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Abstract

State space based nonlinear model predictive control
(NMPC) needs the state for the prediction of the sys-
tem behavior. Unfortunately, for most applications,
not all states are directly measurable. To recover the
unmeasured states, typically a stable state observer
is used. However, this implies that the stability of
the closed-loop should be examined carefully, since no
general nonlinear separation principle exists. Recently
semi-global practical stability results for output feed-
back NMPC using a high-gain observer for state esti-
mation have been established. One drawback of this
result is that (in general) the observer gain must be in-
creased, if the desired set the state should converge to
is made smaller. We show that under slightly stronger
assumptions, not only practical stability, but also con-
vergence of the system states and observer error to the
origin for a sufficiently large but bounded observer gain
can be achieved.

Keywords: nonlinear model predictive control, out-
put feedback, high-gain observers, asymptotic conver-
gence

1 Introduction

Nonlinear model predictive control (NMPC) based on
state space models is inherently a state feedback ap-
proach. Therefore, if not all states can be measured it
is necessary to obtain state information from the out-
put measurements using a state observer. While for
linear systems, the separation principle implies that the
stability of the closed-loop follows from the individual
stability of the controller and the observer, a general
separation principle for nonlinear systems does not ex-
ist. Thus, the stability of the closed-loop must be either
enforced by design or checked afterwards. Checking the
stability of the closed loop afterwards is often not possi-

ble, since it does involve, for example, finding a suitable
Lyapunov function for the closed loop system.

In the area of NMPC several researchers have addressed
the output feedback problem. The approach in [3] de-
rives local uniform asymptotic stability of contractive
NMPC in combination with a “sampled” state estima-
tor. In [10, 11], see also [16], asymptotic stability results
for observer based discrete-time NMPC for “weakly de-
tectable” systems are given. The results allow, in prin-
ciple, to estimate a (local) region of attraction of the
output feedback controller from Lipschitz constants.
However, it is in general not clear which parameters
in the state feedback controller and observer should be
changed to increase the region of attraction, or how
to recover (in the limit) the region of attraction of the
state feedback controller.

In contrast to these approaches, the control strate-
gies derived in [4–6, 14] establish semi-global stabil-
ity results, delivering direct tuning knobs to increase
the resulting region of attraction of the closed-loop.
The approach presented in [14] consist of an optimiza-
tion based moving horizon observer combined with the
so called dual-mode NMPC scheme proposed in [13].
Adding a contraction constraint to the moving hori-
zon observer it is shown that the closed-loop is (semi-
globally) asymptotically stable. However, for the re-
sults to hold, it is assumed that no model-plant mis-
match and no disturbances are present, and a global
optimization problem for the moving horizon observer
must be solved.

In [6] asymptotic stability for instantaneous NMPC us-
ing high-gain observers for state recovery is obtained.
Instantaneous NMPC means that the open-loop opti-
mal control problem appearing in the NMPC controller
must be solved at every time instant, leading to instan-
taneous feedback. Since in general no closed/analytic
solution to an open-loop optimal control problem can
be found, the approach is not applicable in practice.
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For this reason the results have been expanded in [4, 5]
to the general sampled-data NMPC case. In sampled-
data NMPC the open-loop optimal control problem is
only solved at discrete sampling instants and the re-
sulting optimal input signal is applied open-loop in be-
tween. The key result obtained in [4, 5] establishes that
the closed-loop is semi-global practically stable. Semi-
global practical stability in this context means, that for
state initial conditions in any compact set contained in
the region of attraction of the NMPC state feedback
controller and for any size of the target set (containing
the origin), there exists a minimum observer gain and
a maximum sampling time such that the system and
observer states will enter the desired target set in finite
time. However, only practical stability is achieved. If
the desired target set is decreased, the result implies
that it is necessary to increase the observer gain and
thus the observer speed further.

In this paper we build on the practical stability results
derived in [5]. We show that under strengthened as-
sumptions on the system and the observer there exist
a minimum observer gain and a maximum sampling
time, such that the system and observer state actually
asymptotically converges to the origin.

The paper is structured as follows: Section 2 intro-
duces the system class and the observability assump-
tion. In Section 3 we present the NMPC output feed-
back control strategy consisting of a high-gain state
estimator and a NMPC state feedback controller. Sec-
tion 3.3 reviews the semi-global practical stability re-
sults obtained in [5], while the main result, , conditions
for asymptotic convergence of the system and observer
state, is presented in Section 4.

2 System class and observability assumption

We consider nonlinear systems given by

ẋ = f(x, u), y = h(x) (1)

where x∈ X ⊂Rn denotes the system state, u∈U⊂Rm

is the system input, y ∈ Rp is the measured output,
and X , U denote the constrained sets of allowed states
and inputs. The sets X and U are such that U ⊂ Rp

is compact, X ⊆ Rn is connected and (0, 0) ∈ X ×U .
With respect to the functions f : Rn × U → Rn and
h : Rn × U → Rp we assume that they are sufficiently
smooth. Furthermore, the origin is as stationary point,
i.e. f(0, 0) = 0 and h(0) = 0.

We will consider systems that are uniformly completely
observable. Uniform complete observability is defined
in terms of the observability map H, which is given by
successive differentiation of the output y:

Y >=
[
y1, ẏ1, . . . , y

(r1)
1 , y2, . . . , yp, . . . , y

(rp)
p

]
=H(x,U)>

Here Y is the vector of output derivatives, and U in
general contains the input and in addition, a number
of input derivatives. We will, however, restrict us to
systems where H does not depend on the input, nor
the derivatives.

Assumption 1 The system (1) is uniformly com-
pletely observable in the sense that there exists a set of
indices {r1, . . . , rp} such that the mapping Y = H(x)
depends only on x, is smooth with respect to x and its
inverse from Y to x is smooth and onto.

Note that the set of indices {r1, . . . , rp} is not necessar-
ily unique, different mappings H might exist. The as-
sumption that the observability map does not depend
on the input derivatives is strong. The more general
case is treated in [5], resorting to practical stability re-
sults instead of asymptotic stability.

3 NMPC output feedback controller

The NMPC output feedback controller consists of a
high-gain observer for state estimation and an NMPC
state feedback controller. No specific NMPC controller
is specified, rather a set of assumptions is stated that
the NMPC scheme must satisfy. In principle these
assumptions can be satisfied by a series of NMPC
schemes, such as quasi-infinite horizon NMPC [2], zero
terminal constraint NMPC [12] and NMPC schemes
utilizing control Lyapunov functions to obtain stabil-
ity [8, 15].

3.1 NMPC State Feedback
In the framework of predictive control, the input is
defined by the solution of an open-loop optimal con-
trol problem that is solved at sampling instants. Be-
tween the sampling instants the optimal input is ap-
plied open-loop. For simplicity we denote the sampling
instants by ti, with ti−ti−1 = δ, δ being the sampling
time. For a given time t, ti should be taken as the
nearest previous sampling instant ti < t. The open-
loop optimal control problem solved at any ti is given
by:

min
ū(·)

J(ū(·);x(ti)) (2a)

subject to: ˙̄x=f(x̄, ū), x̄(τ =0)=x(ti) (2b)
ū(τ)∈U , x̄(τ)∈X τ ∈ [0, Tp] (2c)
x̄(Tp)∈E . (2d)

The cost functional J is defined over the control horizon
Tp by the stage cost F and the terminal penalty E.

J(ū(·);x(ti)) :=
∫ Tp

0

F (x̄(τ), ū(τ))dτ + E(x̄(Tp)).
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We assume that the NMPC scheme fits into the given
frame and satisfies the following assumptions.

Assumption 2 There exists a simply connected region
R⊆X ⊆Rn (“region of attraction of the state feedback
NMPC”) with 0∈R such that:

1. The stage cost F : X ×U → R is locally Lips-
chitz, satisfies F (0, 0) = 0, and is lower bounded
by a class K function1 αF : αF (‖x‖ + ‖u‖) ≤
F (x, u) ∀(x, u)∈X × U .

2. The optimal control ū?(τ ;x) is piecewise con-
tinuous and locally Lipschitz in x in R, uni-
formly in τ . That is, for a given compact set
Ω ⊆ R ‖ū?(τ ;x1)−ū?(τ ;x2)‖≤Lu‖x1−x2‖ ∀τ ∈
[0, Tp), x1, x2∈Ω, where Lu denotes the Lipschitz
constant of ū?(τ ;x) (as a function of x) in Ω.

3. The value function, which is defined as the op-
timal value of the cost for every x ∈ R V (x) :=
J(ū?(·;x);x) is Lipschitz for all compact subsets
of R and V (0) = 0, V (x) > 0 for all x∈R/{0}.

4. Along solution trajectories starting at a sampling
instant ti at x(ti)∈R, the value function satisfies

V (x̄(ti + τ))− V (x(ti)) ≤

−
∫ ti+τ

ti

F (x̄(s), ū?(s;x(ti)))ds, 0≤τ≤Tp.

To establish the stability result it is furthermore nec-
essary that for any compact subset S ⊂R we can find
a compact outer approximation Ωc(S) that contains S
and is invariant under the NMPC state feedback.

Assumption 3 For all compact sets S⊂R there is at
least one compact set Ωc(S) = {x ∈ R|V (x) ≤ c} such
that S⊂Ωc(S).

In the following we will denote level sets of V by
Ωc, where the index c defines the level. Assump-
tions 2.1 and 2.4 are satisfied by many stabilizing
NMPC schemes. In principle Assumptions 2.2, 2.3 and
3 can also be satisfied. However, checking them is in
general difficult, see [5].

3.2 High Gain State Estimation
The system state is recovered by an high-gain ob-
server. Application of the coordinate transformation
ζ = H(x), where H is the observability mapping, to
the system (1) leads to the system in observability nor-
mal form in ζ coordinates

ζ̇ = Aζ + Bφ(ζ, u),
y = Cζ.

1A continuous function α : [0,∞) → [0,∞) is a class K func-
tion, if it is strictly increasing and α(0) = 0.

The matrices A, B and C have the following structure

A = blockdiag [A1, . . . Ap] , Ai =

 0 1 0 ··· 0
0 0 1 ··· 0
...

...
0 ··· ··· 0 1
0 ··· ··· ··· 0


ri×ri

B = blockdiag [B1, . . . , Bp] ,Bi =
[
0 · · · 0 1

]>
ri×1

C = blockdiag [C1, . . . , Cp] ,Ci =
[
1 0 · · · 0

]
1×ri

,

and φ : Rn × Rm → Rp is the “system nonlinearity” in
observability normal form. The high-gain observer

˙̂
ζ = Aζ̂ + Hε(y − Cζ̂) + Bφ̂(ζ̂, u) (4)

allows recovery of the states [1, 17] ζ from information
of y(t) assuming that

Assumption 4 φ̂ in (4) is globally bounded.

The function φ̂ is the approximation of φ that is
used in the observer. The observer gain matrix
Hε is given by Hε = blockdiag [Hε,1, . . . ,Hε,p], with
H>

ε,i =[α(i)
1 /ε, α

(i)
2 /ε2, . . . , α

(i)
n /εri ], where ε is the so-

called high-gain parameter since 1/ε goes to infinity for
ε → 0. The α

(i)
j s are design parameters and must be

chosen such that the polynomials

sn+α
(i)
1 sn−1+· · ·+α

(i)
n−1s+α(i)

n =0, i=1, . . ., p

are Hurwitz.

Note that estimates obtained in ζ coordinates can be
transformed back to the x coordinates by x̂ = H−1(ζ̂).

3.3 Semi-Global Practical Stability
Before moving to the asymptotic convergence result, we
briefly review the results given in [4, 5]. Note that by
Assumption 1 the observability mapH does not depend
on the input and its derivatives, thus we do not need
the “observer resetting” as used in [5].

The overall output feedback control is given by the
NMPC state feedback controller and a high-gain ob-
server. The open-loop input is only calculated at the
sampling instants using the state estimates of the ob-
server. The observer itself operates continuously. As-
suming that x̂(ti) ∈ R, the input applied to the system
is given by:

u(t) := ū?(t−ti; x̂(ti))

where ū?(·; x̂(ti)) is the optimal open-loop input signal
of the NMPC optimal control problem (2) obtained at
time ti using the state estimate x̂(ti) for prediction.
The estimated state x̂(ti) is obtained by

x̂(ti) = H−1(ζ̂(ti)),
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where ζ̂(ti) is the high-gain observer state in observabil-
ity normal form. Thus, in between sampling instants
ti to ti+1 an open-loop input is applied to the system.

Since the observer estimate is not bounded to the fea-
sibility region R of the NMPC controller, and since the
open-loop optimal control problem does not have a so-
lution outside R, we also have to define a valid input
for x̂(ti) /∈ R. For simplicity, we do this by assigning
ū?(τ ;x)=uf ∈U for x∈R. Thus ū?(·;x) is defined and
bounded for all x∈Rn.

It is convenient to consider in the following the scaled
observer error η,

η = [ η11,...,η1r1 ,...,ηp1,...,ηprp ] , with ηij :=
ζij − ζ̂ij

εri−j
.

Hence ζ̂ = ζ − Dεη with Dε = blockdiag[Dε,1,
Dε,2, . . . , Dε,p], Dε,i = diag

[
εri−1, . . . , 1

]
. The closed-

loop system in between sampling instants is then given
by

ẋ(t) = f(x(t), u(t−ti; x̂(ti)))
εη̇(t) = A0η(t) + εBg(t, x(t), x(ti), η(t), η(ti))

where the matrix A0 = εD−1
ε (A −HC)Dε is indepen-

dent of ε and where the function g is defined as the
difference between φ̂ and φ,

g(t, x(t), x(ti), η(t), η(ti)) =

φ(ζ(t), ū?(t−ti; x̂(ti)))− φ̂(ζ̂(t), ū?(t−ti; x̂(ti))).

Note that due to Assumption 1, η(t) will be continuous
also at sampling instants.

In the following the set Q ⊂ Rn is a fixed compact set
for the observer initial state x̂0, whereas Γε := {η ∈
Rn|W (η) ≤ ρε2} defines a set for the scaled observer
error η that directly depends on ε. The quadratic form
W (η) is defined by W (η) := η>P0η, where P0 is the
solution of the Lyapunov equation P0A0 +A>

0 P0 = −I.
The constant ρ is specified such that Γε is reached and
is invariant after a time TQ(ε), where TQ(ε) → 0 as
ε → 0 (see [5] for details).

With this setup, it is shown in [4, 5] that the output
feedback scheme can achieve practical stability: For
any small set containing the origin, there exists an ob-
server gain and a sampling time such that the trajec-
tories converge to the set in finite time and stay inside
the set.

Theorem 1 (Semi-global practical stability)
Given arbitrary compact sets Q⊂Rn and S⊂R. Then,
for any σ > 0, there exists an ε?

1 >0 and a δ?
1 > 0 such

that for all 0<ε<ε?
1, 0<δ<δ?

1 , and all (x0, η0)∈S×Q,
the trajectories (x(t), η(t)) stay bounded, converge in
finite time to the set ‖(x, η)‖ ≤ σ, and x(t)∈R ∀t ≥ 0.

Note that neither convergence of the states nor the ob-
server error to the origin is implied. Convergence to
the set {(x, η) | ‖(x, η)‖ ≤ σ} is obtained by showing
that the state and the observer reaches an invariant set
Ωα×Γε⊂{(x, η) | ‖(x, η)‖ ≤ σ}. For proving the main
result, we will use Theorem 1 to place ourselves in such
a set.

4 Asymptotic Convergence

The main contribution of this paper is to show that
under slightly strengthened assumptions we can assure
asymptotic convergence. To obtain the result we have
to strengthen the assumptions on the observer, to as-
sure convergence of the observer error to the origin.

Assumption 5 For (x(t), η(t)) ∈ Ωα×Γε, there exists
a Lg > 0 such that

‖g(t, x(t), x(ti), η(t), η(ti))‖ ≤ Lg‖η(t)‖.

The above is true if the observer nonlinearity is the
same as in the real system2.

The following lemma says that if the observer error is
nonzero at a sampling instant, it will not become zero in
the following sample period. This is used to show that
the Lipschitz continuity of the control in the observer
error at sample instants (which follows from Assump-
tion 2) can be replaced with Lipschitz continuity of the
control in the “present” observer error.

Lemma 4.1 For (x(ti), η(ti)) ∈ Ωα × Γε, and for τ ∈
[ti, ti+1],

‖η(τ)‖ ≥ Lη‖η(ti)‖

for some Lη > 0.

Assumption 5 is a prerequisite for this result. The
proof, omitted here for brevity, can be found in [7].

The following lemma holds since we know (due to The-
orem 1) that the states and observer error stay in a
bounded set:

Lemma 4.2 Consider the trajectories of system (1)
driven by the NMPC open-loop control law based on the
correct state x0 (state feedback) and the state estimate
x̂0 = H−1(H(x0)−Dεη0) (output feedback)

ẋ(τ)=f(x(τ), ū?(τ ; x̂0)), ˙̄x(τ)=f(x̄(τ), ū?(τ ;x0)),

2By Assumption 4, this implies that φ must be globally
bounded. However, this is not a real limitation. Since Assump-
tion 5 merely has to hold on a compact set, the nonlinearities
only have to be equal on this set, and therefore we can bound
the observer nonlinearity outside a compact set of interest.
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starting at x(t) = x̄(t) = x0, with (x(τ), η(τ))∈Ωα×Γε

and x̄(τ) ∈ Ωα for all t≤ τ ≤ t + T , for some T < Tp.
Then, there exist constants L1 and L2 such that

|
∫ t+T

t

F (x(τ), ū?(τ ; x̂0))dτ−
∫ t+T

t

F (x̄(τ), ū?(τ ;x0))dτ |

≤L1

∫ t+T

t

‖η(τ)‖dτ (5)

and

|V (x(t + T ))−V (x̄(t + T ))|≤L2

∫ t+T

t

‖η(τ)‖dτ. (6)

The proof can be found in [7]. Given Lemma 4.1 and
the Lipschitz continuity of the value function (Assump-
tion 2.3), it is very similar to [5, Lemma 2], and hence
omitted here.

With these results, asymptotic convergence of the
closed-loop can be established.

Theorem 2 (Asymptotic Convergence) Given ar-
bitrary compact sets Q ⊂ Rn and S ⊂ R. Then there
exists an ε?

2 >0 and a δ?
2 > 0 such that for all 0<ε<ε?

2,
0 < δ < δ?

2 , and all (x0, η0) ∈ S × Q, the trajecto-
ries (x(t), η(t)) stay bounded, x(t) ∈ R ∀t ≥ 0 and
(x(t), η(t)) → (0, 0) for t →∞.

Proof: Let 0 < ε̃2 be such that

L1 + L2 +
Lg‖P0‖√
λmin(P0)

≤ 1
4ε̃2
√
‖P0‖

.

Let t′, ε̃1 and δ̃1 be given according to Theorem 1 such
that for a 0 < δ ≤ δ̃1, there exist 0 < ε ≤ ε̃1 such
that the trajectories are confined to a set Ωα ⊂ S for
t > t′. Set ε?

2 := min(ε̃1, ε̃2), and set δ?
2 = δ̃1. Below,

we consider the sampling instant ti > t′ closest to t′.
The proof consists of three parts. In the first part we
establish a bound on the decrease of the observer er-
ror. In the second part we construct a Lyapunov-like
function which is shown to decrease over one sampling
interval. Repeatedly applying this result we obtain in
the third part convergence to the origin.
First part (Bounding the observer error decrease): First
we establish a bound for the decrease of the observer
error in integral form. Inspired by [1] it is convenient
to express this decrease by the square root of W . It
follows that3

d

dt

√
W (η(t))=

∂W

∂η

[
1
ε
A0η(t)+Bg(t, ·)

]
1

2
√

W (η(t))

≤− 1
2ε
√
‖P0‖

‖η(t)‖+ ‖P0‖‖η(t)‖‖g(t, ·)‖√
λmin(P0)‖η(t)‖

≤− 1
2ε
√
‖P0‖

‖η(t)‖+
Lg‖P0‖√
λmin(P0)

‖η(t)‖,

3For brievety, g(t, ·) are used for g(t, x(t), x(ti), η(t), η(ti)).

where both terms on the right hand side are linear in
‖η(t)‖. Integrating we obtain for any finite 0 < T ≤ δ,√

W (η(ti + T ))−
√

W (η(ti))

≤
∫ ti+T

ti

(
− 1

2ε
√
‖P0‖

‖η(τ)‖+
Lg‖P0‖√
λmin(P0)

‖η(τ)‖

)
dτ.

Second part (Decrease over one sampling interval): We
use a Lyapunov like argument considering as a com-
bined “Lyapunov function” Ṽ (x, η) := V (x) +

√
W (η)

for the closed loop system. Note that since V and W
are continuous, also Ṽ is continuous. Let x̄(t) be the
state feedback trajectory, as in Lemma 4.2. Then, for
some 0 < T ≤ δ,

Ṽ (x(ti+T ), η(ti+T ))−Ṽ (x(ti), η(ti))

=V (x(ti+T ))−V (x(ti))+
√

W (η(ti+T ))−
√

W (η(ti))
≤V (x̄(ti+T ))−V (x(ti)) + |V (x(ti+T ))−V (x̄(ti+T ))|

+
√

W (η(ti+T ))−
√

W (η(ti)).

From Assumption 2.4, it follows that

Ṽ (x(ti+T ), η(ti+T ))−Ṽ (x(ti), η(ti))

≤−
∫ ti+T

ti

F (x̄(τ), u(τ ;x0))dτ

+|V (x(ti+T ))−V (x̄(ti+T ))|

+
√

W (η(ti+T ))−
√

W (η(ti))

≤−
∫ ti+T

ti

F (x(τ), u(τ ; x̂0))dτ

+L1

∫ ti+T

t

‖η(τ)‖dτ +L2

∫ ti+T

ti

‖η(τ)‖dτ

+
∫ ti+T

ti

(
− 1

2ε
√
‖P0‖

‖η(τ)‖+ Lg‖P0‖√
λmin(P0)

‖η(τ)‖

)
dτ

where Lemma 4.2 is used in the last transition.

Hence, by the definition of ε?
2, we have that for 0 < ε ≤

ε?
2, 0 < T ≤ δ2,

Ṽ (x(ti+T ), η(ti+T ))−Ṽ (x(ti), η(ti))

≤−
∫ ti+T

ti

F (x(τ), u(τ ; x̂0))dτ−
∫ ti+T

ti

1
4ε
√
‖P0‖

‖η(τ)‖dτ.

In particular this holds for T = δ.
Third part (Convergence): Since, by Theorem 1, we
will not leave the set Ωα × Γε, the above holds for all
remaining sample intervals (using the same ε and δ).
This shows that Ṽ is non-increasing. Together with
continuity and the fact that Ṽ is bounded from below,
this implies that the limit Ṽ (x(∞), η(∞)) exists. By
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adding all sample intervals together, we obtain in the
limit

Ṽ (x(∞), η(∞))−Ṽ (x(ti), η(ti))

≤−
∫ ∞

ti

F (x(τ), u(τ ; x̂0))dτ−
∫ ∞

ti

1
4ε
√
‖P0‖

‖η(τ)‖dτ

≤−
∫ ∞

ti

αF (‖x(τ)‖)+ 1
4ε
√
‖P0‖

‖η(τ)‖dτ.

This implies that the infinite integral on the right hand
side exists and is finite. Noting the continuity (in time)
of the involved functions, convergence of (x(t), η(t)) to
(0, 0) follows from Barbalat’s lemma [9].
The result shows that there exists a finite observer gain
such that the state and the observer asymptotically
converge to the origin. Thus, under the assumptions
made, it is not necessary to increase the observer gain
to infinity to converge to a small desired region. De-
pending on the considered system, even relatively small
observer gains might lead to asymptotic convergence.

5 Conclusions

The question of stability of output feedback NMPC is
of practical as well as of theoretical relevance. In this
paper we have extended the results derived in [4, 5]. We
showed that under certain conditions an output feed-
back NMPC controller based on the state estimate of a
high-gain observer does lead to semi-global asymptotic
convergence. For any desired compact set of initial con-
ditions that is a subset of the region of attraction of the
NMPC state feedback controller, there exists a min-
imum observer gain and a maximum sampling time,
such that the states and the observer error asymptot-
ically converge to the origin. Thus for reaching the
origin, it is not necessary to increase the observer gain
to infinity. Depending on the system considered, even
small observer gains might lead to asymptotic conver-
gence. This is of special interest, since a decrease of
the error resulting from the state estimate does in gen-
eral lead to an increases of robustness margins to other
disturbances of the closed-loop.
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[17] A. Tornambè. Output feedback stabilization of
a class of non-miminum phase nonlinear sysems. Syst.
Contr. Lett., 19(3):193–204, 1992.

4913
Proceedings of the American Control Conference

Denver, Colorado June 4-6, 2003


	MAIN MENU
	TABLE OF CONTENTS
	AUTHOR INDEX
	----------------
	Search CD-ROM
	Search Results
	Print
	----------------
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	----------------
	CD-ROM Help
	----------------

