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Abstract

Based on presentation of the principles of the EKF and UKF for state estimation, we discuss the differences of the two approaches.
Four rather different simulation cases are considered to compare the performance. A simple procedure to include state constraints in the
UKF is proposed and tested. The overall impression is that the performance of the UKF is better than the EKF in terms of robustness
and speed of convergence. The computational load in applying the UKF is comparable to the EKF.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the process industries one of the main goals is to
make the end product at the lowest possible cost while sat-
isfying product quality constraints. State estimation often
play an important role in accomplishing this goal in pro-
cess control and performance monitoring applications.
There are many uncertainties to deal with in process con-
trol; model uncertainties, measurement uncertainties and
uncertainties in terms of different noise sources acting on
the system. In this kind of environment, representing the
model state by an (approximated) probability distribution
function (pdf) has distinct advantages. State estimation is
a means to propagate the pdf of the system states over time
in some optimal way. It is most common to use the Gauss-
ian pdf to represent the model state, process and measure-
ment noises. The Gaussian pdf can be characterized by its
mean and covariance. The Kalman filter (KF) propagates
the mean and covariance of the pdf of the model state in
an optimal (minimum mean square error) way in case of
linear dynamic systems [2,11].
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All practical systems posses some degree of nonlinearity.
Depending on the type of process and the operating region
of the process, some processes can be approximated with a
linear model and the KF can be used for state estimation.
In some cases the linear approximation may not be accu-
rate enough, and state estimator designs using nonlinear
process models are necessary. The most common way of
applying the KF to a nonlinear system is in the form of
the extended Kalman filter (EKF). In the EKF, the pdf is
propagated through a linear approximation of the system
around the operating point at each time instant. In doing
so, the EKF needs the Jacobian matrices which may be
difficult to obtain for higher order systems, especially in
the case of time-critical applications. Further, the linear
approximation of the system at a given time instant may
introduce errors in the state which may lead the state to
diverge over time. In other words, the linear approximation
may not be appropriate for some systems. In order to over-
come the drawbacks of the EKF, other nonlinear state esti-
mators have been developed such as the unscented Kalman
filter (UKF) [1], the ensemble Kalman filter (EnKF)[10]
and high order EKFs. The EnKF is especially designed
for large scale systems, for instance, oceanographic models
and reservoir models [10]. The UKF seems to be a promis-
ing alternative for process control applications [15,16,20].
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The UKF propagates the pdf in a simple and effective way
and it is accurate up to second order in estimating mean
and covariance [1]. The present paper focuses on using
the UKF for nonlinear state estimation in process systems
and the performance is evaluated in comparison with the
EKF. The paper proposes a simple method to incorporate
state constraints in the UKF.

Section 2 describes the principles and algorithms of
EKF and UKF. Section 3 introduces a method to incorpo-
rate the state constraints in the UKF state estimation and
compares it with the EKF. Four examples are studied in
Section 4 to compare the performances of the UKF and
EKF. Discussion on the differences between the UKF
and EKF is presented in Section 5 and conclusions are
drawn in Section 6.

2. The EKF and UKF algorithms for nonlinear state

estimation

We present the principles and algorithms of the EKF
and UKF. At the end of the section, different characteris-
tics of the EKF and UKF are compared.

2.1. EKF principle and algorithm

To illustrate the principle behind the EKF, consider the
following example. Let x 2 Rn be a random vector and

y ¼ gðxÞ ð1Þ
be a nonlinear function, g : Rn ! Rm. The question is how
to compute the pdf of y given the pdf of x? For example, in
the case of being Gaussian, how to calculate the mean ðyÞ
and covariance (Ry) of y? If g is a linear function and the
pdf of x is a Gaussian distribution, then Kalman filter
(KF) is optimal in propagating the pdf. Even if the pdf is
not Gaussian, the KF is optimal up to the first two mo-
ments in the class of linear estimators [9]. The KF is ex-
tended to the class of nonlinear systems termed EKF, by
using linearization. In the case of a nonlinear function
(g(x)), the nonlinear function is linearized around the cur-
rent value of x, and the KF theory is applied to get the
mean and covariance of y. In other words, the mean
ðyEKFÞ and covariance ðP EKF

y Þ of y, given the mean ðxÞ
and covariance (Px) of the pdf of x are calculated as
follows:

yEKF ¼ gðxÞ; ð2Þ
P EKF

y ¼ ðrgÞP xðrgÞT; ð3Þ

where ($g) is the Jacobian of g(x) at x.

Algorithm. Let a general nonlinear system be represented
by the following standard discrete time equations:

xk ¼ f ðxk�1; vk�1; uk�1Þ; ð4Þ
yk ¼ hðxk; nk; ukÞ; ð5Þ

where x 2 Rnx is the system state, v 2 Rnv the process
noise, n 2 Rnn the observation noise, u the input and
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y the noisy observation of the system. The nonlinear
functions f and h are need not necessarily be continu-
ous. The EKF algorithm for this system is presented
below:

� Initialization at k = 0:

bx0 ¼ E½x0�;
P x0
¼ E½ðx0 � bx0Þðx0 � bx0ÞT�;

P v ¼ E½ðv� vÞðv� vÞT�;
P n ¼ E½ðn� nÞðn� nÞT�:

� For k = 1, 2, . . .,1:
(1) Prediction step.
(a) Compute the process model Jacobians:
F xk ¼ rxf ðx; v; uk�1Þjx¼bxk�1
;

Gv ¼ rvf ðbxk�1; v; ukÞjv¼v:

(b) Compute predicted state mean and covariance
(time update)

bx�k ¼ f ðbxk�1; v; ukÞ;
P�xk
¼ F xk P xk F

T
xk
þ GvP vG

T
v :

(2) Correction step.
(a) Compute observation model Jacobians:

Hxk ¼ rxhðx; n; ukÞjx¼bx�k ;
Dn ¼ rnhðbx�k ; n; ukÞjn¼n:

(b) Update estimates with latest observation (mea-

surement update)

Kk ¼ P�xk
H T

xk
ðHxk P

�
xk

HT
xk
þ DnP nDT

n Þ
�1
;

bxk ¼ bx�k þ Kk½yk � hðbx�k ; nÞ�;
P xk ¼ ðI � KkH xk ÞP�xk

:

2.2. UKF principle and algorithm

Consider now the same example as in the pre-
vious section. The question is how the UKF com-
pute pdf of y given the pdf of x, in other words, how
to calculate the mean ðyUKFÞ and covariance ðP UKF

y Þ
of y, in the case of being Gaussian? Consider a set of
points

xðiÞ; i 2 f1; . . . ; pg; p ¼ 2nþ 1;

(similar to the random samples of a specific distribution
function in Monte Carlo simulations) with each point
being associated with a weight w(i). These sample points
are termed as sigma points. Then the following steps are in-
volved in approximating the mean and covariance: Propa-
gate each sigma point through the nonlinear function,

yðiÞ ¼ gðxðiÞÞ
nscented Kalman filter for nonlinear state estimation, J. Process
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� the mean is approximated by the weighted average of

the transformed points,

yUKF ¼
Xp

i¼0

wðiÞyðiÞ; RwðiÞ ¼ 1

� and the covariance is computed by the weighted outer
product of the transformed points,

P UKF
y ¼

Xp

i¼0

wðiÞðyðiÞ � yÞðyðiÞ � yÞT:

Both the sigma points and the weights are computed
deterministically through a set of conditions given in [1].
Algorithm. The UKF algorithm is presented below; for
background theory, refer to [1,8,9]. Let the system be
represented by (4) and (5). An augmented state at time
instant k,

xa
k,

xk

vk

nk

2
64

3
75 ð6Þ

is defined. The augmented state dimension is,

N ¼ nx þ nv þ nn ð7Þ
Similarly, the augmented state covariance matrix is built

from the covariance matrices of x, v and n,

P a
,

P x 0 0

0 P v 0

0 0 P n

2
64

3
75 ð8Þ

where Pv and Pn are the process and observation noise
covariance matrices.

� Initialization at k = 0:

bx0 ¼ E½x0�; P x0
¼ E½ðx0 � bx0Þðx0 � bx0ÞT�bxa

0 ¼ E½xa� ¼ E½bx0 0 0 �T

P a
0 ¼ E½ðxa

0 � bxa
0Þðxa

0 � bxa
0Þ

T� ¼
P x 0 0

0 P v 0

0 0 P n

2
64

3
75

� For k = 1, 2, . . .,1:
(1) Calculate 2N + 1 sigma-points based on the present

state covariance:8
Pleas
Cont
Xa
i;k�1

,bxa
k�1; i ¼ 0;

,bxa
k�1 þ cSi; i ¼ 1; . . . ;N ;

,bxa
k�1 � cSi; i ¼ N þ 1; . . . ; 2N ;

><
>: ð9Þ

where Si is the ith column of the matrix,

S ¼
ffiffiffiffiffiffiffiffiffi
P a

k�1

p
:

In (9) c is a scaling parameter [8],

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ k
p

; k ¼ a2ðN þ jÞ � N ;
e cite this article in press as: R. Kandepu et al., Applying the u
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where a and j are tuning parameters. We must
choose j P 0, to guarantee the semi-positive definite-
ness of the covariance matrix, a good default choice
is j = 0. The parameter a, 0 6 a 6 1, controls the size
of the sigma-point distribution and it should ideally
be a small number [8].The ith sigma point (aug-
mented) is the ith column of the sigma point matrix,

Xa
i;k�1 ¼

Xx
i;k�1

Xv
i;k�1

Xn
i;k�1

2
64

3
75;

where the superscripts x, v and n refer to a partition
conformal to the dimensions of the state, process
noise and measurement noise, respectively.

(2) Time-update equations:
Transform the sigma points through the state-update
function,
nscent
Xx
i;k=k�1 ¼ f ðXx

i;k�1;X
v
i;k�1; uk�1Þ; i ¼ 0; 1; . . . ; 2N :

ð10Þ
Calculate the apriori state estimate and apriori
covariance,
bx�k ¼X2N

i¼0

ðwðiÞm Xx
i;k=k�1Þ; ð11Þ

P�xk
¼
X2N

i¼0

wðiÞc ðX
x
i;k=k�1 � bx�k ÞðXx

i;k=k�1 � bx�k ÞT: ð12Þ

The weights wðiÞm and wðiÞc are defined as,

wð0Þm ¼
k

N þ k
; i ¼ 0;

wð0Þc ¼
k

N þ k
þ ð1� a2 þ bÞ; i ¼ 0;

wðiÞm ¼ wðiÞc ¼
1

2ðN þ kÞ ; i ¼ 1; . . . ; 2N ;

where b is a non-negative weighting parameter intro-
duced to affect the weighting of the zeroth sigma-
point for the calculation of the covariance. This
parameter (b) can be used to incorporate knowledge
of the higher order moments of the distribution. For
a Gaussian prior the optimal choice is b = 2 [8].

(3) Measurement-update equations:
Transform the sigma points through the measure-
ment-update function,
Yi;k=k�1 ¼ hðXx
i;k=k�1;X

n
k�1; ukÞ; i ¼ 0; 1; . . . ; 2N

ð13Þ
and the mean and covariance of the measurement
vector is calculated,

by�k ¼X2N

i¼0

wðiÞm Yi;k=k�1;

P yk ¼
X2N

i¼0

wðiÞc ðYi;k=k�1 � by�k ÞðYi;k=k�1 � by�k ÞT:

ed Kalman filter for nonlinear state estimation, J. Process
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Pleas
Con
The cross covariance is calculated according to

P xk yk
¼
X2N

i¼0

wðiÞc ðXx
i;k=k�1 � bx�k ÞðYi;k=k�1 � by�k ÞT:

The Kalman gain is given by,

Kk ¼ P xk yk
P�1

yk
;

and the UKF estimate and its covariance are com-
puted from the standard Kalman update equations,
bxk ¼ bx�k þ Kkðyk � by�k Þ;
P xk ¼ P�xk

� KkP yk KT
k : ð14Þ
2.3. Discussion

The difference in the principles of state estimation using
UKF and EKF is illustrated based the Fig. 1 by consider-
ing the following example,

y ¼ gðxÞ ¼ x2; x 2 R; x ¼ X mean ¼ 6; Rx ¼ 16:

The figure illustrates how the mean and variance of x are
propagated to obtain mean and variance of y for EKF and
UKF. The true mean and variance are calculated by using
the following equations,

Y true
mean ¼ E½gðxÞ� ¼

Z 1

�1
x2:

1ffiffiffiffiffiffi
2p
p

r
e�

1
2

x�x
rð Þ2 dx;

P true
y ¼ E½ðgðxÞ � E½gðxÞ�Þ2�:

where r ¼
ffiffiffiffiffi
Rx
p

is the standard deviation. The true mean
and variance are 51.43 and 2686, respectively. The EKF
mean is obtained by using (2) giving
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Fig. 1. Illustration of princ
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Y EKF
mean ¼ 36:00;

and the variance is obtained by performing the lineariza-
tion as shown in the figure and using (3),

P EKF
y ¼ 2304:

For the UKF, three sigma points are propagated
through the function, and the mean and variance are calcu-
lated accordingly,

Y UKF
mean ¼ 52:00;

P UKF
y ¼ 2816:

The UKF approximates the propagation of the pdf
through the nonlinearity more accurately when compared
to the EKF as illustrated by the numbers in the example
above.

In the EKF algorithm, during the time-update (predic-
tion) step, the mean is propagated through the nonlinear
function, in other words, this introduces an error since in
general y 6¼ gðxÞ. In case of the UKF, during the time-
update step, all the sigma points are propagated through
the nonlinear function which makes the UKF a better
and more effective nonlinear approximator. The UKF
principle is simple and easy to implement as it does not
require the calculation of Jacobians at each time step.
The UKF is accurate up to second order moments in the
pdf propagation where as the EKF is accurate up to first
order moment [8].

Later, we will see that it is possible to implement state
constraints by proper conditioning of the sigma points.
An example (state estimation of a reversible reaction) will
be considered to illustrate the constraint handling capabil-
ity of the UKF.
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3. State estimation with constraints

Constraints on states to be estimated are important
model information that is often not used in state estima-
tion. Typically, such constraints are due to physical limita-
tions on the states; for instance, estimated concentrations
should remain positive. In Kalman filter theory, there is
no general way of incorporating these constraints into
the estimation problem. However, the constraints can be
incorporated in the KF by projecting the unconstrained
KF estimates onto the boundary of the feasible region at
each time step [18,19]. An other way of nonlinear state esti-
mation with constraints is moving horizon estimation
(MHE), in which the constraints can be included in the esti-
mation problem in a natural way [17]. In MHE, the state
trajectory is computed taking state constraints into account
xk-1

Initial se

EKF, t=k

xk
EKF

covariance

covariance

xk
EKF, C

xk
EKF, C

xk
EKF

covariance

Fig. 2. Illustration of estimati
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at the expense of solving a nonlinear programing problem
at each time step. The numerical optimization at each time
step may be a challenge in time-critical applications. In this
section, a new and simple method is introduced to handle
state constraints in the UKF and it is compared to the stan-
dard way of constraint handling in the EKF, known as
‘clipping’ [14].

Assume that the state constraints are represented by box
constraints,

xL 6 x 6 xH :

We will illustrate the method for x 2 R2. In case of a sec-
ond order system, the feasible region by the box constraints
can be represented by a rectangle as in Fig. 2. The figure
shows the illustration of the steps of constraint handling
in case of the EKF and UKF from one time step to the
t up, t=k-1

UKF, t=k

covariance
x-

k
UKF

Transformed sigma points

on with state constraints.
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next. At t = k � 1, the true state (xk), its estimate ðbxkÞ and
state covariance are selected as shown in the figure. At
t = k, the unconstrained EKF estimate ðbxEKF

k Þ is outside
the feasible region and is projected to the boundary of
the feasible region to get the constrained EKF estimate
ðxEKF;C

k Þ as shown in the figure. While projecting the EKF
estimate, the covariance of the EKF estimate is not
changed and thus the constraints have no effect on the
covariance. Hence, the covariance does not include any
constraint information. This way of the handling
constraints in the EKF is termed as ‘clipping’ in literature
[14].

The constraints information can be incorporated in the
UKF algorithm in a simple way during the time-update
step. After the propagation of the sigma points from
(10), the (unconstrained) transformed sigma points which
are outside the feasible region can be projected onto the
boundary of the feasible region and continue the further
steps. In Fig. 2, at t = k three sigma points which are out-
side the feasible region are projected onto the boundary
(lower right plot in the figure). The mean and covariance
with the constrained sigma points now represents the apri-
ori UKF estimate ðxUKF�

k Þ and covariance, and they are fur-
ther updated in the measurement-update step. The
advantage here is that the new apriori covariance includes
information on the constraints, which should make the
UKF estimate more efficient (accurate) compared to the
EKF estimate. An example (reversible reaction) is consid-
ered in the next section to illustrate the state estimation
with constraints with the proposed method.

Extension of the proposed method to higher dimension
is straightforward. Alternative linear constraints, e.g.,

Cx 6 d

are easily included by projecting the sigma point violating
the inequality normally onto the boundary of feasible re-
gion. It is observed that the new (constrained) covariance
obtained at a time step is lower in size compared to the
unconstrained covariance. If, in case, the estimate after
the measurement-update (refer (14)) is outside the feasible
region, the same projection technique can be extended.
Further, the technique can be extended to the sigma points
from (9).

The proposed algorithm is outlined below:

Algorithm (outline). �For k = 1, 2, . . .1:

(1) Calculate 2N + 1 sigma points based on the present
state covariance according to (9) and project the
sigma points which are outside the feasible region
to the boundary to obtain the constrained sigma
points,
Pleas
Con
Xx;C
i;k�1 ¼ P ðXx

i;k�1Þ i ¼ 0; 1; . . . ; 2N ;

where P refers to the projections.

(2) Time-update equations: Transform the sigma points

through the state-update function,
e cite this article in press as: R. Kandepu et al., Applying the unscent
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Xx
i;k=k�1 ¼ f ðXx;C

i;k�1;X
v
i;k�1; uk�1Þ; i ¼ 0; 1; . . . ; 2N :

Again apply the constrains on the transformed sigma
points to obtain the constrained transformed sigma
points,

Xx;C
i;k=k�1 ¼ P ðXx

i;k=k�1Þ i ¼ 0; 1; . . . ; 2N :

Calculate the apriori state estimate and apriori
covariance as given in (11) and (12) using the con-
strained transformed sigma points Xx;C

i;k=k�1.

(3) Measurement-update equations: Transform the con-

strained sigma points through the measurement-
update function as in (13) and obtain the UKF esti-
mate by following the same steps given in Section 2.
If UKF estimate violates the constraints, the same
projection technique can be used.
4. Simulation studies

Four rather different examples are considered to com-
pare different characteristics of the UKF and the EKF.
First, the Van der Pol oscillator is considered to study
the behavior of the UKF and also to compare the robust-
ness of the estimator due to model errors with that of the
EKF. Second, an estimation problem in an induction
machine is chosen to evaluate the performances for a non-
linear system. Third, state estimation of a reversible reac-
tion is studied to illustrate the constraint handling
capability of the UKF. Finally, a solid oxide fuel cell
(SOFC) combined gas turbine (GT) hybrid system is con-
sidered to evaluate the performances in the case of higher
order, nonlinear system.

In all the examples, the following assumptions are made:

� The measurement update frequency of the KF coincides
with the system discretization sampling frequency.
� The system model and the state estimator model are the

same unless otherwise specified.
� Process noise and measurement noise are applied to the

system. The noise is Gaussian with zero mean value.
� The tuning parameters (the initial covariance and pro-

cess and measurement noise covariances) are chosen to
be the same for both the EKF and UKF.
� For UKF algorithm, a,b and j in Section 2.2 are set to

the following values,

a ¼ 1; b ¼ 2 and j ¼ 0:
4.1. Van der Pol oscillator

The Van der Pol oscillator is considered as it is a widely
used example in the literature. It is highly nonlinear and,
depending on the direction of time, it can exhibit both sta-
ble and unstable limit cycles [12]. In case of an unstable
limit cycle, if the initial state is outside the limit cycle, it
diverges and if the initial state is inside the limit cycle, it
ed Kalman filter for nonlinear state estimation, J. Process
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converges to zero as time progresses. In case of stable limit
cycle, any non-zero initial state converges to a stable limit
cycle. First, the unstable limit cycle is considered and the
initial state is chosen to be just inside the limit cycle and
the initial state estimate is considered outside the limit cycle
to check the convergence of the UKF and EKF estimates.

4.1.1. Unstable limit cycle

The unstable limit cycle (Van der Pol oscillator in
reverse time) is represented by the following state differen-
tial equations [12]

x
�
1 ¼ �x2;

x
�
2 ¼ �lð1� x2

1Þx2 þ x1; l ¼ 0:2:

The output vector is defined as

y ¼ ½ x1 x2 �T:

The system is discretized with a sampling interval of 0.1.
Process noise with a covariance of 10�3I2 and measurement
noise with a covariance of 10�3I2 is added to the system
states and measurements, respectively. These noise charac-
teristics are used throughout Section. 4.1.

The initial state is chosen as

x0 ¼ ½ 1:4 0 �T;

which is just inside the limit cycle. The initial state estimate
ðbx0Þ is chosen to be outside the limit cycle, and the initial
state covariance matrix ðP x0

Þ, Rv and Rn are chosen as

bx0 ¼ ½ 0 5 �T; ð15Þ

P x0
¼ kxI2; Rv ¼ kpI2 and Rn ¼ knI2; with

kx ¼ 5; kp ¼ 10�3 and kn ¼ 10�3: ð16Þ
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Fig. 3. Estimated states for the Van der Pol oscillator in reverse time using U
initial state covariance and small measurement noise.
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The true and estimated states using the UKF and EKF
are shown in Fig. 3. The UKF estimate converges to the
true state and stays with it, whereas the EKF estimate
could not converge to the true state as the time progresses.
Fig. 4 shows the phase portraits of the UKF and EKF esti-
mates for the first 5 s. It also includes the corresponding
covariances of UKF and EKF estimates at each second,
drawn according to

fxjðx� bxkÞTP�1
xk
ðx� bxkÞ ¼ 1g:

The covariances may also give an idea of the distribu-
tion of the sigma points around the mean at a given time
instant in the case of the UKF. The covariances of the
UKF and the EKF decrease a lot between from t = 0
and t = 1 s. Further it may be observed that the later
covariances for the EKF are smaller than for the UKF.
The choice of P x0

is reasonable here as the initial state esti-
mate is far from the true initial state. The UKF is robust to
the choices of the P x0

, Rv and Rn compared to the EKF as is
illustrated with the following choices,

kx ¼ 10�2; kp ¼ 10�3 and kn ¼ 1: ð17Þ

Figs. 5 and 6 show the plots and phase portraits corre-
sponding to the choices of a small P x0

and a large Rn. Even
though the small P x0

is a bad choice for the considered bx0,
the UKF estimates are still able to converge to the true
states because of the measurement correction and also
due to the increase of the size of the covariance until the
estimates converge to the true states. On the other hand,
the EKF estimate is not converging to the true state as
shown in Fig. 5. The difference can be attributed to the bet-
ter nonlinear approximation by the UKF at each time step.
Compared to Figs. 5 and 6, both the UKF and EKF
20 25 30 35 40
 (sec)

true
UKF
EKF

20 25 30 35 40
e (sec)
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KF and EKF with an initial state estimate far from the limit cycle: large
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estimates converge very fast in Figs. 3 and 4. The reason is
that the assumed measurement noise is less in Figs. 3 and 4,
and hence the feedback in the measurement-update makes
the estimates converge quite fast. In Figs. 5 and 6, the
assumed measurement noise is higher meaning that the
feedback from the measurement-update is less effective.

As the UKF gives a better approximation in time-
update step, the UKF estimate is able to converge quite
fast, even though the measurement noise is higher and
the initial covariance is a bad choice. In addition, the Kal-
man gain is quite different in the two estimators due to the
difference in the covariances as can be observed in Fig. 6.
Hence, it is reasonable to assume that the correction step
Please cite this article in press as: R. Kandepu et al., Applying the u
Contr. (2008), doi:10.1016/j.jprocont.2007.11.004
in the UKF also improves convergence as compared to
the EKF.

To verify these results, two Monte Carlo simulations
with 100 runs are performed varying the initial state, and
the process and measurement noise realizations. In addi-
tion the initial state estimate is also varied. Both states of
x0 and bx0 were chosen from a normal distribution with zero
mean and standard deviation 0.4. The Monte Carlo simu-
lations differ in the choices of the tuning parameters (P x0

,
Rv and Rn) as given in (16) and (17). The corresponding
mean square errors (MSE)s of the state estimate errors
for the EKF and UKF are 0.18 and 0.02, and 0.23 and
0.09, respectively. The MSEs corresponding to the UKF
nscented Kalman filter for nonlinear state estimation, J. Process
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are considerably lower compared to that of EKF, and
hence it can be concluded that the UKF gives improved
performance compared to the EKF.

4.1.2. Stable limit cycle – with model error

In [13], it is observed that when there is a significant
model error the EKF is not able to converge to the true
states in case of the Van der Pol equation with a stable limit
Please cite this article in press as: R. Kandepu et al., Applying the u
Contr. (2008), doi:10.1016/j.jprocont.2007.11.004
cycle. This cycle is considered to evaluate the robustness of
the UKF to model errors and it is compared to that of
EKF. The state and measurement equations are

x
�
1 ¼ x2; ð18Þ

x
�
2 ¼ lð1� x2

1Þx2 � x1; l ¼ 0:2; ð19Þ
y ¼ ½x1 x2�T: ð20Þ
nscented Kalman filter for nonlinear state estimation, J. Process
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In the state estimator model the value of l is chosen as
0.5. The system is discretized with sampling interval of 0.1.
An initial state is chosen as x0 ¼ ½ 0:5 0 �T. A initial state
estimate ðbx0Þ, and initial state covariance matrix ðP x0

Þ, Rv

and Rn are chosen as before with the following kx, kp and
kn values,

bx0 ¼ ½ 5 �1 �T; kx ¼ 1; kp ¼ 10�3 and kn ¼ 10�3:

ð21Þ
The estimates states using UKF and EKF are compared

in Fig. 7. The errors in the estimated states in polar coor-
dinates are shown in Fig. 8. From Figs. 7 and 8, it is clear
that the EKF estimates are sensitive to the model error in
l, whereas the UKF shows robust performance to the
model error.

4.2. State estimation in an induction machine

The UKF and EKF are applied to a highly nonlinear
flux and angular velocity estimation problem in an induc-
tion machine. To develop high-performance induction
motor drives, it may be necessary to have rotor flux estima-
tors and rotor time constant identification schemes [3]. In
[3] and [4], new EKF-based algorithms are developed for
the considered estimation problem as the EKF estimator
cannot produce effective results. The state space model
for a symmetrical three-phase induction machine is [4],

x
�
1 ¼ k1x1 þ z1x2 þ k2x3 þ z2;

x
�
2 ¼ �z1x1 þ k1x2 þ k2x4;

x
�
3 ¼ k3x1 þ k4x3 þ ðz1 � x5Þx4;

x
�
4 ¼ k3x2 � ðz1 � x5Þx3 þ k4x4;

x
�
5 ¼ k5ðx1x4 � x2x3Þ þ k6z3;

ð22Þ
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where x1, x2 and x3,x4 are the components of the stator and
the rotor flux, respectively, and x5 is the angular velocity.
All the state variables are normalized. The inputs, the fre-
quency and the amplitude of the stator voltage are denoted
by z1 and z2 respectively, and the load torque is denoted by
z3. k1, . . . ,k6 are parameters depending on the considered
drive. The outputs are the normalized stator currents y1

and y2. The output equations are given by,

y1 ¼ k7x1 þ k8x3;

y2 ¼ k7x2 þ k8x4;

with parameters k7 and k8. For simulation, the model
parameters and inputs are set to the values given in Table
1. Process noise with a covariance of 10�4I5 and measure-
ment noise with a covariance of 10�2I2 is added to the sys-
tem states and measurements, respectively. The model is
discretized with a sampling interval of 0.1.

The UKF and EKF are used to estimate the states with
the actual initial condition

x0 ¼ ½ 0:2 �0:6 �0:4 0:1 0:3 �T:

The initial estimated state is assumed to be

bx0 ¼ ½ 0:5 0:1 0:3 �0:2 4 �T:

The tuning parameters are selected as,

P x0
¼ kxI5; Rv ¼ kpI5 and Rn ¼ knI2;

with kx ¼ 1; kp ¼ 10�4 and kn ¼ 10�2:

The state estimation results are shown in Fig. 9 where
the UKF and EKF estimates of states x1, x3 and x5 are
compared with the true states. With the initial predicted
state far from the actual initial state, the simulation results
show that the UKF performs better than the EKF. The
reason for the better performance of the UKF is attributed
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g UKF and EKF with a model error.
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Table 1
Model parameters and inputs

k1 k2 k3 k4 k5 k6 k7 k8 z1 z2 z3

�0.186 0.178 0.225 �0.234 �0.081 4.643 �4.448 1 1 1 0
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to the better nonlinear approximation at each step. It can
be mentioned that the behavior of the EKF is similar to
behavior observed in [3].

A Monte Carlo simulation with 100 runs was performed
and the MSEs of the EKF and UKF estimates are 0.13 and
0.05, respectively. The MSE corresponding to the UKF is
substantially lower compared to those of the EKF. Again
the UKF performs significantly better, this time in the case
of a highly nonlinear semi-realistic example.
4.3. State estimation with constraints: a reversible reaction

example

We will here consider an example to illustrate the con-
straint handling capability of the UKF compared to that
of the EKF. Consider the gas-phase, reversible reaction,

2A!k B; k ¼ 0:16;

with stoichiometric matrix

v ¼ ½�2 1 �

and reaction rate

r ¼ kC2
A:

The state and measurement vectors are defined as

x ¼
CA

CB

� �
; y ¼ ½ 1 1 �x;
Please cite this article in press as: R. Kandepu et al., Applying the u
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where Cj denotes the concentration of species j. It is as-
sumed that the ideal gas law holds and that the reaction oc-
curs in a well-mixed isothermal batch reactor. Then, from
first principles, the model for this system is

x
� ¼ f ðxÞ ¼ vTr:

The system is discretized with sampling interval of 0.1.
The UKF and EKF are used for state estimation, with
the following setup as used in [14]:

x0 ¼ ½ 3 1 �T; bx0 ¼ ½ 0:1 4:5 �T;

P x0
¼

36 0

0 36

� �
; Rv ¼ 10�6 1 0

0 1

� �
;

Rn ¼ 10�2 1 0

0 1

� �
:

The estimation result for the unconstrained case is
shown in Fig. 10. The result shows that the dynamic per-
formance of the UKF estimates is better compared to that
of the EKF. The EKF performance is very similar to the
reported results in [14].

However, during the dynamic response, both the UKF
and EKF estimates become negative, (meaning negative
concentrations) which is not possible physically. State con-
straints are incorporated according to the proposed
method in Section 3 for the UKF and standard ‘‘clipping”

is used for the EKF. The results are shown in Fig. 11. From
Fig. 11 the UKF estimates converge to the true states with-
out violating the constraints. Because of the clipping in the
nscented Kalman filter for nonlinear state estimation, J. Process
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EKF, CA estimate of EKF did not converge to the true
state and the estimate of CB takes much longer time to con-
verge to the true state.

Fig. 12 shows the phase portraits of the unconstrained
and constrained UKF estimates for the first 4 s. The figure
also includes the corresponding covariances plotted at
t = 0, 1 and 3 s. From Fig. 12, it is clear that it takes longer
time for the unconstrained estimate to converge as the cor-
responding covariances do no include the constraint infor-
mation. The constrained UKF estimate converges faster
as the covariances decrease faster, which include the con-
straint information. The results from this example con-
Please cite this article in press as: R. Kandepu et al., Applying the u
Contr. (2008), doi:10.1016/j.jprocont.2007.11.004
firm that the proposed constraint handling method is
promising.

4.4. SOFC/GT hybrid system

The solid oxide fuel cell (SOFC) stack integrated in a gas
turbine (GT) cycle, known as SOFC/GT hybrid system, is
an interesting power generation system due to its high effi-
ciency in the range of 65–75%. A schematic diagram of the
SOFC/GT hybrid system integrated in an autonomous
power system is shown in Fig. 13. The fuel, natural gas
(CH4), is partially steam reformed in a pre-reformer before
nscented Kalman filter for nonlinear state estimation, J. Process
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it enters the SOFC anode. A part of anode flue gas is recy-
cled to supply the necessary steam required for the steam
reformation in the pre-reformer. The remaining part of
the anode flue gas is supplied to a combustor where the
unused fuel is burnt completely in presence of oxygen com-
ing from the cathode flue gas. Air is compressed and pre-
heated in a heat exchanger before entering the SOFC
cathode. The hot stream from the combustor is expanded
using a high pressure turbine (HPT) which drives the com-
pressor. The HPT flue gas is expanded to atmospheric pres-
sure using low pressure turbine (LPT) which drives an
Please cite this article in press as: R. Kandepu et al., Applying the u
Contr. (2008), doi:10.1016/j.jprocont.2007.11.004
alternator. The DC power from SOFC stack is inverted
to AC using an inverter. The inverter and the alternator
are connected to the electric load through a bus bar. Typ-
ically 60–70% of the total power is supplied by the SOFC
stack.

All the models of the system are developed in the mod-
ular modeling environment gPROMS [7] as reported in [5].
In [5], a low complexity, control relevant SOFC model is
evaluated against a detailed model developed in [6]. The
comparisons indicate that the low complexity model is suf-
ficient to approximate the important dynamics of the
nscented Kalman filter for nonlinear state estimation, J. Process
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Table 2
Available measurements

No. Measurement

1 Pre-reformer temperature (K)
2 Shaft speed (rad/s)
3 Heat exchanger hot stream temperature (K)
4 Heat exchanger cold stream temperature (K)
5 SOFC outlet temperature (K)
6 Combustor outlet temperature (K)
7 Fuel mass flow rate (kg/s)
8 Anode recycle flow rate (kg/s)
9 Flow to the combustion chamber (kg/s)
10 Air blow-off flow rate (kg/s)
11 Air mass flow rate (kg/s)
12 SOFC current (A)
13 SOFC voltage (V)
14 Generator power (kW)
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SOFC and can hence be used for operability and control
studies. A regulatory control layer is designed and it is
included in the model.

The purpose of a state estimator is to design an
advanced controller and as well for monitoring and fault
diagnosis purposes. In this section, EKF and UKF are
used to design the state estimator, and their performances
and computational load are compared.

The SOFC/GT hybrid system model has 3 inputs, 18
states, and 14 measured outputs which are listed in Table 2.
A state estimator of the hybrid system is designed using
both the UKF and EKF, and the simulation results are
presented in Figs. 14 and 15. The figures show selected
states for a typical run. Both the state estimators are tuned
to obtain good performance. In the EKF, the Jacobians are
calculated numerically at each time step. The tuning
parameters for both the UKF and EKF are the same to
ensure a fair comparison.

The initial state estimate is different from the actual ini-
tial state and from the simulation results it can be con-
cluded that UKF estimate converges to the true states
very fast compared to the EKF estimate. The initial state
estimate cannot be chosen too far from the actual state
to avoid numerical problems in gPROMS. From this
example, it is clear that the UKF can be used to design
state estimators for higher order systems and the UKF per-
formance is again favorable. The computational load of the
UKF is almost the same as that of the EKF, in addition to
providing better performance.

5. Discussion

The UKF as a tool for state estimation has been com-
pared to the standard method for nonlinear state estima-
tion; the EKF. The state estimation methods have been
Please cite this article in press as: R. Kandepu et al., Applying the u
Contr. (2008), doi:10.1016/j.jprocont.2007.11.004
compared using the same tuning parameters to make the
comparative study as credible as possible. Four different
examples have been tested. The UKF shows consistently
improved performance as compared to the EKF. In several
cases the improvement is substantial, both in the conver-
gence rate as well as in the long term state estimation error.
Monte Carlo simulations have also been run with different
initial states. These runs reinforced the hypothesis that the
UKF is indeed an interesting alternative to the EKF.

A method for constraint handling in UKF is proposed
in Section 3. The results albeit for one example are prom-
ising. An important feature of the proposed constraint han-
dling method is the fact that it adjusts the covariance in
addition to the state estimates themselves. This is quite dif-
ferent from the EKF where ‘clipping’ usually is performed
without adjusting the state estimate covariance. A rationale
for using the MHE is often attributed to its constraint han-
dling ability. Our results indicate that the UKF with the
proposed constraint handling may be an interesting alter-
nscented Kalman filter for nonlinear state estimation, J. Process
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native to MHE. Furthermore, it is very simple to imple-
ment the proposed method to incorporate the constraints
in the UKF compared to the MHE.

The improved performance of the UKF compared to
the EKF is due to two factors, the increased time-update
accuracy and the improved covariance accuracy. The
covariance estimation can be quite different for the two fil-
ters as shown in Fig. 6. This again makes a difference in
terms of different Kalman gains in the measurement-
update equation and hence the efficiency of the measure-
ment-update step.

There is usually a price to pay for improved perfor-
mance. In this case the computational load increases when
Please cite this article in press as: R. Kandepu et al., Applying the u
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moving from the EKF to the UKF if the Jacobians are com-
puted analytically. In many cases, particularly for higher
order systems, the Jacobians for the EKF are computed
using finite differences. In this case the computational load
for the UKF is comparable to the EKF. The latter implies
that the computational load using the UKF is significantly
lower than what can be expected for the MHE.
6. Conclusions

This paper shows that the UKF is an interesting option
to the EKF because of improved performance. Further,
nscented Kalman filter for nonlinear state estimation, J. Process
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due to the proposed constraint handling method it may
also be an interesting alternative to the MHE. The pro-
posed method is much simpler to implement compared to
the MHE. The computational load for the UKF is compa-
rable to the EKF for the typical case, where the Jacobians
are computed numerically.
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