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Abstract

Many discrete-time dynamic models of current in-
terest are based on functions that, while generally
continuous, are nonsmooth; examples include speci�c
multimodels, hinging hyperplane models, and hybrid
systems. We consider two models for which we can
vary the smoothness and examine its inuence on
qualitative behavior. In the smooth regime, both
models exhibit asymptotic stability for suÆciently
small amplitude inputs; in the nonsmooth regime,
the simpler model is shown to be BIBO stable but
not asymptotically stable, and in both models non-
linear e�ects become more pronounced as the input
amplitude decreases, in marked contrast to the be-
havior of smooth (i.e., linearizable) systems. Further,
in the case of the simpler model the general character
of this behavior in the nonsmooth regime cannot be
changed with linear proportional feedback.

1 Introduction

Many of the nonlinear discrete-time dynamic models
considered in the control literature map past inputs
uk�j and outputs yk�j into the current output yk via
smooth multivariable maps. Examples include poly-
nomial NARMAX models [3], various special cases
(e.g., bilinear models [12] and polynomial Hammer-
stein models [6]), neural network models [11], and
radial basis function models [4]. There, Taylor-series
arguments imply that linear terms dominate for suf-
�ciently small input amplitudes. Conversely, these
arguments do not apply to models based on nons-
mooth functions, as seen in Fig. 1, which shows four
step responses for Model B introduced in Sec. 3 of
this paper. These step responses are approximately
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Figure 1: Model B step responses (n = 2, a1 =
0:8,a2 = 0:0, b = 0:19, c = 0:5)

symmetric with respect to sign reversal for ampli-
tude 0:1 (behavior consistent with and characteristic
of linearity), but become both much more complex
and highly asymmetric for amplitude 0:001, clearly
demonstrating the nonlinearity of this model. Also,
note that this general behavior is qualitatively simi-
lar to certain friction phenomena, which are often de-
scribed by continuous-time models that are also based
on nonsmooth nonlinearities [1].

This paper examines the qualitative behavior of
two simple discrete-time models based on the func-
tions  c(x) = jxj

c and �c(v; w) = jvj
c�jvwjc=2, whose

smoothness depends on the exponent c; this depen-
dence allows us to investigate the inuence of smooth-
ness on qualitative model behavior. Motivation for
this investigation lies in the increasing popularity of
nonsmooth models in the identi�cation and control
literature, including hybrid systems [2], hinging hy-
perplane models [5], and some multimodels [7, 8]. For
example, the following model exhibits the qualitative
behavior seen in a simple chemical reactor [9]:

yk = �jyk�1j+ �uk�1; (1)

and has the multimodel representation:

yk =

�
ayk�1 + buk�1; yk�1 � 0
�ayk�1 + buk�1; yk�1 � 0:

Here, we analyze two models: Model A may be
viewed as an extension of Eq. (1) and admits a com-
plete analysis, part of which is described in Sec. 2.
Model B is more complex and a partial analysis is



given in Sec. 3. Finally, Sec. 4 presents a brief dis-
cussion of these results and outlines some possible
extensions.

2 Analysis of Model A

Model A is de�ned by:

yk = ayk�1 + bjyk�1j
c + uk�1:

For b = 0, this model is linear and stable if and only
if jaj < 1; here, we assume b 6= 0 and view jbj as a
measure of the strength of the nonlinearity. Similarly,
we view c as a smoothness index since the function
 c(x) = jxj

c is singular if c < 0,  c 2 C0 for 0 � c �
1, and  c 2 C

1 for c > 1.
In discussing the stability of Model A, it is neces-

sary to distinguish between the stability of equilib-
rium solutions and stability with respect to bounded
inputs. First, note that Model A generally exhibits
multiple equilibrium solutions, a point most easily
seen in the autonomous case uk � us = 0; these so-
lutions must satisfy

ys � ays � bjysj
c = 0

,
�
1� a� bjysj

c�1 sign ys
�
ys = 0:

Clearly, ys = 0 is one solution, but if jaj < 1, b 6= 0,
and c 6= 1, we also have the second solution:

y+s =

����1� ab
����
1=(c�1)

sign b:

In what follows, we consider both the stability of
the equilibrium solution ys = 0 for the autonomous
case and stability with respect to bounded inputs.
Due to space limitations, the results presented here
are necessarily somewhat incomplete, but a more de-
tailed treatment is in preparation. Lemma 1 below
establishes suÆcient conditions for �-exponential sta-
bility of the autonomous solution ys = 0 for speci�ed
0 < � < 1, meaning:

jykj � �kjy0j for all k > 0.

Lemma 1:

For c > 1 and jaj < � < 1, the au-
tonomous response ys = 0 of Model A is
�-exponentially stable if

jy0j � � �

�
�� jaj

jbj

�1=(c�1)

< jy+s j:

Proof by induction:

Suppose jyk�1j � �, then:

jykj � jaj � jyk�1j+ jbj � jyk�1j
c

=
�
jaj+ jbj � jyk�1j

c�1
�
� jyk�1j

�
�
jaj+ jbj�c�1

�
� jyk�1j

� �jyk�1j < �:

Hence, if jy0j � �, then jykj � �kjy0j for all k � 0.
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Similar reasoning leads to bounds on the input am-
plitude jukj that guarantee boundedness of the re-
sponse jykj for all k. It is important to note that
these input bounds depend on the system parame-
ters a, b, and c for b 6= 0 and c > 1. Consequently,
these results are strictly weaker than bounded-input,

bounded-output (BIBO) stability, which means that
given any input bound jukj � M , there exists a cor-
responding bound jykj � N on the response. In fact,
for c > 1, Model A is not BIBO stable, since it may
be shown that the response to an impulse input of
suÆcient magnitude exhibits unbounded exponential
growth; again, proofs will be given elsewhere. For
0 < c � 1, the following lemmas establish suÆcient
conditions for BIBO stability and illustrate the im-
portant di�erences in qualitative behavior that occur
for c = 1 and 0 < c < 1. The case c = 1 is interesting
since Model A then belongs to the class of positive-
homogeneous models [10, ch. 3]: if uk ! �uk for any
� > 0, then yk ! �yk. Consequently, the qualitative
behavior of this system cannot depend on the mag-

nitude of the input, although it can depend on the
sign; for example, taking a = 1=2 and b = �1 yields
a model with stable responses to positive steps but
unstable responses to negative steps.

Lemma 2:

For c = 1, Model A is BIBO stable if both
conditions ja+ bj < 1 and ja� bj < 1 hold.

Proof:

For simplicity, we assume y0 = 0 here, but the result
extends easily to any �nite initial condition. Let � =
maxfja+ bj; ja� bjg and note that

jykj � ja+ b sign yk�1j � jyk�1j+ juk�1j

� �jyk�1j+ juk�1j:



Next, suppose juk�1j � M for all k and proceed by
induction:

jyk�1j �
�M

1� �
) jykj �

�M

1� �
+M =

M

1� �
:

Since jy0j = 0 < M=(1� �), the bound holds for all
k > 0.

2

Lemma 3:

For c = 1, the unique autonomous response
ys = 0 is �-exponentially stable for all initial
conditions if ja� bj � � < 1.

Proof:

For all yk�1, we have

jykj � ja+ b sign yk�1j � jyk�1j � �jyk�1j:

Hence, it follows that jykj � �kjy0j for all y0.

2

Lemma 4:

For 0 < c < 1, Model A is BIBO stable if
jaj < 1.

Proof by induction:

We wish to show that if jukj �  for all k and jyk�1j �
�, then jykj � �. By the triangle inequality:

jykj � jaj� + jbj�c + :

The desired result follows if � > 0 can be found such
that

jaj� + jbj�c +  � �

,

�
�c�1 +



jbj
��1

�
�

1� jaj

jbj
: (2)

For 0 < c < 1, the term in brackets decreases mono-
tonically to zero as �!1 so � may be chosen large
enough to satisfy (2). Hence, if jy0j � � and jukj � 

for all k, then jykj � � for all k.
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Lemma 5:

For jaj < 1 and 0 < c < 1, the autonomous
solution ys = 0 for Model A is not asymp-
totically stable.

Proof:

The autonomous response of Model A satis�es:

jykj =
��a+ byc�1k�1 sign yk�1

�� � jyk�1j
� [jbj � jyk�1j

c�1 � jaj] � jyk�1j;

and is therefore unstable if the term in brackets is
larger than 1. Since c < 1, this condition holds if:

jyk�1j <

�
1 + jaj

jbj

�1=(c�1)

=

�
jbj

1 + jaj

�1=(1�c)

;

establishing a region of local instability around the
autonomous solution ys = 0.

2

It is interesting to consider the control implications
of these results. In particular, the linear feedback
law uk = ��yk changes the parameter a to a�� but
does not change b or c. Hence, for c > 1, proportional
feedback could enlarge the stability region and for 0 <
c < 1 the system remains BIBO stable if ja� �j < 1,
but it is not asymptotically stable for any �.

3 Analysis of Model B

Model B is a nonlinear system with the following n-
dimensional state-space representation:

xk+1 = Axk +B�c(xk) +D
Tuk

�c(xk) = jx1j
c � jx1x2j

c=2: (3)

The function �c(x) is a multivariate generalization of
the nonlinearity  c(x) on which Model A is based.
Analogous to Model A, the magnitude of jjBjj may
be viewed as a measure of the strength of the nonlin-
earity and c may be viewed as a smoothness index.
In particular, �c is discontinuous for c < 0, �c 2 C

0

for 0 < c � 2, and �c 2 C
1 for c > 2. The behavior of

this function is illustrated in Figs. 2 and 3 for c = 0:2
and c = 5. The gradient of �c is particularly large
close to the axes x1 = 0 and x2 = 0 for c = 0:2, but
this behavior is not seen for c > 2.
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Figure 2: Plot of �c(x) for c = 0:2

3.1 Stability for c > 1

Lemma 6 below establishes the same results for Model
B that Lemma 1 establishes for Model A. The essen-
tial basis for this result is the following inequality
satis�ed by the function �c(xk). First, note the fol-
lowing upper bound for c > 0:

�c(xk) � jx1j
c

� [(x21 + x22 + � � �+ x2n)
1=2]c = jjxkjj

c
2;

and the corresponding lower bound:

�c(xk) � �jx1x2j
c=2

� �f[maxfjx1j; jx2jg]
2gc=2

� �fx21 + x22g
c=2 � �jjxkjj

c
2:

Combining these results, we have j�c(xk)j � jjxkjj
c
2

for all c > 0.

Lemma 6

Consider the autonomous response of the
system (3) for c > 1. This response is �-
exponentially stable if jjAjj < � < 1 and
the initial condition x0 lies in the closed n-
ball:

jjx0jj2 � � �

�
�� jjAjj

jjBjj

�1=(c�1)

:
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Figure 3: Plot of �c(x) for c = 5:0

Proof by induction:

Suppose jjxk jj2 � �, then

jjxk+1jj2 � jjAjj � jjxk jj2 + jjBjj � j�c(xk)j

� jjAjj � jjxk jj2 + jjBjj � jjxkjj
c
2

= [jjAjj+ jjBjj � jjxkjj
c�1
2 ] � jjxk jj2

� [jjAjj+ jjBjj�c�1] � jjxkjj2

� �jjxk jj2 < �:

Hence, if jjx0jj2 � �, then jjxk jj2 � �kjjx0jj2 for all
k > 0.

2

Note that the stability radius � established by this
lemma depends on the stability margin of the linear
system via jjAjj, the strength of the nonlinearity jjBjj,
and the smoothness of the nonlinearity, determined
by c. In particular, as jjBjj ! 0, we recover the usual
linear stability result for all initial conditions x0. Fur-
ther, if jjBjj < � � jjAjj, it follows that � > 1 but
� & 1 as c ! 1. Conversely, for jjBjj > � � jjAjj,
the opposite behavior is observed: � < 1 and �% 1
as c!1. Finally, for jjBjj = ��jjAjj, it follows that
� = 1 and Lemma 6 establishes the �-exponential
stability of the closed unit ball, independent of c.

3.2 Stability for 0 < c � 1

Using similar arguments, results analogous to Lem-
mas 2, 3, and 4 for Model A may also be developed for
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Figure 4: Unit impulse response, Model B

Model B and these will be reported elsewhere, includ-
ing exponential stability results for the autonomous
response when c = 1, BIBO stability results for c = 1,
and BIBO stability results for 0 < c < 1. Conversely,
it is not obvious how to extend Lemma 5 to Model
B, since that would require a nontrivial lower bound
on j�c(xk)j. However, simulation evidence suggests
that Model B exhibits similar qualitative behavior in
this nonsmooth regime. In particular, Fig. 4 shows
the unit impulse response for a simple special case of
Model B; although this response is bounded, it does
not appear to be asymptotically stable.

4 Discussion and extensions

Motivated by the observation that a number of in-
teresting discrete-time dynamic models are based on
nonsmooth functions, this paper has examined the
behavior of two simple models based on such func-
tions, illustrating that nonsmoothness can have im-
portant and surprising behavioral consequences. Spe-
ci�c examples include the non-asymptotic BIBO sta-
bility demonstrated here for Model A and the increase
of the e�ective nonlinearity with decreasing input am-
plitude shown in Fig. 1 for Model B. In addition,
it was noted that the essential stability behavior of
Model A cannot be changed with linear proportional
feedback. A more detailed analysis of these two mod-
els is in preparation and we also intend to investigate
extensions of these observations to other, more gen-
eral models based on variable smoothness nonlinear-
ities like the functions  c and �c considered here.
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