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Abstract. A controller for a class of multiple input systems is proposed, with a
subset of nonlinear positive systems as a special case. The controller is shown to
obtain set stability of a certain subset of the state space. A simple example illustrates
the theory.

1 Introduction

The class of nonlinear systems is very diverse, and encompasses many types
of applications and behaviors. It seems apparent that for control purposes,
one should focus on specific nonlinear system classes to exploit the structure
of these, rather than make an all-encompassing theory for nonlinear systems.

One class of nonlinear systems that has strong structural constraints that
can be exploited, is the class of positive systems. The typical class of nonlinear
positive systems seems to be systems based on material balances, for exam-
ple compartmental systems (Jacquez and Simon, 1993) and systems based on
mass balances (Bastin, 1999). These system classes enjoy in addition to posi-
tivity structural constraints related to the flow of “mass” between the states.
Similar structural constraints are assumed on the system class in Imsland and
Foss (2002), Imsland (2002).

In this paper, the situation compared to Imsland and Foss (2002) is gener-
alized. As an outset, we consider a (non-positive) system which have a set of
positive inventories (which can be interpreted as mass, energy, entropy, ...).
This allows more general processes than mass balance systems. Furthermore,
the structural constraints are related to a general nonlinear function (rather
than the sum) of the states, and the controller aims at a constant value of
this nonlinear function. Hence, the “total mass”-approach used in Imsland
and Foss (2002) becomes a special case of the approach used herein. Similarly
to Imsland and Foss (2002) we allow multiple-input systems by dividing the
states into what we call phases.
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The considered system class is presented in Section 2, while we in Section 3
first recapitulates the necessary Lyapunov theorems before we give the main
result (Theorem 3). After a brief discussion in Section 4, we present a simple
example to illustrate the results.

The notation is fairly standard. |z|A denotes the distance from z to the
set A, defined by |z|A := inf z̃∈A ‖z − z̃‖ where ‖ · ‖ is the Euclidean norm.
Furthermore, R+ = [0,∞).

2 System class

Consider the input affine state-space system

ẋ = f(x) + g(x)u, (1)

where x ∈ R
n and u ∈ R

m
+ . The inputs are positive and governs in some sense

the inflow of the process system.
For this system, there exists of a positive vector function of “invento-

ries” (Farsham, Viswanath and Ydstie, 1998) ν(x)= (ν1(x), . . . , νp(x))⊂R
p
+,

which behave according to

ν̇ =
∂ν

∂x
f(x) +

∂ν

∂x
g(x)u := F (x) +G(x)u. (2)

At this point, note that the positive system ν̇ = F (ν) + G(ν)u is a special
case.

We will assume that the inventories are divided into m different groups
(one for each input), which for convenience will be denoted phases. Phase
j will consist of rj inventories (with

∑m

j=1 rj = p), and have the control uj

associated with it (controlling the inflow to that phase). The inventories in
phase j will be denoted νj , such that ν=

(

ν1, . . . , νm
)

. Note that m ≤ p, such
that νj of phase j can consist of several inventories νi. Corresponding to this
structure, we write the vector function F (x) and the matrix function G(x) as

F (x) =
(

F 1(x), . . . , Fm(x)
)

, F j(x) =
(

φ
j
1(x), . . . , φ

j
rj

(x)
)

,

G(x) = blockdiag
(

G1(x), . . . , Gm(x)
)

, Gj(x) =
(

γ
j
1(x), . . . , γ

j
rj

(x)
)

.

For each phase, we will choose a positive scalar function Hj(ν
j) such that

the control objective is that the inventories of phase j should converge to the
“level set” Ωj , given by Ωj := {z ∈ R

rj | Hj(z) = Cj}. The inventories can
typically be interpreted as mass, or energy, and the functions Hj(ν

j) as total
mass or energy (of a “subprocess”). In some sense, the functions Hj(ν

j) are
also inventories, but we distinguish these since the control objective is related
to them.

Define the scalar function Vj(z) := 1
2 (Hj(z) − Cj)

2, on which we impose
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Assumption 1 The sets Ωj are compact, and there exist constants cj < cj

such that for all z ∈ R
rj ,

cj |z|Ωj
≤ Vj(z) ≤ cj |z|Ωj

. (3)

Remark 1. The above assumption holds (see Imsland (2002)) for example if
we for a positive system (with states ν) choose the “total mass” Hj(ν

j) =
∑rj

i=1 ν
j
i , which is used e.g. in Bastin and Praly (1999) and Imsland and Foss

(2002). The positivity of the system (νj ∈ R
rj

+ ) ensures in this case that Ωj

is compact, which is essential.

The system assumptions are made with respect to the set D ⊆ R
n:

Assumption 2 The function F (x) : D → R
n is locally Lipschitz and

for x ∈ {x ∈ D | Hj(ν
j(x)) > Cj},

∑rj

i=1
∂Hj(ν

j)

∂ν
j

i

φ
j
i (x) ≤ 0 and the set

{x ∈ D |
∑rj

i=1
∂Hj (νj)

∂ν
j

i

φ
j
i (x) = 0 and Hj(ν

j) > Cj} does not contain an in-

variant set.

This assumption means that F (x) consists of interconnection terms (terms
that have zero net contribution to Hj(ν

j), that is, “flow” between different
inventories in a phase), and the rest of the terms are dominantly outflow (at
least for large Hj(ν

j)).

Assumption 3 The block diagonal matrix function G(x) : D → R
n×m is

locally Lipschitz and
∑rj

i=1
∂Hj

∂ν
j

i

γ
j
i (x) > 0 for all x ∈ D.

Note that further assumptions are needed to ensure that the inventories re-
main positive, but these are implicitly required to hold.

3 State feedback set stabilization

A Lyapunov condition for asymptotic stability of a compact set A is:

Theorem 1. The compact set A is asymptotically stable (in the sense of Lya-
punov) for ẋ = f(x) if there on an open set O containing A exists a C1

function V and positive constants κ1 and κ2 such that

κ1|x|A ≤ V (x) ≤ κ2|x|A (4)

∂V

∂x
f(x) < 0 for |x|A 6= 0 (5)

on the set O.

See e.g. Rouche, Habets and Laloy (1977) for a treatment of set stability. The
above condition is not the most general, but sufficient for our purpose.

In some cases, it is hard to find a Lyapunov function where the derivative is
negative definite. If it is semidefinite, a straightforward adoption of LaSalle’s
invariance principle (similar to the Barabashin-Krasovskii Theorem) can be
used:
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Theorem 2. If the conditions of Theorem 1 hold on the compact set D (con-
taining A) except that (5) is replaced with

∂V

∂x
f(x) ≤ 0 (6)

on D, and the largest invariant set contained in the set where ∂V
∂x
f(x) = 0 is

contained in A, then the set A is asymptotically stable for ẋ = f(x).

Recalling that asymptotic stability is equivalent to stability and conver-
gence (Rouche et al., 1977), this result is obtained by noting that the semi-
definiteness of the derivative of the Lyapunov function implies (set) stability,
while convergence follows from LaSalle’s invariance principle (LaSalle, 1960).

The controller we suggest for the given system class, is

uj(x)=max{0,

[

rj
∑

i=1

∂Hj

∂ν
j
i

γ
j
i (x)

]−1(

−

rj
∑

i=1

∂Hj

∂ν
j
i

φ
j
i (x)−λj(Hj(ν

j)−Cj)

)

} (7)

where the λjs are positive constants. Defining Ω :=
⋃m

j=1 Ωj , we make the
following assumption:

Assumption 4 There exists a (not necessarily compact) set D that is i) in-
variant for the dynamics (1) in closed loop with control (7), ii) has a nonempty
intersection with Ω, and iii) for x ∈ Ω ∩D, uj(x) > 0.

The stability properties can be summarized as follows:

Theorem 3. Under Assumptions 1-4, the set Ω ∩D is asymptotically stable
for the closed loop system controlled with (7). Moreover, convergence to Ω∩D
and boundedness of trajectories holds for initial conditions x(0) ∈ D.

Proof. The set D is by Assumption 4 invariant, hence Assumptions 2 and 3
hold along closed loop trajectories. By Assumption 3, the control (7) is well
defined on D.

Define the positive semidefinite function V (x) :=
∑m

j=1 Vj(ν
j(x)), with

time derivative along system trajectories

V̇ (x) =

m
∑

j=1

[

Hj(ν
j(x)) − Cj

]

Ḣj(ν
j(x))

=

m
∑

j=1

[

Hj(ν
j(x)) − Cj

]

(

rj
∑

i=1

∂Hj

∂ν
j
i

φi
j(x) +

rj
∑

i=1

∂Hj

∂ν
j
i

γi
j(x)uj(x)

)

.

For Hj(ν
j) 6= Cj , we have one of the following cases:

1. If uj(x) > 0, summand j is

[

Hj(ν
j)−Cj

]

(

rj
∑

i=1

∂Hj

∂ν
j
i

φi
j(x)+

rj
∑

i=1

∂Hj

∂ν
j
i

γi
j(x)uj(x)

)

=−λj

[

Hj(ν
j)−Cj

]2
<0.
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2. If uj(x) = 0, then summand j is
[

Hj(ν
j) − Cj

]
∑rj

i=1
∂Hj

∂ν
j

i

φi
j(x). Thus, if

Hj(ν
j)>Cj , then by Assumption 2

∑rj

i=1
∂Hj

∂ν
j

i

φi
j(x)≤0, and

[

Hj(ν
j) − Cj

]

rj
∑

i=1

∂Hj

∂ν
j
i

ψi
j(x) ≤ 0.

If Hj(ν
j)<Cj , then since uj(x)=0 and

∑rj

i=1
∂Hj

∂ν
j

i

> 0 by Assumption 3,

we see that
∑rj

i=1
∂Hj

∂ν
j

i

φi
j(x)≥−λj

[

Hj(ν
j)−Cj

]

, which gives

[

Hj(ν
j) − Cj

]

rj
∑

i=1

∂Hj

∂ν
j
i

φi
j(x) ≤ −λj

[

Hj(ν
j) − Cj

]2
< 0.

If Hj(ν
j) = Cj , ν

j ∈ Ωj and V̇j ≡ 0 due to Assumption 4 iii).

This holds for all summands (phases), and we conclude that V̇ (x) ≤ 0.
This implies that V (x(t)) ≤ V (x(t0)) along system trajectories. From the
construction of V and Assumption 1, we see that ‖x‖ → ∞ if and only if
V (x) → ∞, hence bounded V (x(t)) implies that ‖x(t)‖ is bounded (stays in
the compact set given by {x | V (x)≤V (x(t0))}).

We conclude by Theorem 2 that Ω ∩D is asymptotically stable, since by
Assumption 1, V fulfills (4) with respect to Ω, and as shown above, V̇ (x) ≤ 0
for x ∈ D. Moreover, from the above and Assumption 2, the only invariant
set where V̇ (x) = 0 is (within) Ω ∩D. ut

Remark 2. For positive systems, the set D can in many cases be taken as the
positive orthant, D = R

n
+. Another option can be “Lyapunov level sets” of

the type

{x ∈ R
n | Cj − β

j
≤ Hj(ν

j(x)) ≤ Cj + βj , j = 1, . . . ,m}.

Similarly to De Leenheer and Aeyels (2002), we can state the following
result on asymptotic stability of equilibria. It can be proved the same way
as in De Leenheer and Aeyels (2002), or seen as a consequence of the theory
of semidefinite Lyapunov functions (Chabour and Kalitine, 2002), hence we
state it without proof:

Theorem 4. Let the conditions of Theorem 3 hold. If the closed loop (1)
with control (7) has a single equilibrium in the interior of Ω ∩ D that is
asymptotically stable with respect to initial conditions in Ω ∩D and attractive
for all initial conditions in Ω ∩D, the equilibrium is asymptotically stable for
the closed loop with a region attraction (of at least) D.



6 Lars Imsland and Bjarne A. Foss

4 Discussion of controller

4.1 Connection with similar control schemes

The trained eye will see that the proposed controller is similar to feedback
linearizing controllers (as, for instance, in Isidori (1995)). However, while feed-
back linearization linearizes the whole state space, (7) linearizes (in the un-
constrained case) only the “phase dynamics” (the dynamics of the functions
Hj(ν

j(x))), while the total dynamics remain nonlinear. Feedback lineariza-
tion requires in general solving a set of PDEs to find the right “full relative
degree” output, while for the approach herein, the functions Hj are given by
assumption. Furthermore, the present approach can preserve stability under
some input constraints, due to the system properties.

The controller (7) is the same as proposed in Bastin and Praly (1999) (see
also Bastin and Provost (2002)). Herein, a larger class of systems is studied, for
instance the concept of phases allow to handle systems with multiple inputs.
This idea is also explored in Imsland and Foss (2002), Imsland (2002) in the
setting of positive systems, but herein the concept of “inventories” allows us
to move beyond positive systems. Moreover, the approach in Imsland and Foss
(2002) is generalized herein in allowing more general functions Hj .

The inventory concept is borrowed from Farsham et al. (1998), where
interesting connections are tied between the first and second law of thermo-
dynamics and system theoretic properties of “process systems”. The control
problem therein is to steer the inventories to their setpoints, and this is done
by assuming it is possible to manipulate the flows corresponding to each in-
ventory. Only convergence of the inventories are considered, the underlying
system behavior is not examined. One major difference to the controller de-
veloped herein, is that we do not assume a one-to-one relationship between
inventories and manipulated flows.

Constraints are considered in Farsham et al. (1998) by augmenting the
controller to a PID type controller with antireset windup. The “original”
controller is in this setting a P-controller, in the same way as the one proposed
herein (interpreting the λjs as gains).

4.2 Outflow controlled systems and upper constraints

In view of Assumption 3 (and the sign of Hj), it can be said that the system
class treated herein is inflow controlled (with respect toHj). However, systems
that in a corresponding sense are outflow controlled (or having a mixture of
inflow or outflow controlled phases), can be treated in a similar way. This is
done in Imsland and Foss (2002) for positive systems with Hj(ν

j) =
∑rj

i=1 ν
j
i .

In addition to more rigid conditions on the “uncontrolled” flows, one must
then in general have an upper saturation on the control to ensure that the
inventories remain positive.
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5 Example

For mass balance systems where Hj(ν
j) is the sum of the phase states

(masses),Hj(ν
j) =

∑rj

i=1 ν
j
i , several examples can be found in Imsland (2002),

for instance the stabilization of a gas lifted oil well (Imsland and Foss, 2002).
Here we will consider an example which is a (slightly modified) system

taken from De Leenheer and Aeyels (2002), which illustrate another type of
Hj for a positive system (states are inventories). The system equations are

ẋ1 = −x1x2 + x2
2 − x1 + u (8)

ẋ2 = −x1x2 + x2
1 + u. (9)

We choose H(x) = 1
2 (x2

2 + x2
2), which gives ∂H

∂x
F (x) = −x2

2 and ∂H
∂x
G(x) =

x1 + x2. The assumptions 2-3 hold on D = R
2
+, hence by Theorem 3 the

control law given by (7) globally (on the positive orthant) stabilizes the set
1
2 (x2

1 + x2
2) = C, for any positive C.

Furthermore, it is rather easy to show that on the set H(x) = C the

system has a single equilibrium at x?
1 =

√
1+16C−1

4 , x?
2 =

√

2C − (x?
1)

2 which
is asymptotically stable with respect to the set H(x) = C. By Theorem 4,
this equilibrium is stable for all initial conditions in R

2
+.

A simulation confirming these results is shown in Figure 1. Note the initial
input saturation.
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Fig. 1. To the left, a phase-plot, to the right u(x) and H(x). The simulation had
initial condition (2, 4), and the parameters C = 1 and λ = 1.

6 Concluding remarks

The concept of set stability is used to demonstrate the stability properties of
a certain positive controller, for a special system class. One important restric-
tion of the system class is the assumptions that ensure that the “Lyapunov
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function” used in the proof of the main result is decreasing when the input
saturates. According to Bastin and Praly (1999), this condition can be seen
as a dissipativity property of the system.
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