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Figure 1: Vortex shedding from a cylinder.

1 Introduction
∂A (x̆, t)

∂t
= a1

∂2A (x̆, t)

∂x̆2
+ a2 (x̆)

∂A (x̆, t)

∂x̆
+ a3 (x̆)A (x̆, t) + a4 |A (x̆, t)|2A (x̆, t) (1)

We consider the linearized Ginzburg-Landau equation given by

∂A (x̆, t)

∂t
= a1

∂2A (x̆, t)

∂x̆2
+ a2 (x̆)

∂A (x̆, t)

∂x̆
+ a3 (x̆)A (x̆, t) (2)

for x̆ ∈ (−∞, 1), with boundary conditions

A (1, t) = u (t) , (3)

A (−∞, t) = 0, (4)

and where A : (−∞, 1]× R+ → C, a2 ∈ C2 ((−∞, 1];C) , a3 ∈ C1 ((−∞, 1];C), a1 ∈ C, and

u : R+ → C is the control input. a1 is assumed to have strictly positive real part.

2 Problem Statement

We now truncate the semi-infinte domain (−∞, 1] at x̆ = xd ∈ (−∞, 1), and rewrite the

equation to obtain two coupled partial differential equations in real variables and coefficients

by defining

ρ (x, t) = <(B(x, t)) = 1

2

¡
B (x, t) + B̄ (x, t)

¢
, (5)

ι (x, t) = =(B(x, t)) = 1

2i

¡
B (x, t)− B̄ (x, t)

¢
, (6)

where

x =
x̆− xd
1− xd

, and B (x, t) = A (x̆, t) exp

µ
1

2a1

Z x̆

xd

a2 (τ) dτ

¶
. (7)
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i denotes the imaginary unit, and denotes complex conjugation. Equation (2) becomes

ρt = aRρxx + bR (x) ρ− aIιxx − bI (x) ι, (8)

ιt = aIρxx + bI (x) ρ+ aRιxx + bR (x) ι, (9)

for x ∈ (0, 1), with boundary conditions

ρ (0, t) = 0, ι (0, t) = 0, (10)

ρ (1, t) = uR (t) , ι (1, t) = uI (t) , (11)

and where

aR ,
1

(1− xd)
2<(a1), aI ,

1

(1− xd)
2=(a1), (12)

bR (x) , <
µ
a3 (x̆)−

1

2
a02 (x̆)−

1

4a1
a22 (x̆)

¶
, (13)

bI (x) , =
µ
a3 (x̆)−

1

2
a02 (x̆)−

1

4a1
a22 (x̆)

¶
. (14)

3 Stabilization by State Feedback

In [1], extending the results in [3, 4], the state feedback stabilization problem was solved by

searching for a coordinate transformation on the form

ρ̃ (x, t) = ρ (x, t)−
Z x

0

[k (x, y) ρ (y, t) + kc (x, y) ι (y, t)] dy, (15)

ι̃ (x, t) = ι (x, t)−
Z x

0

[−kc (x, y) ρ (y, t) + k (x, y) ι (y, t)] dy, (16)

transforming system (8)—(11) into

ρ̃t = aRρ̃xx + fR (x) ρ̃− aI ι̃xx − fI (x) ι̃, (17)

ι̃t = aI ρ̃xx + fI (x) ρ̃+ aRι̃xx + fR (x) ι̃, (18)

for x ∈ (0, 1), with boundary conditions

ρ̃ (0, t) = 0, ι̃ (0, t) = 0, ρ̃ (1, t) = 0, ι̃ (1, t) = 0. (19)
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By the choice of fR and fI , system (17)—(19) can be given any desired level of stability. The

corresponding stable behaviour for the original system is ensured by the control input

uR (t) =

Z 1

0

[k1 (y) ρ (y, t) + kc,1 (y) ι (y, t)] dy, (20)

uI (t) =

Z 1

0

[−kc,1 (y) ρ (y, t) + k1 (y) ι (y, t)] dy, (21)

where

k1 (y) = k (1, y) , (22)

kc,1 (y) = kc (1, y) . (23)

The skew-symmetric form of (20)—(21), is postulated from the skew-symmetric form of (8)—

(9). The following result was proven in [1].

Theorem 1

i. The pair of kernels, k (x, y) and kc (x, y), satisfy the partial differential equation

kxx = kyy + β(x, y)k + βc(x, y)kc, (24)

kc,xx = kc,yy − βc(x, y)k + β(x, y)kc, (25)

for (x, y) ∈ T = {x, y : 0 < y < x < 1}, with boundary conditions

k(x, x) = −1
2

Z x

0

β(γ, γ)dγ, (26)

kc(x, x) =
1

2

Z x

0

βc(γ, γ)dγ, (27)

k (x, 0) = 0, (28)

kc (x, 0) = 0, (29)

where

β(x, y) = [aR (bR(y)− fR(x)) + aI (bI(y)− fI(x))] /
¡
a2R + a2I

¢
, (30)

βc(x, y) = [aR (bI(y)− fI(x))− aI (bR(y)− fR(x))] /
¡
a2R + a2I

¢
. (31)
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The equation (24)—(25) with boundary conditions (26)—(29) has a unique C2 (T ) solu-

tion, given by

k (x, y) =
∞X
n=0

Gn (x+ y, x− y) , (32)

kc (x, y) =
∞X
n=0

Gc,n (x+ y, x− y) , (33)

where

G0 (ξ, η) = −1
4

ξZ
η

b (τ , 0) dτ, (34)

Gc,0 (ξ, η) =
1

4

ξZ
η

bc (τ , 0) dτ, (35)

Gn+1 (ξ, η) =
1

4

Z ξ

η

Z η

0

b (τ , s)Gn (τ , s) dsdτ +
1

4

Z ξ

η

Z η

0

bc (τ , s)Gc,n (τ , s) dsdτ,(36)

Gc,n+1 (ξ, η) = −1
4

Z ξ

η

Z η

0

bc (τ , s)Gn (τ , s) dsdτ +
1

4

Z ξ

η

Z η

0

b (τ , s)Gc,n (τ , s) dsdτ,(37)

and

b (ξ, η) = β

µ
ξ + η

2
,
ξ − η

2

¶
, bc (ξ, η) = βc

µ
ξ + η

2
,
ξ − η

2

¶
. (38)

ii. The inverse of (15)—(16) exists and is in the form

ρ (x, t) = ρ̃ (x, t)−
Z x

0

[l (x, y) ρ̃ (y, t) + lc (x, y) ι̃ (y, t)] dy, (39)

ι (x, t) = ι̃ (x, t)−
Z x

0

[−lc (x, y) ρ̃ (y, t) + l (x, y) ι̃ (y, t)] dy, (40)

where l and lc are C2 (T ) functions.

iii. If fR and fI are chosen such that

sup
x∈[0,1]

µ
fR (x) +

1

2
|f 0I (x)|

¶
≤ −c, (41)

where c ≥ 0, then for any intial data (ρ0, ι0) ∈ H1 (0, 1), the system (8)—(11) in

closed loop with the control law (20)—(23) has a unique classical solution (ρ, ι) ∈

C2,1 ((0, 1)× (0,∞)) and is exponentially stable at the origin in the L2 (0, 1) and H1 (0, 1)

norms.
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It was also shown in [1], that for the numerical coefficients given in [6], the target system

(17)—(19) can be chosen such that the kernels have compact support and are independent

of the choice of xd. In this case, we have that k1 (y) = 0 and kc,1 (y) = 0 when y < xs for

some xs ∈ (0, 1), and stability of the zero solution is ensured for the system evolving on

the semi-infinite domain (xd → −∞). It follows that even though the system evolves on a

semi-infinite domain, we need to design an observer that provides an estimate of the state

in (xs, 1), only. In the anti-collocated case, that is when the measurement is downstream

of the cylinder, we can design the observer independent of the choice of xd, guaranteeing

output feedback stabilization on the semi-infinite domain. In the collocated case, that is

when sensing and actuation are both at the location of the cylinder, stability is guaranteed

when the system is truncated to a finite domain. In the latter case, the semi-infinite case can

be approximated with arbitrary accuracy by increasing the domain on which the estimate

is computed. It is interesting to notice that also in this case, the output injection gains are

independent of the size of the domain.

In the next two sections, we design observers for the anti-collocated and collocated cases

for system (8)—(11) by modifying the results in [5] to deal with two coupled pde’s and the

semi-infinite domain.

4 Anti-Collocated Output Feedback Design

Suppose that ρ (xm, t), ι (xm, t), ρx (xm, t), and ιx (xm, t) are available for measurement for

some xm ≤ xs. Without loss of generality, we set xm = 0 from now on.1 Consider the

following observer

ρ̂t = aRρ̂xx + bR (x) ρ̂− aI ι̂xx − bI (x) ι̂

+ p1 (x) (ρ (0, t)− ρ̂ (0, t)) + pc,1 (x) (ι (0, t)− ι̂ (0, t)) , (42)

ι̂t = aI ρ̂xx + bI (x) ρ̂+ aRι̂xx + bR (x) ι̂

− pc,1 (x) (ρ (0, t)− ρ̂ (0, t)) + p1 (x) (ι (0, t)− ι̂ (0, t)) , (43)

1We can always rescale the semi-infinite interval (−∞, 1] such that the point xm ∈ (−∞, 1) is moved to

the origin in the new coordinates.
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for x ∈ (0, 1), with boundary conditions

ρ̂x (0, t) = ρx (0, t) + p0 (ρ (0, t)− ρ̂ (0, t)) + pc,0 (ι (0, t)− ι̂ (0, t)) , (44)

ι̂x (0, t) = ιx (0, t)− pc,0 (ρ (0, t)− ρ̂ (0, t)) + p0 (ι (0, t)− ι̂ (0, t)) , (45)

ρ̂ (1, t) = uR (t) , ι̂ (1, t) = uI (t) . (46)

In (42)—(46), p1 (x) , pc,1 (x), p0, and pc,0 are output injection gains to be designed. The

skew-symmetric form of the output injections is postulated from the skew-symmetric form

of system (8)—(9). Notice that both ρ(0, t), ι (0, t) and their first spatial derivate are used in

the observer. Defining the observer error ρ̃ (x, t) = ρ (x, t) − ρ̂ (x, t), the error dynamics is

given by

ρ̃t = aRρ̃xx + bR (x) ρ̃− aI ι̃xx − bI (x) ι̃− p1 (x) ρ̃ (xs, t)− pc,1 (x) ι̃ (xs, t) , (47)

ι̃t = aI ρ̃xx + bI (x) ρ̃+ aRι̃xx + bR (x) ι̃+ pc,1 (x) ρ̃ (xs, t)− p1 (x) ι̃ (xs, t) , (48)

for x ∈ (0, 1), with boundary conditions

ρ̃x (0, t) = −p0ρ̃ (0, t)− pc,0ι̃ (0, t) , (49)

ι̃x (0, t) = pc,0ρ̃ (0, t)− p0ι̃ (0, t) , (50)

ρ̃ (1, t) = 0, ι̃ (1, t) = 0. (51)

The observer gains p1 (x) , pc,1 (x), p0, and pc,0 should be chosen to stabilize the system

(47)—(51). Towards that end, we look for a transformation

ρ̃ (x, t) = σ̃ (x, t)−
xZ
xs

[p (x, y) σ̃ (y, t)− pc (x, y) κ̃ (y, t)] dy, (52)

ι̃ (x, t) = κ̃ (x, t)−
xZ
xs

[pc (x, y) σ̃ (y, t) + p (x, y) κ̃ (y, t)] dy, (53)

transforming system (47)—(51) into the exponentially stable system

σ̃t = aRσ̃xx + fR (x) σ̃ − aI κ̃xx − fI (x) κ̃, (54)

κ̃t = aI σ̃xx + fI (x) σ̃ + aRκ̃xx + fR (x) κ̃, (55)
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for x ∈ (0, 1), with boundary conditions

σ̃x (0, t) = 0, κ̃x (0, t) = 0, (56)

σ̃ (1, t) = 0, κ̃ (1, t) = 0. (57)

Once the coordinate transformation (52)—(53) is found, the output injection terms are given

by

p1 (x) = aRpy (x, 0) + aIpc,y (x, 0) , (58)

pc,1 (x) = −aIpy (x, 0) + aRpc,y (x, 0) , (59)

p0 = p (0, 0) , and pc,0 = pc (0, 0) . (60)

By subtracting (47)—(51) from (54)—(57) and using (52)—(53) it can be shown that the kernels

p and pc must satisfy

pxx = pyy − β (y, x) p− βc (y, x) pc, (61)

pc,xx = pc,yy + βc (y, x) p− β (y, x) pc, (62)

with boundary conditions

dp (x, x)

dx
=

1

2
β (x, x) , (63)

dpc,x (x, x)

dx
= −1

2
βc (x, x) , (64)

p (1, y) = pc (1, y) = 0. (65)

Changing coordinates according to

x̆ = 1− y, y̆ = 1− x, (66)

and defining

β̆ (x̆, y̆) , β (y, x) , β̆c (x̆, y̆) , βc (y, x) , (67)

p̆ (x̆, y̆) , p (x, y) , p̆c (x̆, y̆) , pc (x, y) , (68)

we obtain

p̆y̆y̆ = p̆x̆x̆ − β̆ (x̆, y̆) p̆− β̆c (x̆, y̆) p̆c, (69)

p̆c,y̆y̆ = p̆c,x̆x̆ + β̆c (x̆, y̆) p̆− β̆ (x̆, y̆) p̆c, (70)
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with boundary conditions

p̆ (x̆, x̆) = −1
2

x̆Z
0

β̆ (γ, γ) dγ, (71)

p̆c (x̆, x̆) =
1

2

x̆Z
0

β̆c (γ, γ) dγ, (72)

p̆ (x̆, 0) = p̆c (x̆, 0) = 0. (73)

Equation (69)—(73) is the same as equation (24)—(29). Thus, we get the following result

directly from Theorem 1.

Theorem 2 Suppose that fR and fI satisfy (41), and that p, pc is a solution of (61)—(65).

Then for any intial data (ρ̃0, ι̃0) ∈ H1 (0, 1), the system (47)—(51) with output injection

gains given by (58)—(60) has a unique classical solution (ρ̃, ι̃) ∈ C2,1 ((0, 1)× (0,∞)) and is

exponentially stable at the origin in the L2 (0, 1) and H1 (0, 1) norms.

Having found a convergent observer and a stabilizing state feedback control law, it follows

from standard results that the closed loop consisting of replacing the state with its estimate

in the state feedback control law is exponentially stable at the origin [2]. We now formulate

the solution to the output-feedback problem.

Theorem 3 Suppose that fR and fI satisfy (41), and let k, kc be the solution of (24)—(29)

and p, pc the solution of (61)—(65). Then for any intial data (ρ0, ι0) , (ρ̂0, ι̂0) ∈ H1 (0, 1), the

system (8)—(10) with the controller

ρ (1, t) =

Z 1

0

[k1 (y) ρ̂ (y, t) + kc,1 (y) ι̂ (y, t)] dy, (74)

ι (1, t) =

Z 1

0

[−kc,1 (y) ρ̂ (y, t) + k1 (y) ι̂ (y, t)] dy, (75)

and the observer

ρ̂t = aRρ̂xx + bR (x) ρ̂− aI ι̂xx − bI (x) ι̂

+ p1 (x) (ρ (0, t)− ρ̂ (0, t)) + pc,1 (x) (ι (0, t)− ι̂ (0, t)) , (76)
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Figure 2: State feedback gain kernels.

ι̂t = aI ρ̂xx + bI (x) ρ̂+ aRι̂xx + bR (x) ι̂

− pc,1 (x) (ρ (0, t)− ρ̂ (0, t)) + p1 (x) (ι (0, t)− ι̂ (0, t)) , (77)

ρ̂x (0, t) = ρx (0, t) + p0 (ρ (0, t)− ρ̂ (0, t)) + pc,0 (ι (0, t)− ι̂ (0, t)) ,

ι̂x (0, t) = ιx (0, t)− pc,0 (ρ (0, t)− ρ̂ (0, t)) + p0 (ι (0, t)− ι̂ (0, t)) ,

ρ̂ (1, t) =

Z 1

0

[k1 (y) ρ̂ (y, t) + kc,1 (y) ι̂ (y, t)] dy,

ι̂ (1, t) =

Z 1

0

[−kc,1 (y) ρ̂ (y, t) + k1 (y) ι̂ (y, t)] dy,

have unique classical solutions (ρ, ι) , (ρ̂, ι̂) ∈ C2,1 ((0, 1)× (0,∞)) and are exponentially sta-

ble at the origin in the L2 (0, 1) and H1 (0, 1) norms.

Figure 2: State feedback gain kernels, k1 (y) and kc,1 (y) .

Figure 3: Open-loop plant response.

Figure 4: Output injection gains, p1 (x) and pc,1 (x).

Figure 5: Open-loop observer error.

Figure 6: Closed-loop plant response.

10



0
0.2

0.4
0.6

0.8
1 0

10
20

30
40

50
-0.4

-0.2

0

0.2

0.4

tx

ρ

0
0.2

0.4
0.6

0.8
1 0

10
20

30
40

50
-0.4

-0.2

0

0.2

0.4

tx

ι
Figure 3: Open loop plant response.

0 0.2 0.4 0.6 0.8 1
-400

-200

0

200

400

600

800

x

Figure 4: Observer gains.

11



0
0.2

0.4
0.6

0.8
1 0

10
20

30
40

50
-0.4

-0.2

0

0.2

0.4

tx

ρ

0
0.2

0.4
0.6

0.8
1 0

10
20

30
40

50
-0.4

-0.2

0

0.2

0.4

tx

ι
Figure 5: Observer error.

0
0.2

0.4
0.6

0.8
1 0

10
20

30
40

50
-0.2

0

0.2

0.4

0.6

tx

ρ

0
0.2

0.4
0.6

0.8
1 0

10
20

30
40

50
-0.4

-0.2

0

0.2

0.4

tx

ι

Figure 6: Plant response.

12



5 Collocated Output Feedback Design

In the collocated case, measurements are taken at the same location as the control input, that

is on the cylinder surface. The measurements are ρ (1, t) and ι (1, t), which leaves ρx (1, t)

and ιx (1, t) for control input. The controller presented in Section 3 was of Dirichlet type.

In the collocated case, we need Neumann type actuation, which can easily be derived from

transformation (15)—(16) by setting homogeneous Neumann boundary conditions at x = 1

for the target system. The resulting controller is

uR (t) =

Z 1

0

[kx (1, y) ρ (y, t) + kc,x (1, y) ι (y, t)] dy + k (1, 1) ρ (1, t) + kc (1, 1) ι (1, t) ,(78)

uI (t) =

Z 1

0

[−kc,x (1, y) ρ (y, t) + kx (1, y) ι (y, t)] dy − kc (1, 1) ρ (1, t) + k (1, 1) ι (1, t) ,(79)

where k and kc, are the kernels found in from Section 3. The boundary conditions in (11)

must be replaced by

ρx (1, t) = uR (t) , ιx (1, t) = uI (t) . (80)

Consider the observer

ρ̂t = aRρ̂xx + bR (x) ρ̂− aI ι̂xx − bI (x) ι̂

+ p1 (x) (ρ (1, t)− ρ̂ (1, t)) + pc,1 (x) (ι (1, t)− ι̂ (1, t)) , (81)

ι̂t = aI ρ̂xx + bI (x) ρ̂+ aRι̂xx + bR (x) ι̂

− pc,1 (x) (ρ (1, t)− ρ̂ (1, t)) + p1 (x) (ι (1, t)− ι̂ (1, t)) , (82)

for x ∈ (0, 1), with boundary conditions

ρ̂ (0, t) = 0, (83)

ι̂ (0, t) = 0, (84)

ρ̂x (1, t) = p0 (ρ (1, t)− ρ̂ (1, t)) + pc,0 (ι (1, t)− ι̂ (1, t)) + uR (t) , (85)

ι̂x (1, t) = −pc,0 (ρ (1, t)− ρ̂ (1, t)) + p0 (ι (1, t)− ι̂ (1, t)) + uI (t) . (86)
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The observer error is governed by

ρ̃t = aRρ̃xx + bR (x) ρ̃− aI ι̃xx − bI (x) ι̃− p1 (x) ρ̃ (1, t)− pc,1 (x) ι̃ (1, t) , (87)

ι̃t = aI ρ̃xx + bI (x) ρ̃+ aRι̃xx + bR (x) ι̃+ pc,1 (x) ρ̃ (1, t)− p1 (x) ι̃ (1, t) , (88)

for x ∈ (0, 1), with boundary conditions

ρ̃ (0, t) = 0, (89)

ι̃ (0, t) = 0, (90)

ρ̃x (1, t) = −p0ρ̃ (1, t)− pc,0ι̃ (1, t) , (91)

ι̃x (1, t) = pc,0ρ̃ (1, t)− p0ι̃ (1, t) . (92)

As in the previous section we now seek a transformation

ρ̃ (x, t) = σ̃ (x, t)−
1Z
x

[p (x, y) σ̃ (y, t) + pc (x, y) κ̃ (y, t)] dy, (93)

ι̃ (x, t) = κ̃ (x, t)−
1Z
x

[−pc (x, y) σ̃ (y, t) + p (x, y) κ̃ (y, t)] dy, (94)

that transforms system (87)—(92) into the exponentially stable system

σ̃t = aRσ̃xx + fR (x) σ̃ − aI κ̃xx − fI (x) κ̃, (95)

κ̃t = aI σ̃xx + fI (x) σ̃ + aRκ̃xx + fR (x) κ̃, (96)

for x ∈ (0, 1), with boundary conditions

σ̃ (0, t) = 0, κ̃ (0, t) = 0, (97)

σ̃x (1, t) = 0, κ̃x (1, t) = 0. (98)

When the transformation is found, the observer gains are given by

p1 (x) = −aRpy (x, 1)− aIpc,y (x, 1) , (99)

pc,1 (x) = aIpy (x, 1)− aRpc,y (x, 1) , (100)

p0 = −p (1, 1) , pc,0 = −pc (1, 1) . (101)
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Subtracting (87)—(92) from (95)—(98), and using (93)—(94), we obtain

pxx = pyy − β̄ (x, y) p− β̄c (x, y) pc, (102)

pc,xx = pc,yy + β̄c (x, y) p− β̄ (x, y) pc, (103)

with boundary conditions

p (x, x) = −1
2

xZ
0

β̄ (γ, γ) dγ, (104)

pc (x, x) =
1

2

xZ
0

β̄c (γ, γ) dγ, (105)

p (0, y) = pc (0, y) = 0, (106)

where

β̄ (x, y) = [aR (bR (x)− fR (y)) + aI (bI (x)− fI (y))] /
¡
a2R + a2I

¢
, (107)

β̄c (x, y) = [aR (bI (x)− fI (y))− aI (bR (x)− fR (y))] /
¡
a2R + a2I

¢
. (108)

Setting

x̆ = y, y̆ = x, (109)

p̆ (x̆, y̆) = p (x, y) , (110)

p̆c (x̆, y̆) = pc (x, y) , (111)

we get

p̆x̆x̆ = p̆y̆y̆ + β̄ (y̆, x̆) p̆+ β̄c (y̆, x̆) p̆c, (112)

p̆c,x̆x̆ = p̆c,y̆y̆ − β̄c (y̆, x̆) p̆+ β̄ (y̆, x̆) p̆c (113)

with boundary conditions

p̆ (x̆, x̆) = −1
2

x̆Z
0

β̄ (γ, γ) dγ, (114)

p̆c (x̆, x̆) =
1

2

x̆Z
0

β̄c (γ, γ) dγ, (115)

p̆ (x̆, 0) = p̆c (x̆, 0) = 0. (116)

15



Finally, noticing that β̄ (y̆, x̆) = β (x̆, y̆) and β̄c (y̆, x̆) = βc (x̆, y̆) , we obtain

p̆x̆x̆ = p̆y̆y̆ + β (x̆, y̆) p̆+ βc (x̆, y̆) p̆c, (117)

p̆c,x̆x̆ = p̆c,y̆y̆ − βc (x̆, y̆) p̆+ β (x̆, y̆) p̆c, (118)

with boundary conditions

p̆ (x̆, x̆) = −1
2

x̆Z
0

β (γ, γ) dγ, (119)

p̆c (x̆, x̆) =
1

2

x̆Z
0

βc (γ, γ) dγ, (120)

p̆ (x̆, 0) = p̆c (x̆, 0) = 0. (121)

From (99)—(100), we have

p̆1 (y̆) = −aRp̆x̆ (1, y̆)− aI p̆c,x̆ (1, y̆) , (122)

p̆c,1 (y̆) = aI p̆x̆ (1, y̆)− aRp̆c,x̆ (1, y̆) . (123)

Since equation (117)—(121) is identical with equation (24)—(29), it follows that the observer

gains can be obtained from the feedback gains as

p1 (x) = −aRkx (1, x)− aIkc,x (1, x) , (124)

pc,1 (x) = aIkx (1, x)− aRkc,x (1, x) , (125)

and we get the following result.

Theorem 4 Suppose that fR and fI satisfy (41), and that k, kc is a solution of (24)—(29).

Then for any intial data (ρ̃0, ι̃0) ∈ H1 (0, 1) , the system (87)—(92) with output injection gains

given by (124)—(125) and (101) has a unique classical solution (ρ̃, ι̃) ∈ C2,1 ((0, 1)× (0,∞))

and is exponentially stable at the origin in the L2 (0, 1) and H1 (0, 1) norms.

We now formulate the solution to the ouput-feedback problem in the collocated case.
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Theorem 5 Suppose that fR and fI satisfy (41), and let k, kc be the solution of (24)—(29).

Then for any intial data (ρ0, ι0) , (ρ̂0, ι̂0) ∈ H1 (0, 1), the system (8)—(10) with the controller

ρx (1, t) =

Z 1

0

[kx (1, y) ρ̂ (y, t) + kc,x (1, y) ι̂ (y, t)] dy + k (1, 1) ρ (1, t) + kc (1, 1) ι (1, t) ,(126)

ιx (1, t) =

Z 1

0

[−kc,x (1, y) ρ̂ (y, t) + kx (1, y) ι̂ (y, t)] dy − kc (1, 1) ρ (1, t) + k (1, 1) ι (1, t) ,(127)

and the observer

ρ̂t = aRρ̂xx + bR (x) ρ̂− aI ι̂xx − bI (x) ι̂

+ p1 (x) (ρ (1, t)− ρ̂ (1, t)) + pc,1 (x) (ι (1, t)− ι̂ (1, t)) , (128)

ι̂t = aI ρ̂xx + bI (x) ρ̂+ aRι̂xx + bR (x) ι̂

− pc,1 (x) (ρ (1, t)− ρ̂ (1, t)) + p1 (x) (ι (1, t)− ι̂ (1, t)) , (129)

ρ̂ (0, t) = 0,

ι̂ (0, t) = 0,

ρ̂x (1, t) = p0 (ρ (1, t)− ρ̂ (1, t)) + pc,0 (ι (1, t)− ι̂ (1, t))

+

Z 1

0

[kx (1, y) ρ̂ (y, t) + kc,x (1, y) ι̂ (y, t)] dy + k (1, 1) ρ (1, t) + kc (1, 1) ι (1, t) ,

ι̂x (1, t) = −pc,0 (ρ (1, t)− ρ̂ (1, t)) + p0 (ι (1, t)− ι̂ (1, t))

+

Z 1

0

[−kc,x (1, y) ρ̂ (y, t) + kx (1, y) ι̂ (y, t)] dy − kc (1, 1) ρ (1, t) + k (1, 1) ι (1, t) ,

have unique classical solutions (ρ, ι) , (ρ̂, ι̂) ∈ C2,1 ((0, 1)× (0,∞)) and are exponentially sta-

ble at the origin in the L2 (0, 1) and H1 (0, 1) norms.

Figure 7: Output injection gains,p1 (x) and pc,1 (x).

Figure 8: Closed-loop observer error.

Figure 9: Closed-loop plant response.

6 Simulations with Nonlinear Model

The observer designs in Sections 4 and 5 are linear designs, ignoring the last term in (1). In

this section, we explore the performance of the observer (in the collocated case) in simulations
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Figure 7: Observer gains.
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Figure 8: Observer error.
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Figure 9: Plant response.

of the full, nonlinear model of vortex shedding. Including the nonlinear term, equation (8)—

(9) becomes

ρt = aRρxx +
¡
bR (x) + cR (x)

¡
ρ2 + ι2

¢¢
ρ− aIιxx −

¡
bI (x) + cI (x)

¡
ρ2 + ι2

¢¢
ι, (130)

ιt = aIρxx +
¡
bI (x) + cI (x)

¡
ρ2 + ι2

¢¢
ρ+ aRιxx +

¡
bR (x) + cR (x)

¡
ρ2 + ι2

¢¢
ι, (131)

where

cR (x) = R (a4) exp

Ã
−R

Ã
1

a1

Z (1−xd)x+xd

xd

a2 (τ) dτ

!!
, (132)

cI (x) = I (a4) exp

Ã
−R

Ã
1

a1

Z (1−xd)x+xd

xd

a2 (τ) dτ

!!
. (133)

Figure 10: Open-loop plant response for the nonlinear system.

Figure 11: Open-loop observer error for linear observer.

Figure 12: Open-loop observer error for nonlinear observer.

Figure 13: Closed-loop plant response for the nonlinear system, using the linear observer.

Figure 14: Closed-loop plant response for the nonlinear system, using the nonlinear

observer consisting of a copy of (130)—(131) with the output injections designed for the

linear case.
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Figure 10: Open loop simulation of nonlinear system.
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Figure 11: Observer error for linear observer.
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Figure 12: Observer error for nonlinear observer.
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Figure 13: Closed-loop plant response for linear observer.
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Figure 14: Closed-loop plant response for nonlinear observer.

7 Explicit Construction

Whereas the previous sections dealt with output feedback stabilization of the model of vortex

shedding (2)—(4), we depart from that application in this section, and construct explicit for-

mulas for the state feedback kernels in the special case of constant coefficients. We therefore

assume that bR (x) and bI (x) in (8)—(9) are constants, which we denote bR and bI , respec-

tively, and select the target system (17)—(18) by setting fR = −c, for some non-negative

constant c, and

fI = bI −
aI
aR
(bR + c) . (134)

The stability criterion (41) is clearly satisfied. Furthermore, we have from (30)—(31) and

(38) that

b =
1

aR
(bR + c) , (135)

bc = 0. (136)

Formulas (34)—(37) become

G0 (ξ, η) = − b
4
(ξ − η) , (137)

Gc,0 (ξ, η) = 0, (138)
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Gn+1 (ξ, η) =
b

4

Z ξ

η

Z η

0

Gn (τ , s) dsdτ, (139)

Gc,n+1 (ξ, η) =
b

4

Z ξ

η

Z η

0

Gc,n (τ , s) dsdτ. (140)

It is clear from (138) and (140), that

Gc,n (ξ, η) ≡ 0, n = 0, 1, 2, ... (141)

so it follows that

kc (x, y) ≡ 0. (142)

The problem of finding G is now identical to the problem solved in [4, Section 6] where it

was found that

k (x, y) = −by
I1
³p

b (x2 − y2)
´

p
b (x2 − y2)

, (143)

where I1 is the modified Bessel function of the first kind and of order one. In view of these

calculations and Theorem 5, we obtain the following result.

Theorem 6 Let c ≥ 0. Then for any intial data (ρ0, ι0) , (ρ̂0, ι̂0) ∈ H1 (0, 1), the system

(8)—(10) with the controller

ρx (1, t) =

Z 1

0

k2 (y) ρ̂ (y, t) dy −
1

2aR
(bR + c) ρ (1, t) , (144)

ιx (1, t) =

Z 1

0

k2 (y) ι̂ (y, t) dy −
1

2aR
(bR + c) ι (1, t) , (145)

and the observer

ρ̂t = aRρ̂xx + bRρ̂− aI ι̂xx − bI ι̂− k2 (x) [aR (ρ (1, t)− ρ̂ (1, t))− aI (ι (1, t)− ι̂ (1, t))] , (146)

ι̂t = aI ρ̂xx + bI ρ̂+ aRι̂xx + bRι̂− k2 (x) [aI (ρ (1, t)− ρ̂ (1, t)) + aR (ι (1, t)− ι̂ (1, t))] , (147)

ρ̂ (0, t) = 0, (148)

ι̂ (0, t) = 0, (149)

ρ̂x (1, t) =
1

2aR
(bR + c) (ρ (1, t)− ρ̂ (1, t)) +

Z 1

0

k2 (y) ρ̂ (y, t) dy −
1

2aR
(bR + c) ρ (1, t) ,(150)

ι̂x (1, t) =
1

2aR
(bR + c) (ι (1, t)− ι̂ (1, t)) +

Z 1

0

k2 (y) ι̂ (y, t) dy −
1

2aR
(bR + c) ι (1, t) ,(151)
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Figure 15: Open-loop plant response with aR = 1, aI = 0, bR = 2.5, and bI = 1.5.

where

k2 (x) =
1

aR
(bR + c)x

I2
³q

1
aR
(bR + c) (1− x2)

´
1− x2

, (152)

have unique classical solutions (ρ, ι) , (ρ̂, ι̂) ∈ C2,1 ((0, 1)× (0,∞)) and are exponentially sta-

ble at the origin in the L2 (0, 1) and H1 (0, 1) norms.

In (152), I2 is the modified Bessel function of the first kind, and of order two.

Figure 15: Open-loop plant response for the system with constant coefficients.

Figure 16: Open-loop observer error for explicit observer.

Figure 17: Closed-loop plant response for explicit controller/observer.
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