2, respectively. Though the responses are not too much in
agreement, our scheme still outperforms the one in the previous chapter as
the scheme in the previous chapter fails to compute a reduced model of order
two for the original system.
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Figure 5.3: Inclusion Rc ⊆ R̂c ⊆ Br in Example 2

5.3.2 Example 2

Consider again the system from the previous chapter

ẋ1 = −x1 − x2,

ẋ2 = 2x1 − 3x2 − x3
2 + u,

y = x1.

We want to compute a reduced model of order one. For Lc (x) in quadratic
form (thus Lc (x) = L̂c (x)) we obtain θ = 6.000. For Lc (x) with maximum
degree of four we obtain θ = 6.4593. Hence Lc (x) with maximum degree
of four gives a better estimate of the reachable set than that of quadratic
Lc (x) . Increasing the maximum degree of Lc (x) higher than four will give
the same value of θ as in Lc (x) of maximum degree four. In this case we
will use Lc (x) with maximum degree of four where we obtain

Lc (x) = 24x2
1 + 8x1x2 + 4x2

2 + 6.3537x4
1 + 0.29051x4

2,

L̂c (x) = 6.6696x2
1 + 1.3249x1x2 + 3.3572x2

2.
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Figure 5.4: Response of the system in Example 2 to the input u = 50e−3t −
50e−1.5t

The plot of the inclusion Rc ⊆ R̂c ⊆ Bγ where γ = 1
θ can be seen in

Figure 5.3. The reduced model is given by

ẋr = −3.1142xr − 0.9298x3
r − 0.9820u,

yr = −2.0512xr,

with ε = 0.1298. The response of the system and the reduced model to input
u = 50e−3t−50e−1.5t can be seen in Figure 5.4 which, qualitatively, is almost
similar with that in the previous chapter.
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Chapter 6

Approximate Balanced
Truncation of Polynomial
Nonlinear Systems

6.1 Introduction

Model reduction by balanced truncation for linear systems was introduced
in [25]. This method is systematic on its construction of reduced model and
very popular among other reduction schemes for linear systems due to its
simplicity. On the other hand, there is no similar systematic procedure of
balanced truncation like in linear system which can be implemented for non-
linear system as the problem in nonlinear systems becomes more difficult to
understand and solve and it is still subject to further research. In particular,
a mechanism for balancing nonlinear system is given by [38] and an empirical
approach for truncating nonlinear system is given by [20].

One of the main advantage of the empirical approach introduced in [20] is
that its computational scheme to construct a reduced order model is not
expensive as it only requires linear matrix computations. Its limitation is on
the resulting reduced order model. The reduced model is expected to work
well within a working region of state space as the method relies heavily on the
snapshots of data. In this case the quality of its reduced model depends on
the collection of data obtained through generating trajectories of the original
system.

On the other hand, the approach in [38] does not depend on the snapshots of
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data. The method first computes a reachability function and an observability
function from Hamilton-Jacobi equations. In general those functions are
not entirely balanced. By seeking a coordinate transformation the original
system is made balance to some extent of definition. A reduced order model
is obtained by truncating the balanced system. The drawback of this method
is on the computation of the controllability and observability functions which
in most cases are very difficult.

One way to avoid this problem is introduced in [33] where the authors
consider generalized controllability and observability functions which are
obtained through Hamilton-Jacobi inequalities instead of Hamilton-Jacobi
equalities. Despite the fact that the truncation scheme based on these gen-
eralized functions will not guarantee to give a stable reduced order model for
a stable original system, the advantage of this approach is that it exploits the
use of sum of squares programming [30] to compute the generalized functions
and thus is amenable to computer solution in case the original system to be
reduced has polynomial vector fields. This approach shows promising direc-
tion in developing computational scheme for model reduction of polynomial
systems. However this approach still leaves an open problem where there is
no constructive procedure yet on how to balance the generalized functions
which are nonquadratic.

This chapter introduces an approach of balancing the nonquadratic general-
ized functions which are obtained through the same procedure in [33]. In this
case we use another quadratic functions which can be viewed as conservative
version of the nonquadratic generalized functions. Instead of balancing the
generalized functions we focus on the conservative quadratic functions as the
basis of performing truncation for polynomial nonlinear systems.

6.2 Balanced Truncation Based on Approximate
Generalized Functions

We consider polynomial nonlinear system in the form

ẋ = f(x) + B (x) u (6.1a)
y = h (x) (6.1b)

where x = [x1, . . . , xn]T ∈ Dx ⊂ Rn is the state vector of the system, u ∈ Rnu

is the input to the system and y ∈ Rny is the output of the system. The
functions f : Dx → Rn, B : Dx → Rn×nu and h : Dx → Rny are polynomials
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in x and therefore smooth. We assume that the origin of the unforced system
ẋ = f(x) is asymptotically stable on Dx.

We define two functions which characterize the minimum energy of the in-
put to reach particular state and the energy of the output generated by a
particular initial condition.

Definition 6.1 A positive definite function Wo (x) with Wo (0) = 0 is an
observability function to the system (6.1) if it satisfies

∂Wo (x)
∂x

f (x) +
1
2
h (x)T h (x) = 0 (6.2)

for all x ∈ Dx.

Definition 6.2 A positive definite function Wc (x) with Wc (0) = 0 is a
reachability function to the system (6.1) if it satisfies

∂Wc (x)
∂x

f (x) +
1
2

∂Wc (x)
∂x

B (x) B (x)T ∂Wc (x)
∂x

= 0. (6.3)

for all x ∈ Dx.

The reachability function satisfies

Wc (x0) =
1
2

∫ 0

−∞
‖umin (t) ‖2dt (6.4)

where umin ∈ L2 (−∞, 0] , is the input with minimum energy required for
the system (6.1) with x (−∞) = 0 such that x (0) = x0. The observability
function satisfies

Wo (x0) =
1
2

∫ ∞

0
‖y (t) ‖2dt

where y is the output of the system (6.1) with x (0) = x0 and u (t) = 0 for
t ∈ [0,∞). Indeed, for the linear system f (x) = Ax, B (x) = B, h (x) =
Cx the reachability function Wc (x) = 1

2xT Y −1x and observability function
Wo (x) = 1

2xT Xx satisfy (2.2) and (2.3), respectively.

For more details on the existence of the solutions Wo(x) and Wc(x) the
reader can consult [38]. As we move to practicality we will encounter dif-
ficulty in computing the observability and reachability functions as there is
no tractable computational scheme serving the purpose yet. Instead of com-
puting both functions for the purpose of model reduction through balanced
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truncation, we consider an approach where we use generalized observability
and rechability functions as defined in Definition 4.2-4.3.

Some properties pertaining to the generalized functions are summarized as
follows.

• A generalized observability function Lo (x) to the system (6.1) satisfies

Lo (x) ≥ Wo (x)

for all x ∈ Dx.

• A generalized reachability function Lc (x) to the system (6.1) satisfies

Lc (x) ≤ Wc (x)

for all x ∈ Dx.

It is important to note that there are many choices of generalized functions
which satisfy (4.6-4.7). A means to classify a closer representation of the
functions Lo (x) and Lc (x) with the functions Wo (x) and Wc (x) is by in-
troducing

γopt = sup
06=x∈Dx

Wo (x)
Wc (x)

.

Then the generalized functions Lo (x) and Lc (x) which satisfy (4.6-4.7) are
computed such that

Lo (x) ≤ γLc (x) (6.5)

for all x ∈ Dx where γ > 0. Hence γ is an upper bound for the gain γopt. In
this case we minimize the constant γ so that the upper bound is as tight as
possible.

The generalized functions characterize the states, in the domain of interest,
which are weakly observable and reachable in the following ways. The states
which have small value of Lo (x) are considered to be less observable. The
states which have larger value of Lc (x) are considered to be less reachable.

Now let us consider the class of input with
∫ T

0
‖u (t) ‖2dt ≤ Ku,

u (t) = 0 ∀t > T,
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for all T ∈ [0,∞) . Suppose that we generate the trajectories from the origin
with this class of input then for t ∈ [0, T ] all the trajectories of the system
will be inside of the set

Rc =
{

x ∈ Rn |Lc (x) ≤ 1
2
Ku

}
.

It is easy to see that the trajectories will also remain in Ro for t ≥ T because
Ro is a positively invariant set for zero input. Hence for the given class of
input with initial condition at the origin all the trajectories of the system
will be inside of Ro. Then for any x ∈ Ro we have Lo (x) ≤ 1

2γKu.

For the reachability set

Rc =
{

x ∈ Rn| Lc (x) ≤ 1
2
Ku

}

which is compact a smaller value of Lc (x) means that the state x is easier
to reach for the given admissible input. For the observability set

Ro =
{

x ∈ Rn| Lo (x) ≤ 1
2
γKu

}

which is compact a larger value of Lo (x) means that the state x is easier
to observe from the output. In this paper instead of dealing with the sets
Rc and Ro to analyze the most/least important part of the system which
is reachable and observable we will consider another sets Ωc and Ωo as the
estimate of the reachability set Rc and observability set Ro, respectively, in
a way that Rc ⊆ Ωc and Ro ⊆ Ωo where the sets Ωc and Ωo are to be as
close as possible to the sets Rc and Ro, respectively. The sets Ωc and Ωo

will be characterized by quadratic functions L̂o (x) and L̂c (x) such that

Ωc =
{

x ∈ Rn| L̂c (x) =
1
2
xT Y −1x ≤ 1

}
,

Ωo =
{

x ∈ Rn| L̂o (x) =
1
2
xT Xx ≤ 1

}

where X, Y Â 0 are symmetric matrices.

Though the sets Ωc and Ωo are more conservative they are easier to analyze
because the sets are in the form of hyperellipsoid. It is easy to see from the
principal axes of the hyperellipsoid Ωc that a longer axis represent a more
reachable part of the state. On the other hand, from the principal axes of the
hyperellipsoid Ωo, we can see that a shorter axis represent a more observable
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part of the state. Equivalently we can analyze the length of the axes from
the eigenvalues of the matrices Y −1 and X. The associated eigenvector of
a smaller eigenvalues of the matrix Y −1 represents the direction of a longer
axis of hyperellipsoidal set Ωc. (Or equivalently the associated eigenvector of
a larger eigenvalues of the matrix Y represents the direction of a longer axis
of hyperellipsoidal set Ωc.) Similarly the associated eigenvector of a larger
eigenvalues of the matrix X represents the direction of a shorter axis of hy-
perellipsoidal set Ωo. Thus the associated eigenvector of a larger eigenvalues
of the matrices Y and X represent the direction of the states which are more
strongly reachable and observable, respectively.

To satisfy the containment Rc ⊆ Ωc and Ro ⊆ Ωo we use the following
sufficient condition which is easy to implement numerically.

Proposition 6.1 Let L (x) be a positive definite polynomial function with
L (0) = 0. Let

R = {x ∈ Dx| L (x) ≤ ε} ,

Ω =
{

x ∈ Dx| 1
2
xT Φx ≤ 1

}
,

for positive constant ε ∈ R and positive definite matrix Φ = ΦT ∈ Rn×n. If
there exists a positive semidefinite polynomial s (x) such that

1− 1
2
xT Φx + s (x) (L (x)− ε) ≥ 0 (6.6)

for all x ∈ Dx then R ⊆ Ω.

Proof. For any x ∈ R we have L (x) − ε ≤ 0. It follows that 0 ≤ 1 −
1
2xT Φx + s (x) (L (x)− ε) ≤ 1− 1

2xT Φx or x ∈ Ω.

To reduce the conservatism of the set Ω we require that the set R should be
contained in as small Ω as possible.

We now consider a change of basis x = Γz where Γ is given by

Γ = Y
1
2 US−

1
2

where U and S are obtained from the singular value decomposition of

Y
1
2 XY

1
2 = US2UT .
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It is easy to see that

ΓT XΓ =
(
S−

1
2 UT Y

1
2

)
X

(
Y

1
2 US−

1
2

)

= S−
1
2 UT US2UT US−

1
2 = S

and

Γ−1Y
(
Γ−1

)T =
(
S

1
2 UT Y − 1

2

)
Y

(
Y − 1

2 US
1
2

)

= S.

With respect to the change of basis, (6.1) can be transformed into

ż = f̂(z) + B̂ (z) u, (6.7a)
y = ĥ (z) , (6.7b)

where
f̂(z) = Γ−1f(Γz), B̂ (z) = Γ−1B (Γz) , ĥ (z) = h (Γz) .

The generalized functions for the system (6.7) are given as follows.

Proposition 6.2 For a coordinate transformation x = Γz, which brings
the system (6.1) into (6.7) we define L̂o (z) = Lo (Γz) and L̂c (z) = Lc (Γz) .
Then L̂o (z) and L̂c (z) are the generalized observability and reachability func-
tion, respectively for (6.7).

Proof. For reachability

∂L̂c (z)
∂z

(
f̂(z) + B̂ (z) u

)
− 1

2
uT u =

(
∂Lc (ν)

∂ν

∂ν

∂z

(
Γ−1f (Γz) + Γ−1B (Γz) u

))

ν=Γz

− 1
2
uT u

=
∂Lc (ν)

∂ν
f (ν) +

∂Lc (ν)
∂ν

B (ν) u− 1
2
uT u ≤ 0.

For observability

∂L̂o (z)
∂z

f̂(z) +
1
2
ĥ (z)T ĥ (z) =

(
∂Lo (ν)

∂ν

∂ν

∂z
Γ−1f (Γz)

)

ν=Γz

+
1
2
h (Γz)T h (Γz)

=
∂Lo (ν)

∂ν
f (ν) +

1
2
h (ν)T h (ν) ≤ 0.
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Furthermore, it is easy to see that

0 ≤ 1− 1
2
xT Y −1x + sc (x)

(
Lc (x)− 1

2
Ku

)

= 1− 1
2
zΓT Y −1Γz + ŝc (z)

(
L̂c (z)− 1

2
Ku

)

= 1− 1
2
zS−1z + ŝc (z)

(
L̂c (z)− 1

2
Ku

)

where ŝc (z) = sc (Γz) is positive semidefinite in z and

0 ≤ 1− 1
2
xT Xx + so (x)

(
Lo (x)− 1

2
γKu

)

= 1− 1
2
zT ΓT XΓz + ŝo (z)

(
L̂o (z)− 1

2
γKu

)

= 1− 1
2
zT Sz + ŝo (z)

(
L̂o (z)− 1

2
γKu

)

where ŝo (z) = so (Γz) is positive semidefinite in z. Using the same argument
like in Proposition 3 it follows that

{
z ∈ Rn|L̂c (z) ≤ 1

2
Ku

}
⊆

{
z ∈ Rn|1

2
zT S−1z ≤ 1

}
,

{
z ∈ Rn|L̂o (z) ≤ 1

2
γKu

}
⊆

{
z ∈ Rn|1

2
zT Sz ≤ 1

}
,

which indicate that the transformed system (6.7) have a balanced represen-
tation in that the states which are more strongly reachable and observable
are more or less in the same direction. In this case the associated eigenvector
of a larger eigenvalue of S represents the direction of the states which is both
more strongly reachable and observable.

Next we partition the part of size n into two parts of size nr and n−nr with
nr < n based on the following

z =
[

zT
[1] zT

[2]

]T
,

Γ =
[

Γ1 Γ2

]
,

Γ−1 =
[

Υ1 Υ2

]
.

By removing the weakly reachable and observable part z[2] we have the dy-
namic of our new reduced model xr = z[1] of dimension nr given by

ẋr = fr (xr) + Br (xr) u, (6.8a)
yr = hr (xr) , (6.8b)
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where

fr (xr) = Υ1f (Γ1xr) , Br (xr) = Υ1B (Γ1xr) ,

hr (xr) = h (Γ1xr) .

To sum up we have obtained a reduced order model (6.8) for the system (6.1)
where the least reachable and observable parts in (6.1) are removed while
the most influential parts are preserved in (6.8).

6.3 Sum of Squares Formulation

Since we are concerned with polynomial systems, computation of the gener-
alized functions Lo (x) and Lc (x) can be done efficiently by relaxing the left
hand side of (4.6-4.7) being sum of squares. We will consider first the global
case when Dx = Rn. Then we will formulate sum of squares relaxation for
the local case.

6.3.1 Global Case

For the case Dx = Rn computational scheme for the generalized functions
can be summarized as follows.

• Minimize γ ≥ 0 and find positive definite polynomials Lo (x) and Lc (x)
with Lo (0) = 0 and Lc (0) = 0 such that

− ∂Lo (x)
∂x

f (x)− 1
2
h (x)T h (x) is SOS ∀x ∈ Rn, (6.9)

− ∂Lc (x)
∂x

f (x)− 1
2

∂Lc (x)
∂x

B (x) B (x)T ∂Lc (x)
∂x

is SOS ∀x ∈ Rn,

(6.10)

γLc (x)− Lo (x) is SOS ∀x ∈ Rn. (6.11)

Unfortunately, this scheme may sometimes fail to give any solutions. In the
next proposition we will give necessary conditions for the scheme to work.
These conditions come in the form of degree constraint of the generalized
functions. With the conditions in mind we can avoid certain classes of poly-
nomial systems which will not give any solution. The following lemma shall
be used to prove the proposition.
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Lemma 6.1 Consider polynomials q (x) and r (x) such that

q (x)− r (x)T r (x) is sum of squares.

Then µmin (q (x)) ≤ 2µmin (r (x)) and µmax (q (x)) ≥ 2µmax (r (x)).

Proof. Write

q (x) = q̂ (x) + Σ
k
akx

2m1k
1 x2m2k

2 . . . x2mnk
n

r (x)T r (x) = ϕ̂r (x) + Σ
l
(clx

q1l
1 xq2l

2 . . . xqnl
n )2

where ak, cl ∈ R and mik, qil are nonnegative integer with
n
Σ

i=1
2mik = µmin (q (x))

for all k and
n
Σ

i=1
qil = µmin (r (x)) for all l, while q̂ (x) and ϕ̂r (x) contain other

different terms of monomial. Let µmin (q (x)) > 2µmin (r (x)). Then

q (x)− r (x)T r (x) =q̂ (x) + Σ
k
aix

2m1k
1 x2m2k

2 . . . x2mnk
n − ϕ̂r (x)

− Σ
l
(clx

q1l
1 xq2l

2 . . . xqnl
n )2

=q̂ (x)− ϕ̂r (x) + Σ
k
aix

2m1k
1 x2m2k

2 . . . x2mnk
n

− Σ
l
c2
l x

2q1l
1 x2q2l

2 . . . x2qnl
n

is not a sum of squares because each negative term −c2
l x

2q1l
1 x2q2l

2 . . . x2qnl
n can

not be cancelled out by any term aix
2m1k
1 x2m2k

2 . . . x2mnk
n as

n
Σ

i=1
mik >

n
Σ

i=1
qil

for all k and l. The maximum degree can be proved in the same way.

The lemma only provides necessary condition for the polynomial q (x) −
r (x)T r (x) to be sum of squares as the converse, in general, is not true.
However we may still use it to indicate the minimum and maximum degree
of q (x) and r (x) for possibility of having q (x) − r (x)T r (x) being sum of
squares. Furthermore, the lemma can be applied to characterize the degree
of the generalized functions as we have in the following.

Proposition 6.3 Consider positive definite polynomials Lo (x) and Lc (x)
with Lo (0) = 0 and Lc (0) = 0 satisfying (6.9-6.10). Then

µmin (Lo (x)) ≤ 2µmin (h (x)) + 1− µmin (f (x)) , (6.12)
µmax (Lc (x)) ≤ µmax (f (x)) + 1− 2µmax (B (x)) . (6.13)
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Sum of Squares Formulation

Proof. From the previous lemma we have

µmin

(
∂Lo (x)

∂x
f (x)

)
≤ µmin

(
h (x)T h (x)

)
,

⇐⇒ µmin (Lo (x))− 1 + µmin (f (x)) ≤ 2µmin (h (x)) ,

⇐⇒ µmin (Lo (x)) ≤ 2µmin (h (x)) + 1− µmin (f (x)) ,

and

µmax

(
∂Lc (x)

∂x
f (x)

)
≥ µmax

(
∂Lc (x)

∂x
B (x) B (x)T ∂Lc (x)

∂x

)
,

⇐⇒ µmax (Lc (x))− 1 + µmax (f (x)) ≥ 2 (µmax (Lc (x))− 1 + µmax (B (x))) ,

⇐⇒ 1 + µmax (f (x))− 2µmax (B (x)) ≥ µmax (Lc (x)) .

Recall from Section 4.3 that the degree of the generalized functions should
not be less than two. In this case we can classify whether a certain class of
polynomial systems fits to our scheme. The following example shows a class
of systems where our scheme will not work.

Example 6.1 Consider a homogenous system in the form

fi (x) =
n
Σ

j=1
aijx

m
j , aij ∈ R, m ∈ {3, 5, 7, . . .} ,

B (x) = B ∈ Rn×nu ,

h (x) = Cx, C ∈ Rny×n,

where the origin of its unforced system is globally asymptotically stable. In
this case we have µmin (f (x)) = m and µmin (h (x)) = 1. It follows that

µmin (Lo (x)) ≤ 2µmin (h (x)) + 1− µmin (f (x)) = 3−m ≤ 0

which implies that there is no positive definite Lo (x) with Lo (0) = 0 satis-
fying (6.9). Hence this system does not belong to the class that we consider.

For containment in Proposition 6.1 where the set R should be contained in
as small Ω as possible we can maximize the trace of Φ so that the volume
of Ω is minimized. Hence we can summarize our computational approach to
get the sets Ωc and Ωo as follows.
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6. Approximate Balanced Truncation of Polynomial Nonlinear Systems

1. Maximize trace Y −1 such that

1− 1
2
xT Y −1x + sc (x)

(
Lc (x)− 1

2
Ku

)
is SOS ∀x ∈ Rn

where sc (x) is a sum of squares.

2. Maximize trace X such that

1− 1
2
xT Xx + so (x)

(
Lo (x)− 1

2
γKu

)
is SOS ∀x ∈ Rn

where so (x) is a sum of squares.

Like in the computation of the generalized functions, this scheme may some-
times fail to give any solution. The following is a necessary condition for the
scheme to work.

Lemma 6.2 If 1− 1
2xT Φx + s (x) (L (x)− ε) is a sum of squares of polyno-

mials then
µmin (L (x)) = 2.

Proof. To cancel out or to dominate the negative quadratic term−1
2xT Φx it

is necessary that the positive definite polynomial function L (x) has quadratic
term as well.

Recall from the previous discussion that (6.12-6.13) are necessary. Then the
following is immediate.

Proposition 6.4 If

1− 1
2
xT Y −1x + sc (x)

(
Lc (x)− 1

2
Ku

)
,

1− 1
2
xT Xx + so (x)

(
Lo (x)− 1

2
γKu

)
,

are sum of squares of polynomials then

µmin (f (x)) ≤ 2µmin (h (x))− 1,

µmax (f (x)) ≥ 2µmax (B (x)) + 1.

Thus our scheme will not work for the class of polynomial systems with

µmin (f (x)) > 2µmin (h (x))− 1,

µmax (f (x)) < 2µmax (B (x)) + 1.
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Structure Preservation

6.3.2 Local Case

For the case where Dx is a semialgebraic set given by

Dx = {x ∈ Rn| pi (x) ≥ 0; i = 1, . . . , m}

where pi ∈ R [x] we can use the following relaxation.

Proposition 6.5 If there exists sum of squares si (x) for i = 1, . . . , m such
that

q (x)− p1 (x) s1 (x)− . . .− pm (x) sm (x) is sum of squares

then q (x) ≥ 0 ∀x ∈ Dx.

Proof. Use Positivestellensatz [39].

This proposition can be easily applied for feasibility test of (4.6-4.7), (6.5)
and (6.6) using sum of squares programming.

6.4 Structure Preservation

It is not yet clear what kind of property, in general, the reduced order model
preserves from the original system. This is still under investigation. For a
special case where there exists a symmetric Q Â 0 such that

xT f (x) ≤ −xT Qx

for all x ∈ Rn we can guarantee that the reduced model preserves asymptotic
stability. This is discussed in detail in Subsection 5.2.2.

6.5 Example

In this section, two numerical examples are given to illustrate the applica-
bility of the proposed approach.
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Figure 6.1: Response of the system in Example 1 to the input u(t) =
e−1.5tsin(5t)

6.5.1 Example 1

Consider again the system from the previous chapter

ẋ1 = −x2 − x3 − x1(x2
1 + x2

2 + x2
3 + 1),

ẋ2 = x1 − x3 − x2(x2
1 + x2

2 + x2
3 + 1),

ẋ3 = x1 + x2 − x3(x2
1 + x2

2 + x2
3 + 1) + u,

y = x1.

We want to compute a reduced model of order two for the global case Dx =
R3. The method gives the transformation

Γ =




0.3128 −0.2998 0.4152
0.8310 0.3536 −0.0721
−0.9193 1.1060 0.7230




and truncation of the transformed system gives

ẋr1 = −1.8505xr2 − xr1

(
1.6335x2

r1 − 1.6334xr1xr2 + 1.4382x2
r2 + 0.0799

)− 0.1602u,

ẋr2 = 1.4356xr1 − xr2

(
1.6335x2

r1 − 1.6334xr1xr2 + 1.4382x2
r2 + 1.0699

)
+ 0.4703u,

yr = 0.3128xr1 − 0.2998xr2.
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Example

The response of the system and the reduced model to the input u = e−1.5tsin(5t)
can be seen in Figure 6.1. Qualitatively, our scheme outperforms the one in
the previous chapter.

6.5.2 Example 2
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Figure 6.2: Response of the system in Example 2 to the sinusoidal input
u(t) = 2.5sin(0.25t)

The following system is taken from [33]

ẋ1 = x2 − x1x2 − 3x2x3 − x1x4,

ẋ2 = x3 + 0.5x1x2 + 0.5x2x3 + x1x4,

ẋ3 = x4 + 0.5x1x2 + 0.5x2x3 − 0.25x1x4,

ẋ4 = −x1 − 3x2 − 5x3 − 7x4 − 3x1x2 + 0.1x2x3 + 0.3x1x4 + u,

y = x1,

where Dx =
{
x ∈ R4| 12− ‖x‖2 ≥ 0

}
. For this system we can compute

quadratic generalized functions but for higher order of generalized functions
we can get a lower value of γ which is an upper bound for the Hankel norm.
We compute generalized functions of order six with bound γ = 1.2. Choosing
higher order than six will not give significant improvement of the bound γ.
By applying the truncation scheme we obtain a reduced model of order three
whose response to the sinusoidal input u(t) = 2.5sin(0.25t) can be seen in
Figure 6.2. Qualitatively, our scheme also outperforms the one in [33].
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6.6 A Class of Polynomial Nonlinear Systems

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x
1

x
2

1

1
1

1

1

1

 

Figure 6.3: The set R whose shape is not symmetric

The method in this chapter has a drawback when the generalized function
has a particular form. Consider, for example, the function

L (x) = 2x4
1 − 3x2

1x2 + x2
1 + x1x2 + 2x2

2

which is positive definite. Now let

R =
{
x ∈ R2|L (x) ≤ 1

}
.

The plot of the set R can be seen in Figure 6.3 where the shape of R is not
symmetric while the shape of any set in the form

Ω =
{

x ∈ R2|1
2
xT Φx ≤ 1

}

characterized by the quadratic function xT Φx is always symmetric. If we
want to identify the most/least important part of the set R by considering
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the estimate Ω which is as close as R, we might have less accurate result due
to the asymmetric shape of the set R. However, there is a certain class of
polynomial systems where we can guarantee that the set R has symmetric
shape, that is x ∈ R ⇐⇒ −x ∈ R.

Suppose, furthermore, we assume the following about the system (6.1).

Assumption 6.1 The function f satisfies f (−x) = −f (x). The func-
tions g and h satisfy g (−x)T g (−x) = g (x)T g (x) and h (−x)T h (−x) =
h (x)T h (x).

Assumption 6.2 The domain of interest Dx is symmetric where x ∈ Dx ⇔
−x ∈ Dx.

The controllability and observability function for the class of systems con-
sidered are symmetric as shown by the following.

Proposition 6.6 The reachability function satisfies Wc (x) = Wc (−x) for
all x ∈ Dx.

Proof. Consider the positive definite solution Wc (x) which satisfies (6.3)
for all x ∈ Dx (hence, it satisfies (6.4) as well). Then (6.3) also holds for
all −x ∈ Dx, that is

∂Wc

∂x
(−x) f (−x) +

1
2

∂Wc

∂x
(−x) g (−x) g (−x)T ∂Wc

∂x
(−x) = 0.

By the relation ∂Wc
∂x (−x) = −∂[Wc(−x)]

∂x then

∂ [Wc (−x)]
∂x

f (x) +
1
2

∂ [Wc (−x)]
∂x

g (x) g (x)T ∂ [Wc (−x)]
∂x

= 0

which implies that Wc (−x) is also a solution to (6.3). It is easy to show that
Wc (−x) is positive definite since Wc (x) is positive definite. Then Wc (−x)
also satisfies (6.4). Hence Wc (−x) = Wc (x) .

Proposition 6.7 The observability function satisfies Wo (x) = Wo (−x) for
all x ∈ Dx.

Proof. The proof can be shown in the same way as in the proof of reachability
proposition. Alternatively we can use the following. Let x+ (t) and x− (t) be
the solutions for

ẋ = f(x)
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whenever the initial conditions at time 0 are x0 and −x0, respectively. Let
y+ (t) and y− (t) be the outputs associated with initial conditions x0 and −x0,
respectively. From f(x) = −f(−x) it follows that x− (t) = −x+ (t) and from
h (−x)T h (−x) = h (x)T h (x) we have

y− (t)T y− (t) = h (x− (t))T h (x− (t)) = h (−x+ (t))T h (−x+ (t))

= h (x+ (t))T h (x+ (t)) = y+ (t)T y+ (t) .

Then

Wo (−x0) =
1
2

∫ ∞

0
|y− (t)|2 dt =

1
2

∫ ∞

0
|y+ (t)|2 dt

= Wo (x0) .

As the reachability function and observability function for the class of system
satisfy Wc (x) = Wc (−x) and Wo (x) = Wo (−x) for all x ∈ Dx we can also
impose the same condition for the generalized functions where we require
that Lc (x) = Lc (−x) and Lo (x) = Lo (−x) for all x ∈ Dx. In this case we
can pick any polynomial whose monomials have even degree as the candidate
for the generalized function.
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Chapter 7

Suppressing Riser-Based
Slugging in Multiphase Flow
by State Feedback

7.1 Introduction

The theoretical development of stabilization of multiphase flow in oil-production
pipelines is still in its infancy. The stabilization is related to the purpose of
suppressing an oscillation phenomenon, called severe slugging, that occurs in
pipelines carrying multiphase flow. Severe slugging in pipelines is caused by
inclined or vertical pipe sections, and is potentially damaging to downstream
processing equipment such as separators. Moreover, large oscillations may
cause lower oil production. While the traditional remedy is to manually
choke the flow at the expense of lower production, automatic control has
the potential of removing oscillations without production loss (see [15] for
the potential benefit of suppressing slug). It is therefore essential to develop
control strategies that guarantee attenuation of severe slugging.

An important step in the development of a stabilization scheme in this di-
rection can be traced back to [16], where it was shown that active choking
could remove oscillations in a vertical riser. In [7, 14, 15], it was shown that
by stabilizing the riser base pressure by active choking, large oscillations are
effectively removed. Despite the fact that active control manages to sup-
press slugging, none of the previous works, to the best of our knowledge, has
proved from a mathematical point of view why the control scheme works.
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In this paper, we design a state feedback control law which is able to suppress
severe slugging occurring in the model developed in [41]. Theoretically, the
feedback can achieves regulation of the output to its set-point. The feedback
is based on the input-output linearization approach, where the output is
chosen such that it satisfies certain conditions.

 

Figure 7.1: Severe slugging in the pipeline-riser system

7.2 Model

Mathematical models of multiphase flow can be found in for instance [1, 4,
41, 42], and are usually of different type depending on the application and
the assumptions made. In this paper, we consider a mathematical model of
multiphase flow [41] which captures gravity-induced slugging in a pipeline-
riser system where the inclination of the pipe may vary from case to case,
while the riser is vertical. Generally, severe slugging in the riser can be
described as follows (see Figure 7.1). When multiphase flow (gas and liquid)
enter the riser at relatively low rate, the liquid stays in the riser base. The
liquid will block the gas from entering the riser until the pressure of the gas
upstream the riser base can overcome the hydrostatic pressure of the liquid
in the riser. When the pressure of the gas is high enough, the gas penetrates
into the riser, violently pushing the accumulated liquid out of the riser. This
behavior causes high fluctuations in the separator, and may damage it.
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Model

The model (see Figure 7.2) can be written as

ẋ1 = wgc − wg (x) , (7.1)
ẋ2 = wg (x)− wgp (x, u) , (7.2)
ẋ3 = woc − wop (x, u) , (7.3)

where x = [x1, x2, x3]
T is the state of the system, x1 is the total mass of

gas in the volume upstream of the riser base (volume one), x2 is the total
mass of gas in the riser (volume two), x3 is the total mass of liquid, u is the
opening position of the production orifice (control input to the system), wgc

is the constant mass flow rate of gas into volume one, wg is the mass flow
rate of gas from volume one into volume two, wgp is the mass flow rate of gas
through the production orifice, woc is the constant mass flow rate of liquid
entering the riser, and wop is the mass flow rate of produced liquid through
the production orifice. The non-constant flows in equation (7.1)–(7.3) are
expressed as

wg (x) = vG1 (x) ρG1 (x1) Â (x) , (7.4)
wgp (x, u) = (1− αm

L (x))wp (x) u, (7.5)
wop (x, u) = αm

L (x) wp (x) u, (7.6)

where vG1 is the gas velocity at the riser base, ρG1 is the density of gas in
volume one, Â is the gas flow area at the riser base, αm

L is the oil fraction
(mass basis) through the valve, and wp is the total mass flow rate through
the valve when it is fully open. They are given by

vG1 (x) =





K2
H1−h1(x)

H1

√
P1(x1)−P2(x)−ρLgH2αL(x)

ρG1(x1) ,

if h1 (x) < H1

0, otherwise
,

ρG1 (x1) =
x1

VG1
,

αm
L (x) = αLT (x)

ρL

ρT (x)
,

Â (x) = r2 [π − ϕ (x)− cos (π − ϕ (x)) sin (π − ϕ (x))] ,
wp (x) = K1

√
ρT (x) [P2 (x)− P0],

where K2 is the internal gas flow constant, H1 is the critical oil level, H2

is the height of the riser, ρL is the density of oil, g is the specific gravity,
VG1 is the size of volume one, r is the radius of the pipe, K1 is the valve
constant, and P0 is the constant pressure after the valve. The liquid level at
the riser base (h1), the pressure in volume one (P1), the pressure in volume
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two (P2), the average liquid fraction (volume basis) in the riser (αL) , the
angle ϕ, the liquid fraction (volume basis) through the valve (αLT ) and the
density through the valve (ρT ) are given by

h1 (x) =
VL (x3)− VLR (x)

A1
,

P1 (x1) =
x1RT

MGVG1
,

P2 (x) =
x2RT

MGVG2 (x)
,

αL (x) =
VLR (x)

VT
,

ϕ (x) = cos−1

(
(H1 − h1) cos θ

r
− 1

)
,

αLT (x) =





VLR(x)−A2H2

A3H3(1+w(x)) + w(x)
1+w(x)αL,

if VLR (x) > A2H2
w(x)

1+w(x)αL (x) , otherwise
,

ρT (x) = αLT (x) ρL + (1− αLT (x))ρG2 (x) ,

where A1 is the cross section area in the horizontal plane upstream the riser
base, R is the gas constant, T is the constant system temperature, MG is
the molecular weight of gas, VT is the total volume of the riser, θ is the
inclination of the feed pipe, A2 is the cross sectional area in the horizontal
plane of the riser, A3 is the cross sectional area of the horizontal top section
and H3 is the length of the horizontal top section. The volume occupied by
liquid (VL), the volume of liquid in the riser (VLR) , the size of volume two
(VG2), the friction function (w) and the gas density in volume two (ρG2) are
given by

VL (x3) =
x3

ρL
,

VG2 (x) = VT − VLR (x) ,

VLR (x) =
ρmix (x) VT − x2

ρL
,

w (x) =
K3ρG1 (x1) v2

G1 (x)
(ρL − ρG1 (x1))

n ,

ρG2 (x) =
x2

VG2 (x)
,

where ρL is the liquid density, n is the tuning parameter in the friction
expression, and K3 is the friction parameter. The average density in the
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riser (ρmix) satisfies the relation

ρmix (x) g (H2 + H3)− ρLgh1 (x) = P1 (x1)− P2 (x) .

 
 

  

 

  

 

 

 

 
 

 

 

 

 

Figure 7.2: The pipeline-riser system with parameters

7.3 State Feedback Design Based on Input Output
Linearization

In this section we design a state feedback control law which is based on
the input-output linearization technique [18]. The output in this case is a
variable ψ which is selected by the designer and it has to satisfy certain
conditions. Possible candidates for the output are all variables which are
dependent on the state x (see Section 7.2). The set-point of the selected
variable is denoted by ψ∗.

7.3.1 Feedback Design

Suppose we select ψ (x) and u as the variable to be controlled (the output)
and the manipulated variable (the input), respectively. The selected variable
ψ (x) should be continuous and bounded on a domain D. Throughout the
chapter, we assume that the set ΩD := {ψ(x) ∈ R+ | x ∈ D} contains all
admissible ψ.
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We can rewrite the system as

ẋ1 = wgc − wg (x, ψ) , (7.7)
ẋ2 = wg (x, ψ)− [1− αm

L (x, ψ)]wp (x, ψ) u, (7.8)
ẋ3 = woc − αm

L (x, ψ) wp (x, ψ)u, (7.9)

and the dynamics of the variable to be controlled can be expressed as

ψ̇ = fψ (x) + gψ (x) u (7.10)

where

fψ (x) =
∂ψ

∂x1
(wgc − wg (x, ψ)) +

∂ψ

∂x2
wg (x, ψ) +

∂ψ

∂x3
woc,

gψ (x) = −
[

∂ψ

∂x2
(1− αm

L (x, ψ)) +
∂ψ

∂x3
αm

L (x, ψ)
]

wp (x, ψ) .

We assume that the selection of ψ (x) guarantees that the following assump-
tions are satisfied.

Assumption 7.1 gψ(x) 6= 0 for x ∈ D.

Assumption 7.2 The sets

{x ∈ D | gψ(x) < 0, fψ(x) < 0, ψ(x)− ψ∗ < 0} (7.11)
{x ∈ D | gψ(x) > 0, fψ(x) > 0, ψ(x)− ψ∗ > 0} (7.12)

are empty.

Assumption 7.3 |gψ(x)| ≥ |fψ(x)| for x ∈ D.

Proposition 7.1 Under Assumption 7.1 and the feedback

u =
fψ(x) + λ(ψ(x)− ψ∗)

−gψ(x)
(7.13)

where λ > 0, the equilibrium point ψ = ψ∗ of (7.10) is asymptotically stable.

Proof. By Assumption 7.1 the feedback (7.13) does not have any singularity
in the domain D. Applying the feedback scheme (7.13) in (7.10) yields

ψ̇ = −λ (ψ − ψ∗) .
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Consider the Lyapunov function candidate V = (ψ − ψ∗)2 . Then its time
derivative

V̇ = −2λ (ψ − ψ∗)2

is negative definite.

In applications, the feedback in the form (7.13) has to be saturated since u is
the valve opening which is in the range between zero and one. The following
theorem presents the result on saturated feedback.

Theorem 7.1 Consider

ψ̇ = fψ (x) + gψ (x) ũ (7.14)

ũ :=





0, if u < 0
u, if 0 ≤ u ≤ 1
1, if u > 1

(7.15)

Under Assumption 7.1, 7.2 and 7.3 and the feedback u in the form (7.13),
the equilibrium point ψ = ψ∗ is asymptotically stable.

Proof. Consider the Lyapunov function candidate V = (ψ − ψ∗)2 . We have
V̇ = 2(ψ − ψ∗)ψ̇.

1. Case 0 ≤ u ≤ 1: See the proof of Proposition 7.1.

2. Case u < 0: If gψ (x) < 0, then (7.13) gives fψ (x) < λ (ψ∗ − ψ (x)).
Then by (7.11) of Assumption 7.2 we have

V̇ = 2 (ψ − ψ∗) fψ (x) < 0.

The result in the case of gψ (x) > 0 is achieved similarly using (7.12).

3. Case u > 1: For the case gψ (x) < 0, (7.13) implies fψ (x) + gψ (x) >
λ (ψ∗ − ψ (x)). By Assumption 7.3 we then have 0 > fψ (x)+ gψ (x) >
λ (ψ∗ − ψ (x)) which implies ψ (x)− ψ∗ > 0. Then

V̇ = 2 (ψ − ψ∗) (fψ (x) + gψ (x)) < 0.

The result in the case of gψ (x) > 0 is achieved similarly.
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Remark 7.1 Assumption 7.1 is imposed to avoid singularity in the feedback
(7.13).

Remark 7.2 Assumption 7.2 is imposed for the case of saturation whenever
the feedback (7.13) has negative value.

Remark 7.3 In Subsection 7.3.2 we use another condition to replace As-
sumption 7.1 and 7.2. It is sufficient to have

fψ(x)gψ(x) < 0 for x ∈ D (7.16)

to guarantee Assumption 7.1 and 7.2 to hold. The main reason for this is
that, based on exhaustive simulation runs, the new condition is also necessary
for Assumption 1 and 2.

Remark 7.4 Assumption 7.3 is imposed when u > 1 since we need to show
that [fψ(x) + gψ (x)]gψ(x) > 0 in the proof of Theorem 7.1. However, the
saturated feedback scheme may still guarantee convergence when |gψ(x)| <
|fψ(x)|. For example, in the case gψ(x) < 0 where fψ(x) + gψ (x) > 0 at
some x it follows that fψ(x) + gψ (x) > max [0, λ (ψ∗ − ψ (x))] which gives

V̇ = 2 (ψ − ψ∗) ψ̇ = 2 (ψ − ψ∗) (fψ (x) + gψ (x))

and thus

V̇ > 0, if ψ − ψ∗ > 0
V̇ < −2 (ψ − ψ∗)2 , if ψ − ψ∗ < 0.

Consequently, convergence is always guaranteed whenever ψ−ψ∗ < 0. In the
case of ψ − ψ∗ > 0, no conclusion can be made.

In practical applications, the model of multiphase flow in Section 7.2 may
be modified to meet certain objectives. For instance, the equation for the
production valve may vary depending on the type of valve being used. In
the case of modification of the terms wg, wgp, wop in the model, the feed-
back (7.13) can easily be modified. Thus, our feedback is quite flexible to
modification of the model.

The approach discussed here still leaves an open problem where the stability
of the zero dynamics is not covered due to the difficulties of the problem.
However, for the case of ψ(x) = x3, we can disregard this issue as discussed
in the last section of this chapter.
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7.3.2 Selection of Variable-To-Be-Controlled

This subsection provides some approaches on selecting the controlled variable
ψ which fits the proposed feedback scheme. In short, the approaches should
meet the conditions in Assumption 7.1, 7.2 and 7.3, at least in some region
of a given set-point. These approaches are not exact, but to some extent
they can be used as guidelines for selecting the controlled variables.

Empirical Approach

The first approach is to plot the functions fψ and gψ for a given data set
and then select the variables, which satisfy Assumption 7.1 and 7.2, from
the plots. For this purpose we run a simulation of the system with a given
set of parameters. In this case the parameters are set so that

VG1 = 12.158 m3 ρL = 750 kg/m3

θ = 0.0274 rad H1 = 0.12 m
H2 = 300 m H3 = 0.12 m
L3 = 100 m A1 = 0.4128 m2

A2 = 0.0113 m2 A3 = 12 m2

R = 8314 J/(K*Kmol) T = 308 K
MG = 35 kg/Kmol g = 9.81 m/s2

P0 = 50× 105 N/m2 VT = 4.8329 m3

n = 2.55 K1 = 0.0051
K2 = 4.3983 K3 = 0.2030

The opening of the production orifice is set to 50% (u = 0.5). The simulation
is run for 30 minutes and the states oscillate as shown in Figure 7.3. This
means that the constant input of 50% opening induces severe slugging. Note
that our purpose in the end is to stabilize a variable at a certain set-point and
then to see whether it will suppress the slugging or not. A set-point here
means a point which is associated with the equilibrium condition ẋ = 0,
when a certain constant input u is applied. In this case the input u could
be a constant value between zero and one.

The candidates for the controlled variable are ρG1, P1, VL, ρmix, VLR, h1,
VG2, P2, αL, φ, A, vG1, ρG2, w, αLT , ρT , αm

L and wg. All these variables
are dependent on the state x (see Section 7.2). Based on the available data
set for 30 minutes, the only variables which satisfy (7.16) are VL, h1, P2

and ρG2 (see Figure 7.4). Note that we skip the plots associated with ρG2

as they are equivalent to those with P2 (see also from the equations of ρG2
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Figure 7.3: The state x for u = 0.5

and P2 in Section 7.2). The next step is to check whether Assumption 7.3
is also satisfied for VL, h1 and P2. Figure 7.4 shows that none of the chosen
variables satisfy the required condition of Assumption 7.3.

We should keep in mind that the current selection process is based on the
data set of severe slugging where large magnitude of oscillatory behavior of
the state x is expected. This is the reason why at some times Assumption 7.3
is not satisfied for VL, h1 and P2. As a comparison we perform another sim-
ulation for 10% of opening of the production orifice which is in the stable
region. The response of the state to the input u = 0.1, when the initial con-
dition is associated with an oscillatory behavior, can be seen from Figure 7.5
where the state finally converges to a set-point after oscillating. Figure 7.6
shows the corresponding plots of gψ(x), fψ(x) and |fψ(x)|/|gψ(x)| for VL, h1

and P2. It indicates that during the small magnitude of oscillation in the
state x, the magnitude of fψ is always smaller than that of gψ. Thus we can
say that whenever the magnitude of oscillation is small we can select VL, h1

and P2 as the controlled variable in our scheme.

Analytical and Empirical Approach

The next approach is a mixture of analytical and empirical nature. The
candidates to be assessed by this approach is the total mass of the liquid x3
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Figure 7.4: gψ(x), fψ(x) and |fψ(x)|/|gψ(x)| for VL, h1 and P2 in the case
u = 0.5

and the total mass M = x1 + x2 + x3. We then obtain

fx3(x) = woc > 0, gx3(x) = −αm
L (x)wp(x) < 0

fM (x) = wgc + woc > 0, gM (x) = −wp(x) < 0

where fψ(x) is a constant for both cases. By (7.16), Assumption 7.1 and
7.2 are satisfied. In the event of severe slugging, as a result of blocking, the
total mass flow rate through the production valve (wp(x)) and the oil fraction
(mass basis) through the production valve (αm

L (x)) become very small. As
a result the absolute value of gψ(x) is very small compared to that of fψ(x)
for x3 and M . Consequently Assumption 7.3 is not satisfied. On the other
hand, when there is no slugging, using the same reasoning we can guarantee
that the absolute value of gψ(x) is big enough to satisfy Assumption 7.3 for
x3 and M .

Closed Loop Investigation

In real applications, especially for safety reasons, large oscillatory behavior
is avoided. The large magnitude of oscillation can be avoided during sta-
bilization of an unstable set-point by selecting an initial set-point which is
associated with the stable region (the opening of the production orifice which
does not induce slugging). By slowly changing the set-point from the stable
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Figure 7.5: The state x for u = 0.1

one to the slugging region while the controller is working, stabilization is also
achieved.

For closed loop simulation with the feedback when the controlled variable is
h1, we set λ = 2 × 108. The initial condition is set to the point associated
with the stable region of constant opening u = 0.1. The purpose of the
feedback is to stabilize h1 at the point 0.1099 which is associated with the
equilibrium condition of u = 0.2 (slugging case). In Figure 7.7 we can
see that the states converge to a point and the state feedback does not
experience saturation (Figure 7.8). Unfortunately the state feedback u does
not converge to the desired set point of 0.2. Instead, the state feedback u
converges to the point 0.1877. To understand what happen we can observe
the plot of h1 in Figure 7.8. The variable h1 converges to the point 0.1099
which is the point associated with the equilibrium condition of u = 0.2. But
apparently the point h1 = 0.1099 is also associated with the equilibrium
condition of u = 0.1877. In this case the controller actually works well that
the controlled variable h1 converges to 0.1099 even though u converges to
another point. In this case the internal dynamic of the system does not
evolve as what is expected. Thus the selection of h1 as the variable to be
controlled has a drawback in that the state x is ’unobservable’ from the
information given by h1.

With the same initial condition we try another feedback where the variable to
be controlled is P2. The constant λ is set to 3000. The feedback is designed
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Figure 7.6: gψ(x), fψ(x) and |fψ(x)|/|gψ(x)| for VL, h1 and P2 in the case
u = 0.1

in such a way that the system moves from the initial condition associated
with the equilibrium condition of u = 0.1, gradually with step 0.1, to the
final one of u = 0.5. The results of the simulation using the feedback can be
seen in Figure 7.9 and Figure 7.10 where all the states are converging and
the feedback also converges to the desired points. Thus the feedback works
well when the variable to be controlled is P2. The same type of results are
also obtained when we select M and x3 (equivalently VL; see Section 7.2) as
the controlled variable.

Clearly, the foregoing stabilization scenario of P2, x3 and M indicates that
severe slugging can be suppressed as satisfactorily demonstrated by the re-
sults of simulation of the states. Validating the results analytically needs
a further investigation which is not easy since the model is quite compli-
cated. However, validation can be done easily in the case of selecting x3 as
the controlled variable. Stabilizing the controlled variable x3 at a set-point
guarantees that the total mass of liquid (oil) does not fluctuate and thus
no blockage occurs. In this case severe slugging can be avoided and we can
ignore whether x1 and x2 oscillate or not. Hence the stability of the zero
dynamics can be disregarded here.
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Figure 7.7: The state x (when h1 is the controlled variable)
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Figure 7.8: The feedback u and the liquid level h1 as the controlled variable
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Figure 7.9: The state x (when P2 is the controlled variable)
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Figure 7.10: The feedback u and the pressure P2 as the controlled variable
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Chapter 8

Conclusions

8.1 Summary

This thesis consists of two contributions, the main contribution in model ap-
proximation, and the additional contribution in stabilization of multiphase
flow in the riser. The contribution in model approximation is divided into
two parts, the optimal rank approximation of linear operators, and the ap-
proximation of polynomial nonlinear systems.

In Chapter 3 we introduce the notion of induced p-norm singular values and
show their relevance for a number of problems. In particular, we address
the optimal rank approximation problem and derive sufficient conditions for
the existence of optimal approximants which minimize the induced p-norm
of the error.

In Chapter 4 an approach to construct a reduced order model for a class
of nonlinear system is developed. The approach is heuristic in nature due
to the coupling of the unknown variables in verifying a finite gain L2 sta-
bility condition. Despite the fact that the approach is heuristic it offers a
systematic means of computation using sum of squares programming which
amounts to LMI feasibility problem.

In Chapter 5 we propose an approach to decouple the unknown variables
in verifying the finite gain L2 stability condition for model reduction of a
class of polynomial systems. First we seek a transformation based on an
estimate of the reachability set of the system. The estimate is computed
by means of sum of squares programming. The transformed system is then
truncated and the truncated system will be the state space system of the
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reduced model. For the second step, through sum of squares programming,
the output of the reduced model is determined such that the error model
satisfies the relaxation of the finite gain L2 stability condition.

A direction to improve the first step of the approach in Chapter 5 would be
to seek a transformation which separates the weakly reachable and observ-
able part simultaneously from the strongly reachable and observable part.
This direction is discussed in Chapter 6 which introduces a novel approach
to balancing a polynomial nonlinear system and truncates the balanced rep-
resentation.

And for the contribution on stabilization of multiphase flow in the riser
pipeline in Chapter 7, an early phase in the design method of state feedback
for the purpose of suppressing riser-induced slugging occurring in a vertical
pipeline has been presented. The method utilizes the input-output lineariza-
tion techniques. Under certain conditions the feedback scheme is guaranteed
to work in the case of saturation. These conditions can be applied as the
bases for selecting the variable to be controlled. By carefully selecting the
variable to be controlled the feedback scheme can avoid severe slugging. Al-
though the selection processes are not exact, they can be used as guidelines
for suppressing riser-based slugging.

8.2 Future Directions

The methods of model reduction for polynomial nonlinear systems in this
thesis rely on the information from the generalized observability and reach-
ability functions as they can be efficiently constructed by means of sum of
squares programming. Specifically, in Chapter 4, we have shown that the
existence of the generalized functions is necessary for the strong H∞ per-
formance model reduction. However, the question whether the reverse also
holds remains open. In this case the nonuniqueness of representation A (x)
and C (x) may be investigated to show whether the existence of the gener-
alized functions with certain structure will guarantee the H∞ performance
model reduction (and hence L2-gain model reduction). Furthermore, this
issue of nonuniqueness still open a question whether there always exist a
certain representation of A (x) and C (x) which guarantee the strong H∞
performance.

In Chapter 5 the method of model reduction consists of two steps. The first
step of the approach removes part of the original system which is weakly
reachable. On the other hand, this part of the system can be exactly the
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most observable part. It is unclear how well the second step can cope with
this problem. Further investigation is needed to resolve this issue for future
work.

The balanced truncation approach in Chapter 6 still needs further investiga-
tion especially on the issue of accuracy. It is not yet clear how far the model
reduction scheme can preserve stability. Another important issue is on the
error analysis between the reduced model and the original model which is
not covered in the thesis.

In general, the power of sum of squares programming has not been exploited
extensively for model reduction while it certainly has potential benefits for
computational purposes. For this reason it becomes more apparent that
other type of model reduction scheme can benefit from it. For example, the
potential use of sum of squares programming for balancing certain energy
functions [37] should be investigated. Furthermore, there are many type
of energy functions related to the dissipation inequality [44] which can be
exploited and might give a new computational scheme for model reduction.
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