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1. INTRODUCTION

Nonlinear model predictive control (NMPC) is a con-
trol strategy where application of nonlinear optimiza-
tion methods is essential. This paper is application
oriented, and contributes to the practical knowledge
of implementation of NMPC. The paper focuses on
application of SQP optimization algorithms in NMPC,
but emphasizes that appropriate model discretization
is essential for the performance. A rule of thumb is
that if it is impossible to integrate a model with a
certain method, the method cannot be used in NMPC.
The paper adresses the differences and similarities be-
tween feasible and infeasible path methods, sequential
and simultaneous methods and reduced and full space
methods. The suitable choices between these various
strategies are informally assessed by applying them to
a case; a CSTR with first order reaction.

The theory of optimization algorithms is not depen-
dent on how the equality constraints are formed.
For instance in optimal control, and in particular
in the special case of NMPC, much concern is put
into discretization schemes for the nonlinear equality
constraints. These equality constraints result from a
continuous-time nonlinear dynamical system repeated
over a time horizon � . Three major variants are usu-
ally considered to handle unstable modes; orthogo-
nal collocation, multiple shooting and single shooting
(possibly with a variable grid). Ascher et al. (1995)
discuss the general benefits of these approaches, and
Barclay et al. (1998) discusses this in conjunction
with SQP algorithms. Vassiliadis (1993) addresses the
dynamic optimization of general DAE systems. These
approaches seek to find formulations of the equality
constraints that are less hard to satisfy, while simulta-
neously reducing the discretization error.

Nonlinear inequality constraints may be introduced
for stability purposes in NMPC (Scokaert et al. (1999),
Chen and Allgöwer (1998b), Chen and Allgöwer

(1998a)). These references extends earlier work (Li et
al. (1990), de Oliveira and Biegler (1995)), which are
concerned with nominal stability. Hence, termination
prior to convergence of the optimizer cannot guarantee
stability unless the equality constraints are satisfied.

The immediate answer to the need for early termina-
tion is single shooting, i.e., solve the model at each
iteration with an initial value solver. Single shooting
algorithms progress towards a solution by iterating
between solving the model and solving a reduced
size optimization problem. Due to this, single shoot-
ing is said to be a sequential method. Single shoot-
ing produces a reduced gradient problem in the free
variables to be solved at each NMPC iteration. Main-
taining feasibility of nonlinear inequalities involving
dependent variables can then be obtained by use of
FSQP’ (Lawrence and Tits 2000). Single shooting
may be costly if evaluation of the problem functions is
costly, e.g. if an implicit discretization scheme must be
applied. In addition single shooting lacks robustness
when applied to unstable systems (Ascher et al. 1995),
section 4.1 and 4.6.2.

To solve optimization problems with stabilizing end-
point constraints simultaneous methods must be ap-
plied. End-point constraints make the problem a two-
point boundary value problem (TPBVP) which in gen-
eral cannot be resolved with single shooting. Simul-
taneous methods do not solve the model at each it-
eration. Instead a simultaneous search for a model
solution and optimal point is carried out. Multiple-
shooting and orthogonal collocation, possibly on finite
elements (Finlayson 1980), are the most widely used
simultaneous methods. Since simultaneous methods
do not solve the model at each iteration, they cannot
guarantee stability in the nominal stability setting of
dual-mode or quasi-infinite horizon NMPC if termi-
nated prior to convergence. Note that the results re-
ported in (Bock et al. 2000) show that termination
prior to convergence in multiple shooting may be



viable for some applications. Decomposition strate-
gies for orthogonal collocation on finite elements have
been considered by (Cervantes and Biegler 2000) and
(Biegler et al. 2001).

For convenience, define the superscript notation � � �
������� for an entity � indexed by �. The nonlinear
MPC problem with ������� � �� and ������� � ��
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with 	 
 � is considered in this paper. The equality
constraints in (1) are formed by assuming an appropri-
ate discretization scheme of the continous time model
constraint ���� �
 �� � 	 repeated over the horizon �
along with a suitable parametrization of the control
profile. Endpoint constraints or augmentation of the
objective may be included to guarantee nominal stabil-
ity of the MPC algorithm, see (Mayne et al. 2000). Ob-
serve that reference tracking and non-zero set-points
can be handled in this framework with minor mod-
ifications. It is assumed that sufficiently smooth 1st
principles state-space models with measured states,
analytic 1st order derivatives are used and that

�� ��� � ��� � � � � ��� � � � � ���
can be described by bounds.

The paper continues with a conceptual comparison
between single shooting and reduced Hessian methods
in section 2. Simulation results follow in section 3.
Discussion and conclusions to the paper follow in
sections 4 and 5.

2. OPTIMIZATION METHODS

First SQPmethods in general are considered. The MPC
problem (1) can be restated as a general nonlinear
programming (NLP) problem:
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where � � 	 
 , �� � 	 
 
 and �� � 	 
 � where
� � ��� � ��	 ,  � ���� � �� and � � �
(assuming upper and lower bounds on ���� ��� over
the horizons � and 	 ). The Jacobian matrix of the
equality constraints is denoted ��

� � �����
� �

������������������� � � � ���
� ����� where ������ is
the �-th component of the vector �����. The matrix
����� made up of ��

� and the gradients of the active
inequality constraints is assumed to have full column
rank. The null-space of �����

� defines the tangent
space to the equality and active inequality constraints
at �� . Denote ��� the Hessian of the Lagrangian
function ����� ����� ����� � ����� � ��

��������� �

��
��������� where ���� and ���� are the multiplier

vectors. We assume strong second order sufficient

conditions, i.e. that �� is an isolated minimum of the
NLP (2) and that ��� and ��

�
are unique.

In SQP, a sequence of subproblems are solved, where
the model is linearized and a quadratic model of the
Hessian of the Lagrangian is formed. This gives a
quadratic programming problem to be solved at each
iteration of the SQP algorithm:
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where ��  	 usually is an approximation to ���.
The solution �� to (3) is a search direction. The SQP
algorithm searches along �� for a new iterate ����

that gives a reduction in a merit function. The merit
function �� is needed to give convergence to a point
satisfying the strong 2nd order assumptions from any
starting point under certain additional assumptions.

2.1 Reduced gradient methods

The qp (3) can be resolved in the full space of free
and independent variables, or in the reduced space
of free variables by a suitable elimination of vari-
ables. Elimination of variables exploits that if ��� �
��	 �� ��	 and that ��	 is small, the re-
duced subproblem for the null-space step will be small
(but dense). In the full space the sparsity of both the
Hessian (which commonly requires analytic Hessians)
and the Jacobian can be exploited to yield fast so-
lutions (Rao et al. 1998). This section shows that a
reduced gradient approach can be derived by follow-
ing two different strategies. The first uses a sequen-
tial approach, see e.g. (de Oliveira and Biegler 1995),
while the second follows the simultaneous null-space
approach (Nocedal and Wright 1999), (Biegler et
al. 1995).

2.1.1. Sequential approach (sSQP) By iterating the
model over the horizon � , the transformation �� �
����� �

�� allows the equivalent form which is es-
sentially a projection onto the subspace � . The se-
quential approach solves the model at each iteration,
i.e. the qp-subproblem is solved following a feasible
path strategy. The algorithm evolves the model to get
�� � ����� �

��. Then the algorithm solves the a qp
for a direction ��� , giving ���� by a line search, which
again is used to evolve the model giving ���� and so
on.

In sSQP the second order derivatives of the model are
neglected. This sacrifices the quadratic convergence
of Newtons method, but it gives a positive definite
Hessian. This is also known as the Gauss-Newton
method, which will deteriorate to linear convergence if
the projected contributions of the model are significant
(Biegler 2000). Since the Hessian ��� is positive def-
inite, linear convergence results. Otherwise, near the
solution quadratic convergence of sSQP may occur, if
no state variable bounds are active at the solution.



2.1.2. Reduced Hessian approach (rSQP) In the
null-space method a decomposition is applied to the
KKT conditions to eliminate variables. It can be shown
that the sSQP approach coincide with the rSQP ap-
proach for the choice �� � �������

�������
����� and

by decomposing �� into range and null space accord-
ing to the natural partiotioning given by the states and
controls.

In comparing the two approaches observe that the
sequential approach maintains feasibility of all iter-
ates, while rSQP searches for feasibility and optimal-
ity simultaneously. In addition the sequential method
solves the model at each iteration, while rSQP solves
the model only at the solution ��. Also note that the
sequential approach only handles initial value prob-
lems (IVP), i.e. �� � �� cannot be guaranteed
since it implements a shooting strategy in evolving
the model over the horizon. The endpoint constraint
changes the problem into a boundary value problem
(BVP) which must be handled by simultaneous strate-
gies. Therefore the sequential approach is limited to
open-loop stable and non-stiff systems. In fact, the
stability of the algorithm requires an infinite predic-
tion horizon which is intractable unless the step length
can be increased to infinity, see (de Oliveira 1994) and
(Chen and Allgöwer 1998a) for details.

There are a number of commercial routines available
for both dense and sparse algebra that can be applied.
Decomposition strategies for sparse matrices are im-
plemented in the Harwell subroutine libraries MA28
and MA48 (Harwell Laboratory 1995). Alternatives to
computing the Jacobian by analytic partial derivatives
is by perturbation or by forward differences. This will
have a significant impact on the computational de-
mands, see the results in section 3.2.

3. SIMULATIONS

NMPC was implemented on a simple case with three
different optimization methods. The first is a basic
full space SQP method. The second is the reduced
Hessian method rSQP, and the third is the sequential
method sSQP. The case is a CSTR with first order
reaction. The CSTR example was thoroughly explored
by application of various discretization methods and
finite difference approximations to the Jacobian.

3.1 Implementation issues

The basic SQP full-space method and rSQP were
implemented with the common ��-penalty function.
sSQP implemented an ��-penalty function without pe-
nalization of equality constraints, since sSQP always
remain feasible with respect to equalities. The line
search for all methods is backtracking line search.

The relaxed convergence criteria from (Gill et al.
1981), section 8.2.3, were implemented with tolerance
�	�� for the basic SQP method and sSQP. In rSQP
the algorithm stops whenever a certain KKT measure

is decreased below the tolerance �	��. The implemen-
tation of rSQP is generally more carefully performed
than the basic SQP and sSQP methods. Hence, the re-
laxed termination criteria used in basic SQP and sSQP
partly compensates for a rudimentary implementation.
However, as the discussion in section 2 indicates, the
sSQP method may show linear convergence in certain
circumstances, and relaxed termination criteria can
therefore be of crucial importance in production codes
as well.

For the CSTR case the model was discretized with
explicit and implicit Euler, Lobatto IIIC and ordinary
Runge-Kutta 4. The Jacobian matrices with associ-
ated almost block-diagonal (ABD) structure for the
selected discretization methods. The CSTR case was
implemented with both analytic Jacobian and finite
difference approximations of the Jacobian. Finite dif-
ferences were considered for both the full Jacobian
(a dense matrix) and the elements along the block
diagonal (a sparse matrix). In sSQP analytic and finite
difference Jacobians were implemented. I.e. the sen-
sitivity matrix � was approximated directly by finite
difference perturbations of the simulator. The CSTR
case was investigated with different sampling rates
and prediction and move horizons.

The sSQP method was implemented as a Gauss-
Newton method with analytic 2nd derivatives of the
objective, while rSQP was implemented with BFGS
updates.

3.2 Case: CSTR

The case is the following isothermal CSTR with 1st
order reaction from (Matsuura and Kato 1967) also
investigated by (de Oliveira 1994)
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with parameter values �� � 	�, �� � �, ���
� ���

and ���
� 	��. For ���� ��� � ��� �� the CSTR

has three equilibrium points at �� � �		� �� �
�	����� ��� ��	��, with the middle equilibrium point
being unstable, and the others stable. The system
(4) was discretized with a time step �, prediction
horizon � , move horizon 	 and simulated for ����

samples, i.e. the NMPC problem is repeatedly solved
���� times. At time step 10 the process experiences
a +50% step in ���

which is seen by the NMPC
algorithm through the feedback only. The weights are
� � �	 	� and ! �  	� in equation (1) and deviation
from stationary values is penalized. Here the control
objective is to keep the states and controls at their
initial values � � ��		� 	����� and � � ��� ��.

The physical bounds ��� �� � 	 are imposed over
the horizons. The SQP-algorithms were initialized
with the output from the previous call for each NMPC
iteration. Note that integral action is not implemented.
This is justified by that only a comparison of the
optimization methods is investigated, and it is ex-



pected that introducing integral action will not in-
fluence this comparison. A representative simulation
result is shown in Figure 1. The process was simulated
by MATLAB’s ode45 in all cases.
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Fig. 1. NMPC of CSTR. The figure shows typical
results for NMPC of the CSTR case with � �
�. The various discretization methods produced
nearly identical results. In the lower subfigure
the solid curve is for �� and the dashed curve
is for ��. The step in ���

enters at time step
10, and this drives the state �� away from the
equilibrium. If the control inputs are kept at the
equilibrium input ��� ��, the system will settle at
an equilibrium point at � � ��		� ������.

Note that with the given initial conditions and the
given disturbance, this case is pathological with re-
spect to inequality constraints, i.e. the active set is
empty and unaltered throughout the horizon � .

The computations were implemented in MATLABwith
the qp-routines available as mex/dll-files on a
Compaq Deskpro EN / Pentium II / 450MHz / 128Mb
RAM running Windows NT4.0. Computational results
are shown in Tables 1-3 The results in Tables 1-3 are
summarized in the following conclusions:

� sSQP is sensitive to the choice between implicit
and explicit integration methods, while both ba-
sic SQP and rSQP is insensitive to this.

� Finite difference approximations of the full Jaco-
bian in basic SQP and rSQP should be avoided.

� Reduced gradient methods are superior for a
large number of variables with few degrees of
freedom.

Note that a consequence of the first item is that si-
multaneous SQP methods can have fewer variables
when implemented with implicit discretization meth-
ods. Here the step length � can be increased beyond
the stability limit of explicit methods (but not beyond
reasonable accuracy). Since the basic SQP and sSQP
methods are approximately similar in implementation
complexity,sSQP should be chosen when explicit dis-
cretization schemes suffice. In the face of more chal-
lenging processes reduced Hessian methods are supe-
rior provided that the assumption that there are few
degrees of freedom continue to hold. This assumption
commonly holds in NMPC.

4. DISCUSSION

In this paper different MPC strategies were imple-
mented on a case and the computational load and
quality of the results were investigated. From tables
1-3 it is observed that among the different NMPC
methods, the rSQP method are preferable in view
of computational time if implicit discretization meth-
ods are required. In NMPC computational time is lim-
ited, and feasibility of intermediate iterates is essen-
tial for stability (Mayne et al. 2000), (Scokaert et
al. 1999). Generally, SQP involves an adaptive sub-
problem, i.e. its computational time is not determin-
istic. Consequently, in NMPC feasible path SQP meth-
ods are preferred since they allow termination prior
to convergence (Mayne 1997). Such methods must
solve the model constraints at each SQP iteration,
which may be time consuming if the model is repre-
sented with an implicit discretization scheme. Hence,
sSQP becomes computationally demanding if implicit
discretization methods are applied, whereas simulta-
neous SQP methods perform equally well regardless
of whether implicit or explicit discretization scheme
are applied. Both methods require that the selected
discretization scheme is appropriate, i.e. if the model
cannot be simulated with a given method, it cannot
be expected that the optimization algorithms perform
well either.

Feasibility with respect to inequality constraints is
easier to achieve. FSQP’ (Lawrence and Tits 2000)
and rFSQP (Martinsen and Foss 2001) maintain fea-
sibility with respect to inequality constraints, and
asymptotic feasibility with respect to nonlinear equal-
ity constraints by combining these with an exact
penalty function and an arc search. The feasible path
sSQP method is expected not to perform well in the
presence of strong nonlinearities (Ascher et al. 1995).
This is contradictory to the needs for NMPC; e.g. prob-
lems with strong nonlinearities and trajectory tracking
(Qin and Badgwell 2000).

5. CONCLUSION

The practical considerations discussed in this paper
explore the choices an engineer must take if he wants
to implement NMPC at a given process. The interplay
between discretization methods and optimization al-
gorithms has been investigated through a case study.

First the engineer must select an appropriate dis-
cretization scheme. If he chooses an explicit dis-
cretization scheme, he can choose between sequen-
tial or simultaneous optimization methods. Sequential
methods are easy to implement, while simultaneous
methods are harder to implement. This applies in par-
ticular to reduced Hessian methods which may be
quite sophisticated. If implicit discretization methods
must be applied, the performance of sSQP deterio-
rates while simultaneous SQP does not degrade.



Discretization Horizons # vars. Jacobian Results
method ����� tot/dep/free analytic/fd1/fd2 Obj CPU time

Explicit Euler 2/6/5 22/12/10 analytic 33.55 5.9s
Explicit Euler 1/12/10 44/24/20 analytic 28.33 19s
Implicit Euler 2/6/5 22/12/10 analytic 31.41 9.5s
Implicit Euler 1/12/10 44/24/20 analytic 27.85 45s
Lobatto IIIC 2/6/5 34/24/10 analytic 32.37 7.3s
Lobatto IIIC 2/6/5 34/24/10 fd1 32.35 22s
Lobatto IIIC 2/6/5 34/24/10 fd2 32.35 25s
Lobatto IIIC 1/12/10 68/48/20 analytic 28.07 35s
Lobatto IIIC 1/12/10 68/48/20 fd1 28.06 96s
Lobatto IIIC 1/12/10 68/48/20 fd2 28.06 222s
RK4 2/6/5 70/60/10 analytic 32.40 14.1s
RK4 2/6/5 70/60/10 fd1 32.39 30s
RK4 2/6/5 70/60/10 fd2 32.40 117s
RK4 1/12/10 140/120/20 analytic 28.05 119s
RK4 1/12/10 140/120/20 fd1 28.04 338s
RK4 1/12/10 140/120/20 fd2 28.05 1136s

Table 1. Nonlinear MPC on a CSTR: Basic SQP. The table shows results for the basic
SQP method. �"�"	 are the sampling time, prediction and move horizons. The # vars.
tot/dep/free are the total, dependent and free number of variables. Note that there are no
active inequality constraints in this case. The Jacobian is either analytic or approximated by
finite differences. In mode fd1 only elements along the block diagonal were approximated,
while in mode fd2 the full (dense) Jacobian was approximated. Obj is the objective value
measured by summing the actual prosess outputs and implemented control actions over the
NMPC horizon ���� . CPU time is the time measured by MATLAB’s cputime command

from start to end of the main NMPC loop.

Discretization Horizons # vars. Jacobian Results
method ����� tot/dep/free analytic/fd Obj CPU time

Explicit Euler 2/6/5 22/12/10 analytic 33.18 4.4s
Explicit Euler 2/6/5 22/12/10 fd 33.54 5.7s
Explicit Euler 1/12/10 44/24/20 analytic 28.15 13.1s
Explicit Euler 1/12/10 44/24/20 fd 28.33 19.4s
Implicit Euler 2/6/5 22/12/10 analytic 31.41 33s
Implicit Euler 2/6/5 22/12/10 fd 31.41 131s
Implicit Euler 1/12/10 44/24/20 analytic 27.85 94s
Implicit Euler 1/12/10 44/24/20 fd 27.83 745s
Lobatto IIIC 2/6/5 34/24/10 analytic 32.37 49s
Lobatto IIIC 2/6/5 34/24/10 fd 32.36 192s
Lobatto IIIC 1/12/10 68/48/20 analytic 28.07 118s
Lobatto IIIC 1/12/10 68/48/20 fd 28.07 1121s
RK4 2/6/5 70/60/10 analytic 32.40 4.3s
RK4 2/6/5 70/60/10 fd 32.40 10.0s
RK4 1/12/10 140/120/20 analytic 28.05 12.2s
RK4 1/12/10 140/120/20 fd 28.05 58s
ode45 2/6/5 22/12/10 fd 23.03 36s
ode45 1/12/10 44/24/20 fd 28.49 149s

Table 2. Nonlinear MPC on a CSTR: sSQP. The table shows results for the sSQP method.
The results for ode45 with � �  showed some ripple that were caused by the relaxed

termination criteria. See table 1 for explanation of symbols.
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infinite horizon nonlinear model predictive con-
trol scheme with guaranteed stability. Automatica
J. IFAC 34(10), 1205–1217.

de Oliveira, Nuno M. C. and Lorenz T. Biegler
(1995). An extension of Newton-type algorithms
for nonlinear process control. Automatica J. IFAC
31(2), 281–286.

de Oliveira, Nuno Manuel Clemente (1994). Newton-
type algorithms for nonlinear constrained chemi-
cal process control. PhD thesis. Carnegie Mellon
University. Pittsburgh, PA.

Finlayson, Bruce A. (1980). Nonlinear analysis in
chemical engineering. Chemical engineering.
McGraw-Hill. New York, NY.

Gill, Philip E., Walter Murray and Margaret H. Wright
(1981). Practical optimization. Academic Press
Inc. [Harcourt Brace Jovanovich Publishers].
London.

Harwell Laboratory (1995). Harwell Subroutine Li-
brary Specifications (Release 12). AEA Technol-
ogy. Oxfordshire, UK.

Lawrence, Craig T. and André L. Tits (2000).
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