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Abstract: A specific class of positive systems is considered, where the system
structure allows control of the distribution of “mass” in the system. Some
robustness properties of the controller are pointed out, and the applicability of
the model class is discussed. An example considering a CSTR modeled by mass-
and energy balances illustrates the presented concepts.
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1. INTRODUCTION

When modeling systems for control based on first
principles, one often obtains nonlinear ordinary
differential equations where the state variables
(mass, pressure, level, energy, etc.) are positive.
In addition, the control input will also often be
positive (valve openings, amount of inflow, heat
input, etc.). Hence, the class of positive systems
(systems with nonnegative states and inputs) is a
natural class of systems to consider in a control
setting.

In this paper, we will consider a class of posi-
tive systems with strong structural constraints.
Some of these constraints are natural from the
perspective that the dynamics consist of “mass”
flow between the different states, and other con-
straints are made to ensure controllability under
constraints. We will argue that a diverse range of
systems can be described by models in this class.

This is further funded by the fact that the inter-
section between the model class considered herein
and the widely studied class of compartmental
systems (Jacquez and Simon, 1993) is non-void.
The interpretation of states as“masses” of com-
partments holds for both classes of systems, and
similar assumptions (slightly stronger in the case
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of compartmental systems) concerning the flow of
“mass” between the compartments are made. On
the other hand, the controllability assumptions
made herein, do not have their counterpart in the
class of compartmental systems.

However, these controllability assumptions make
it possible to specify a controller that controls
the distribution of mass for the system class
considered herein. The controller is related to
the controllers in Bastin and Praly (1999) and
De Leenheer and Aeyels (2002), but with distinct
differences related to model class and controller
specification.

The paper is outlined as follows: In Section 2
the class of systems we look at are specified,
while the controller and the convergence result
is recapitulated in Section 3. Some robustness
properties are pointed out. The applicability of
the model class is discussed in Section 4. The
example in Section 5 illustrates the use of the
controller for a system described by both mass
and energy balances.

2. MODEL CLASS

We consider positive systems

ẋ = f(x, u), (1a)



that is, the state is positive (x ∈ R
n
+), and the

input is positive and upper bounded, u ∈ U :=
{u ∈ R

m
+ | 0 ≤ uj ≤ ūj}. Each state can be

interpreted as the “mass” (amount of material, or
some measure of amount) in a “compartment”.
The controller we will propose exploits system
structure, thus we assume the model equations to
be on the following form:

f(x, u) = Φ(x) + Ψ(x) +B(x)u. (1b)

Loosely speaking, Φ(x) represents “interconnec-
tion structure” between compartments, Ψ(x) rep-
resents uncontrolled external inflows to and out-
flows from compartments and B(x)u represents
controlled external inflows to and outflows from
compartments.

Furthermore, we will assume that the state can
be divided into m different parts, which will be
denoted phases. Phase j will consist of rj states,
and have the control uj associated with it, cor-
responding to either controlled inflow or out-
flow to compartments of that phase. The states
in phase j will be denoted zj , such that x =
[(z1)>, (z2)>, . . . , (zm)>]>, and it follows that
necessarily,

∑m
j=1 rj = n. Corresponding to this

structure, the vector functions Φ(x), Ψ(x) and the
matrix function B(x) are on the form

Φ(x) =
[

φ1(x)>, φ2(x)>, . . . , φm(x)>
]>

Ψ(x) =
[

ψ1(x)>, ψ2(x)>, . . . , ψm(x)>
]>

B(x) = blockdiag
(

b1(x), b2(x), . . . , bm(x)
)

.

Note that element j is (in general) a function of
x, not (only) zj . Also note that the partitioning
into phases need not be unique.

We will state the assumptions on these functions
on the set D ⊆ R

n
+. In the case of global results,

D = R
n
+.

A1. (Interconnection structure) The function

Φ : D → R
n is locally Lipschitz, φji (x) ≥ 0

for zji = 0, and

rj
∑

i=1

φ
j
i (x) = 0, j = 1, . . . ,m.

A2. (Controlled external flows) The block
diagonal matrix function B(x) : D → R

n×m

is locally Lipschitz and satisfies:
a. Phase j has controlled inflow:

b
j
i (x) ≥ 0 for all x ∈ D

b
j
i (x) > 0 for all x ∈ D for at least one i

b. Phase j has controlled outflow:

b
j
i (x) ≤ 0 for all x ∈ D

z
j
i = 0 ⇒ b

j
i (x) = 0

b
j
i (x) < 0 for all x ∈ D with zji 6= 0

The uncontrolled external flows must satisfy some
“controllability”assumption in relation to the con-
trolled flows. Before we define this, it is convenient

to define the “mass” of each phase, being the sum
of the compartment masses of that phase:

Mj(x) :=

rj
∑

i=1

z
j
i .

Our control objective will be to control Mj(x)
to some prespecified desired mass of phase j,
denoted M∗

j , from initial conditions in D. For the
control problem to be meaningful, the intersection
of the set where Mj(x) = M∗

j and D should be
nonempty.

A3. (Uncontrolled external flows) For given

M∗ = [M∗
1 ,M

∗
2 , . . . ,M

∗
m]

>
, Ψ(x) : D → R

n

is locally Lipschitz and satisfies that ψji (x) ≥

0 for zji = 0, and in addition, if:
a. Phase j has controlled inflow:
1. For x ∈ {x ∈ D | Mj(x) > M∗

j },
∑rj

i=1 ψ
j
i (x) ≤ 0 and the set {x ∈

D |
∑rj

i=1 ψ
j
i (x) = 0 and Mj(x) > M∗

j }
does not contain an invariant set.

2. For x ∈ {x ∈ D | Mj(x) < M∗
j },

−
∑rj

i=1 ψ
j
i (x) <

∑rj

i=1 b
j
i (x)ūj .

b. Phase j has controlled outflow:
1. For x ∈ {x ∈ D | Mj(x) < M∗

j },
∑rj

i=1 ψ
j
i (x) ≥ 0 and the set {x ∈

D |
∑rj

i=1 ψ
j
i (x) = 0 and Mj(x) < M∗

j }
does not contain an invariant set.

2. For x ∈ {x ∈ D | Mj(x) > M∗

j },
∑rj

i=1 ψ
j
i (x) < −

∑rj

i=1 b
j
i (x)ūj .

It is straightforward to confirm that under the
above assumptions, xi = 0 implies ẋi ≥ 0, that
is, the system is positive.

3. STABILIZING STATE FEEDBACK
CONTROLLER

In this section, the state feedback controller is
defined, and a general convergence result is given
for a general invariant set D that (is a subset of
the set that) A1-A3 hold on. The set D could then
be considered a region of attraction.

3.1 The controller and a convergence result

As mentioned in the previous section, our control
objective is to control the total mass Mj(x) of
each phase to a prespecified value M∗

j .

To this end, the following constrained, positive
state feedback control law is proposed:

uj(x) =







0 if ũj(x) < 0

ũj(x) if 0 ≤ ũj(x) ≤ ūj

ūj if ũj(x) > ūj

(2)

where

ũj(x)=
1

∑rj

i=1 b
j
i (x)

(

−

rj
∑

i=1

ψ
j
i (x)+λj(M

∗

j −Mj(x))

)

(3)



and λj is a positive constant. Apparently, we
can run into situations where the control is not
defined if phase j is outflow controlled, since the
term

∑rj

i=1 b
j
i (x) then might be zero. However, the

continuity of the involved functions and the upper
bound on the control ensures that the control in
these cases unambiguously are defined by uj(x) =
ūj .

Define the set

Ω={x ∈ R
n
+ |M1(x)=M

∗

1 , . . . ,Mm(x)=M∗

m}.

Assumption 1. There exists a set D that is invari-
ant for the dynamics (1) under the closed loop
with control (2), and has a nonempty intersection
with Ω.

Assumption 2. For x ∈ Ω ∩D, 0 < ũj(x) < ūj .

Under the given assumptions, the convergence
properties of the controller are summarized in the
following Theorem, proved in Imsland (2002), see
also Imsland and Foss (2002):

Theorem 1. Under the given assumptions, the
state of the system (1), controlled with (2) and
starting from some initial condition x(0) ∈ D,
stays bounded and converges to the set Ω ∩ D
which is positively invariant.

To use this theorem, we need to find invariant sets
D. In some cases, the assumptions hold globally
and we can use D = R

n
+. In other cases, it is

possible to choose sets of the shape D = D1 or
D = D2, where

D1 :={x∈R
n
+| − cj≤Mj(x)−M

∗

j ≤cj , j=1, . . . ,m}

and

D2 := {x ∈ R
n
+ | zij ≤ zij ≤ zij , i = 1, . . . , rj and

M∗

j − cj ≤Mj(x) ≤M∗

j + cj , j = 1, . . . ,m}.

For further details and examples, we refer to Im-
sland (2002).

Note that the convergence result is convergence
to the subset Ω, which often (somewhat inaccu-
rate) is referred to as set stability. This does not
imply convergence to an equilibrium. However, as
pointed out in Imsland (2002) (see also De Leen-
heer and Aeyels (2002) and Chabour and Kalitine
(2002) for similar issues), if the closed loop system
has an equilibrium that is asymptotically stable
with respect to Ω, this equilibrium will have D as
an (estimate of) region of attraction.

3.2 Discussion of controller

The controller (2) can be seen as a generalization
of the controller in Bastin and Praly (1999). The
novelty is threefold:

a) The concept of phases allows to consider sys-
tems with multiple inputs. Furthermore, in

Bastin and Praly (1999) the function Ψ(x) =
−Ax (A diagonal with nonnegative, at least
one positive, diagonal elements) and B(x) = b
(a constant nonnegative vector with at least
one positive element). Condition A3 (which in
this case amounts to A3.a.1) is replaced by
the system being zero state detectable through
the output [1 1 . . . 1]Ax, which has the same
effect as A3.a.1. The results of Bastin and
Praly (1999) are recently expanded in the di-
rection of single-input compartmental systems
in Bastin and Provost (2002).

b) Systems with controlled outflow can be con-
sidered.

c) Sufficient conditions are given to allow upper
constraints on the input.

3.3 Robustness

The proposed feedback scheme is independent of
the interconnection structure and hence robust 2

to model uncertainties in Φ(x) (as long as As-
sumption A1 holds). This is the most important
robustness property. As mentioned in Bastin and
Praly (1999), the interconnection terms are in
practical examples often the terms that are hard-
est to model.

Assume in the rest of this section that the input
saturations are not met, that is, uj(x) = ũj(x).
This will always hold in a neighborhood of Ω.
In this case, we can also show some robustness
properties with respect to bounded uncertainties
in Ψ(x) and B(x).

First note that in the nominal unconstrained case,
the feedback (3) linearizes the dynamics of the
mass of phase j,

Ṁj(x) = λj
(

M∗

j −Mj(x)
)

. (4)

We assume further that the modeling errors in
Ψ(x) and B(x) are bounded. Mark the “real”
values of the terms involved in the controller (3)
with a tilde, and assume that there exists norm-

bounded ∆ψ
j = ∆ψ

j (x, t) and ∆b
j = ∆b

j(x, t) (the
dependence on x and t is sometimes suppressed for
notational simplicity in the following) such that
the nominal values (used in the controller) are
related to the real values as

rj
∑

i=1

ψ̃ij(x) =

rj
∑

i=1

ψij(x) + ∆ψ
j (x, t),

rj
∑

i=1

b̃ij(x) = (1 + ∆b
j(x, t))

rj
∑

i=1

bij(x).

The real dynamics of phase j can then be written

2 Robust in the sense that convergence to Ω still holds.
Note that changes in Φ(x) will typically move the equilibria
on Ω.



Ṁj(x) =

rj
∑

i=1

ψ̃ij(x) +

rj
∑

i=1

b̃ij(x)uj(x)

= λj(M
∗

j −Mj(x)) + ∆ψ
j

+ ∆b
j

(

−

rj
∑

i=1

ψ
j
i (x) + λj(M

∗

j −Mj(x))

)

The last part is in general not bounded in terms
of x. However, we assume that we can define

δj(t)=∆ψ
j (x(t), t)+∆b

j(x(t), t)
(

−

rj
∑

i=1

ψ
j
i (x(t))

+λj(M
∗

j −Mj(x(t)))
)

such that δj(t) is norm-bounded, δj(t) ≤ δ̄j . This
requires either that ∆b

j(x(t), t) ≡ 0, or that we
know that x(t) is bounded (which is guaranteed
by initial conditions in a bounded, invariant set).

The mass dynamics can under the above assump-
tions be written

Ṁj(x(t)) = −λj(Mj(x(t)) −M∗

j ) + δj(t). (5)

Since this is linear, it is easy to solve this to find

Mj(x(t))=M
∗

j +e−λj(t−t0)(Mj(x(t0))−M
∗

j )

+

∫ t

t0

e−λj(t−τ)δj(τ)dτ

where the last element is bounded,

|

∫ t

t0

e−λj(t−τ)δj(τ)dτ | ≤
1 − e−λj(t−t0)

λj
δ̄j ≤

δ̄j

λj
.

We see thatMj(x(t)) converges to the set {Mj | |Mj−

M∗

j | ≤
δ̄j

λj
} which can be made arbitrarily close to

M∗

j by choosing λj large. Of course, in choosing
λj large, the system might become more vulner-
able to the influence of measurement noise and
unmodeled dynamics.

The above analysis is only valid as long as the
input is not saturated. What happens when the
input is saturated can be (conservatively) ana-
lyzed by examining if the “Lyapunov function” of
Theorem 1 is still decreasing under the allowed
perturbations. This can be done by checking if
assumptions similar to Assumption A3 hold for
the perturbed flows.

4. APPLICABILITY OF THE MODEL CLASS

The system class (1) and accompanying control
design method has wide applicability. Referring
to Imsland (2002) the class has been applied to
a number of different examples. We will briefly
summarize these results in the following.

• A system comprised of three tanks in series
(three states) was investigated using either the
inflow to the first tank, the outflow from the
third tank, or both as control input(s). In the
one control input cases the total mass in the

three tanks was controlled. In the two control
input case the masses in tank one, and tank two
and three; or the masses in tank one and two,
and tank three were controlled. Convergence
from non-local regions (in one case globally) to
a stable equilibrium was shown in all cases.

A compartmental description of the three
tanks would typically consist of three compart-
ments, each linked to one tank. The difference to
the phase notion is apparent. In the one control
input cases, the total mass is controlled meaning
that the single phase consists of the masses of
the three tanks. In the two control input case
the masses in one tank and the two other tanks,
respectively, define the phases.

The“interconnection structure”Φ(x) includes
the internal flows between the tanks in the one
control input case while it includes the internal
flow between the two tanks within one phase
in the two control input case. The uncontrolled
external flows Ψ(x) include the flow between the
two phases, i.e. between the two first tanks or
the two last tanks, in the two control input case.
In the one control input case Ψ(x) consists of the
inflow to the first tank when the control input
is defined by the outflow from the third tank,
or vice versa. The robustness with respect to
modeling errors in Φ(x) and Ψ(x) is obviously
important since these terms will contain errors.

• An 2-dimensional food-chain (prey-predator)
system (Ortega et al., 1999) with one control
input corresponding to the creation of prey has
been examined applying the controller (2). The
(one) phase was defined by the total mass, of
prey and predator, in the system. Global con-
vergence to an asymptotically stable equilibrium
was shown. The system can be generalized to an
n-dimensional food-chain (prey-predators) sys-
tem again using the total mass, of prey and
predators, in the system as the controlled vari-
able. The controller guarantees convergence to
Ω, and simulations show convergence to the
single desired equilibrium on Ω, but Lyapunov-
based analysis of the dynamics of Ω did, how-
ever, not succeed in this case.

• Gas-lifted wells are important as a means to
produce oil and gas from hydrocarbon reservoirs
with low reservoir pressure (Golan and Whitson,
1991). The well system consist of two volumes:
volume 1 holding gas, and volume 2 holding oil
and gas. The system is divided into two phases,
the mass of gas in the two volumes and the
mass of oil in volume 2. The two control inputs
are the gas inflow to volume 1, and the gas
and oil outflow from volume 2. Analysis on a
3-dimensional model showed local convergence
to an asymptotically stable equilibrium on Ω.
Further, simulations using the controller on an
industry-standard simulator (Bendiksen et al.,
1991), gave nice results.

• It should be noted that convergence to Ω does
not necessarily imply convergence to an equi-
librium. This was shown on a synthetic 3-
dimensional system where the analysis indicated



and simulations showed convergence to a peri-
odic orbit in Ω.

The theory has also been applied to a standard
test case in process control, the Van der Vusse
reactor. Details on this are given in the next
section.

5. EXAMPLE: VAN DER VUSSE REACTOR

We consider the van der Vusse reaction kinetic
scheme

A → B → C

2A→ D

taking place in a CSTR. Application of the con-
troller on this reactor based on a mass balance
model was demonstrated in Imsland (2002). Here,
we will use a model consisting of both mass and
energy balance (the two phases) taken from Chen
et al. (1995), and control heat removal, and inflow
rate of substance A.

The first phase consist of a mass balance of sub-
stance A and B, on a concentration (cA and cB)
basis. The second phase consists of an energy
balance that describes the cooling that is caused
by the cooling jacket. The states are the tem-
peratures in the reactor, T and in the cooling
jacket, TK . Energy is removed from the cooling
jacket by means of a heat exchanger. The rate of
energy removal is the second input to the system.
The mass and energy balance constitutes the two
phases according to the setup in Section 2, the first
phase being inflow controlled, the second outflow
controlled. The model taken from Chen et al.
(1995) is

ċA=−k1(T )cA−k3(T )c2A+u1(cAf−cA) (6a)

ċB=k1(T )cA−k2(T )cB−u1cB (6b)

Ṫ =u1(T0−T )−
∆ER(x)

ρCp
+
kwAR

ρCpVR
(TK−T ) (6c)

ṪK=
1

mKCPK
(−u2+kwAR(T−TK)), (6d)

where

∆ER(x) = k1(T )cA∆HRAB

+ k2(T )cB∆HRBC
+ k3(T )c2A∆HRAD

(6e)

and the reaction kinetics are given from the Ar-
rhenius law

ki(T ) = ki0e
Ei/T , i = 1, 2, 3. (6f)

Nominal values of the physical and chemical pa-
rameters in the model (6) can be found in Chen
et al. (1995).

Since the reactor and the cooling jacket have
different heat capacities, the transfer of energy
between them leads to asymmetric temperature
changes. This means that the energy transfer does
not fulfill the interconnection assumption A1. This
is remedied by taking the energies ρCpVRT and
mKCPKTK as states, in stead of the tempera-
tures.

The control problem (from Chen et al. (1995))
is to stabilize the system at the working point
cA = 2.14moll , cB = 1.09moll , T = 387.2K and
TK = 386.1K.

The input is then defined in terms of (2) and

ũ1 =
1

cAf − cA − cB
(k3(T )c2A

+ k2(T )cB + λ1(M
∗

1 −M1(x)))

ũ2 = u1(T0 − T )ρCpVR
− VR∆ER(x) − λ2(M

∗

2 −M2(x))),

with saturations at ū1 = 35 1
h and ū2 = 9000kJh .

The phase masses are M1(x) = cA + cB and
M2(x) = ρCpVRT +mKCPKTK .

The “controllability Assumption” A3 for the first
phase holds (at least) for 0 ≤ cA + cB ≤ 7, for
a reasonable temperature range. For the second
phase, A3 3 holds only for a rather small operating
range around the desired equilibrium. The reason
for this is related to the exothermic nature of the
reaction - for some initial conditions close to the
desired equilibrium, the energy produced by the
reaction is larger than the cooling jacket capacity,
such that the total energy is increasing. A remedy
for getting a larger guaranteed region of attraction
could be to choose another equilibrium, with lower
temperatures. This could also be seen as choosing
an operating point with better controllability.
However, simulations indicate that the controller
still works well even outside the region where the
controllability assumptions for the second phase
holds, since the system dynamics take the states
into a region where the assumption holds. This
illustrates the sufficient nature of A3.
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Fig. 1. Simulation of Van der Vusse reactor show-
ing the states, from initial condition cA = 3.0,
cB = .70, T = 400 and TK = 390. Nominal
parameter set is shown with whole lines, set
1 is dashed, set 2 is dash-dotted.

The simulations in Figures 1-3 show that the
controller is robust to the two “extreme” cases
of parameter uncertainty taken from Chen et al.

3 Note that the input u1 in (6c) is taken as a function of
state while checking A3 for phase 2.
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Fig. 2. Simulation of Van der Vusse reactor show-
ing the masses of the phases. Nominal pa-
rameter set is shown with whole lines, set 1
is dashed, set 2 is dash-dotted.
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Fig. 3. Simulation of Van der Vusse reactor show-
ing the inputs. Nominal parameter set is
shown with whole lines, set 1 is dashed, set 2
is dash-dotted.

(1995) in the sense that stability and convergence
to close to Ω is preserved. However the desired
equilibrium is only approximately preserved. Note
that for parameter set 2, the second input reaches
its upper saturation at convergence, such that the
theory does not really cover this case. Physically,
the saturation says that heat removal is not nec-
essary at this working point, for these parameters.
Also the controller in Chen et al. (1995) saturates
at the equilibrium for this parameter set.

Since the “mass” of phase 2 is increasing initially
(Figure 3), the controllability assumptions A3
are not fulfilled for these initial conditions. The
controller still works well, as discussed above.

6. DISCUSSION AND CONCLUDING
REMARKS

The system class is potentially advantageous to
systems with positive state variables. Positive
state variables are common in dynamic model

based on first principles. The advantage is pro-
nounced for systems with an internal structure
that is susceptible to the presented system class
and that are hard to model accurately. We have
presented several quite different examples of such
systems.

An obvious limitation of the this paper is the
requirement of state feedback control. The natural
approach to the output feedback problem is in
this case to use observers to estimate the state.
Design of observers that can exploit positivity
and system structure in a similar manner as the
feedback design, is an interesting area for further
research.

To conclude we have presented a system class for
positive systems, an accompanying state feedback
controller with robust stability guarantees, and
argued that the theory has potentially wide ap-
plicability.
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