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Abstract : A multi-model structure for model predictive control has been established for a
petroleum distillation column through first principle analysis, and its parameters have
been estimated from data generated by a rigorous model. The nonlinear multi-model has
been used for state-estimation and prediction in a MPC scheme. The controller has been
applied to quality control of a FCCU fractionator. Realistic simulations show that multi-
model MPC (MMPC) is an attractive option for nonlinear MPC since the scheme implies
a straightforward extension of linear MPC, and the results are promising.
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1. INTRDUCTION

Model predictive control (MPC) has obtained
widespread use in the chemical process industries
(Qin and Badgwell, 1996). Even though MPC was
originally developed to meet the needs of refining
plants, thousands of applications can be found in a
wide range of application areas. Complicated and
coupled transport mechanisms, strongly coupled
inputs and outputs, and a wide operation-range
characterize many process plants. This should in
principle call for a nonlinear model. MPC is,
however, usually based on linear models. Two
important reasons for this are:
1. A high-fidelity model is not required in many
applications due to the fact that the prime task of
the MPC is to always push the process against the
constraint(s) that maximize some criterion.
2. The control structure relies on linearizing the
process by the use of regulatory control, i.e. MPC

acts on the setpoints of the basic control loops
instead of the control inputs themselves.
Despite these facts there is a potential for nonlinear
MPC as also documented in a recent publication
(Qin and Badgewell, 1998).
In this paper we focus on the use of a relatively
simple way to introduce nonlinear MPC. Nonlinear
MPC is designed by using multi-models (Murray-
Smith and Johansen, 1997, Johansen and Foss,
1997), which can be viewed as a model-scheduling
approach. Further, this approach is investigated
through simulation of a rigorous model of a typical
refining unit, a FCCU (Fluidized Catalytic Cracking
Unit) fractionator (Cong et. al., 1998). This model
has been validated against real data collected from
an industrial unit.
The contents of this paper are: First, multi-modeling
is presented, and a control-relevant multi-model for
the FCCU fractionator is developed. Second, the
nonlinear MPC is formed utilizing relatively



standard criteria and non-equality constraints.
Third, results are presented for a set of realistic
scenarios. The paper ends with some conclusions.

2   MULTI-MODELS

2.1 Basic Concept

A potentially attractive method for dueling with
nonlinear processes over a wide operating range is
the use of a multi-models. Multi-models can briefly
be described as follows.
Consider a process described by a state-space
model in the following form
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Let the operating point φ∈Φ  be defined by
φ= h(x, u, y), φ∈Φ                                       (3)

and define an operation regime by a subset Φi⊆Φ ,
Φ1 ∪  …∪Φ N=Φ and Φi∩Φj=∅  . This means that
the operating set Φ is partitioned into disjunct
operating regimes. To each operating regime we
allocate a local model (Mi). Hence, we define N
local models M1, . . . , MN. A local model can often
be simple since it is only valid in one operation
regime (and possibly its neighborhood). In this
work we will choose the local models as linear
state-space models with a structure based on first
principles insight of the process in question.
The local linear models are combined into a global
nonlinear model (M) by a convex combination of
weighting functions w1(φ), …, wN(φ).
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Note that model Mi will be dominating model when
iΦφ∈ . This means that )(φiw  will be large (close

to one) in this case. A typical choice for wi(φ) is a
normalized Gaussian function.
The development of a multi-model can be divided
into four steps. First, the operating points or
scheduling variable φ  must be chosen. Typical
choices are one or more control inputs u, and/or one
or more outputs y. Second, the system’s operating
set is decomposed into N operating regimes that
completely cover the relevant range of operation.
Third, for each operating regime, a local model
structure must be developed. Finally, the weighting
functions w1, w2, …, wN are chosen and the model
parameters, typically some of the local model
parameters, are estimated on the basis of data.
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Fig. 1  Tray and pump-around system

2.2  Model Structure Analysis

Petroleum distillation column is a well known
nonlinear processes. Continuous composition
distribution, a large operating range and
simultaneously mass and energy transfer contribute
to the necessity for a nonlinear high dimension
dynamic model.
In a distillation column, even for the single tray
shown in Fig. 1, the model dimension can be large,
depending on the number of components (Cong et.
al., 1998). Obviously, model simplification is
needed to obtain a suitable local model for MPC. In
order to get a simple structure, we have made the
following assumptions:
(1) A number of trays are lumped into one

compartment (Benallou, Seborg and
Mellichamp, 1986).   

(2) The variation of mass holdup Mj is neglected,
i.e. a constant mole flow-rate is assumed.

(3) Fluid enthalpy is independent of its
composition, and is a linear function of
temperature.

(4) The heat exchanger in the pump-around section
is taken as a lumped system (Cong et. al.,
1996). For simplification, the temperature of
the medium that exchanges heat with the pump-
around fluid is assumed to be constant.

(5) The dynamics of the vapor phase is neglected.

Based on the above assumptions the rigorous
dynamic formulations for energy balance in a
compartment is as follows:
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If there is a pump-around system connected to the
compartment, we have,
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Thus, for control proposes, the local model of each
compartment is simply a first or second order low-
pass model. Depending on the pump-around system,
petroleum product quality is mainly represented by
its cut-point that depends on the operating



temperature in the tray where it is drawn from.
Therefore, the temperature model described above
can also be used to control product quality, if this
cut-point can be measured or calculated on-line.
Generally, cut points (or temperatures) are
controlled within some narrow range in order to
meet the product quality requirement, which means
that the operating temperature at the tray with
production withdraw will not be allowed to change
significantly. This operating specification results in
a small influence of operation temperature on
system nonlinearities.
Feed temperature is commonly controlled by a
preheat system or in an up-stream unit.
Furthermore, feed temperature mainly influences
the amount of heat withdrawn from the bottom of
the tower. Its influence on the nonlinearity of the
heat transfer process is not very significant. Feed
composition does influence model nonlinearity
since it will affect the fluid enthalpy and mass and
energy transfer coefficients. But the influence will
not be significant.
The most important factor influencing the
nonlinearities of the tower is the feed flow-rate. The
variation of feed flow-rate will lead to changes of
mass and energy hold-up in every tray, and result in
significantly changing process dynamics. As an
example Fig.2 shows two rather different pump-
around step responses for two operating points with
different feed flow-rate. Therefore, feed flow-rate
should be selected to characterize the nonlinearities
for the distillation column in question.
In industrial units a very important factor
influencing the tower dynamics is coke
accumulation and equipment wearing in the tower.
This case can only be studied based on the data
from industry unit and will not be discussed in this
paper.
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Fig. 2. Top pump-around flow-rate increased by
15%.  High feed flow-rate means a 50%
increase compared to the low feed flow-rate.
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2.3 FCCU Fractionator Control Structure

A FCCU fractionator is an essential unit for
separating gasoline and diesel from feedstock from
an upstream riser reactor. Its main products,
gasoline and LCO (light cycle oil), are distillated
from the top of the tower as shown in Fig. 3. The
product qualities of these two products are the main
variables we are concerned with. Top and middle
temperatures are assigned to be the two controlled
variables. The process variables directly influencing
the controlled variables include the “T” valves in
the top and middle pump-around system, reflux
flow-rate, top pump-around flow-rate and middle
pump-around flow-rate. In this investigation, these
five variables are used as the manipulated variables
to control two product qualities represented here by
top and middle temperatures.
For the other process variables, such as bottom
level and temperature, we use single-input, single-
output PID controller.

2.4 Local Model Structure

The top part of the FCCU fractionator may be
divided into two disjunct compartments wherefrom
we produce gasoline and LCO, respectively. Thus,
corresponding to (7) and (8), we chose a local
model as follows.

FvBuAxx ++=�                                          (9)
Cxy =                                                         (10)

The state variable x=(x1, x2, x3, x4)T, output variable
y∈  (x1,x2)T, manipulated variable  u=(u1, u2, u3, u4,
u5)T and measurable disturbance v are defined in the
nomenclature list. Supposing the characteristic
variable is v, the global model corresponding to (4)
is formulated as
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x, u and y are variables around steady state values.
wi(v) is given by
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and the i-th regime is characterized by the intervals
],[ max,min, ii vv . In addition, the parameter γi

determines the smoothness.
The range of feed flow-rate is divided into 3
operating regimes as shown in Fig.4.  The variation
span of the feed flow-rate in each regime will be
17% of its normal value i.e. 200 kmol/h.
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Fig. 4. Interpolation function for the three regimes
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2.5 Parameter Estimation

Data used for local model parameter estimation is
obtained from a rigorous fractionator dynamic
model that has been fitted to real plant data (Cong
et al. 1998). A pseudo-random binary sequence is
used as the excitation signal, and the resulted data is
passed through a low-pass filter with a time constant
of 5 minutes, By this, we ensure that the data gives
a good basis for identifying a control-relevant
model(Shook et. al., 1992). In this case a control-
relevant model means a model with good prediction
quality on the time horizon of the MPC, i.e. 0-10
minutes. Model validation results are shown in Fig.
5, where 5 minutes predictions are compared to data
from the rigorous model.
For this exposition we have chosen to compare a
local model based on the linear model valid in
regime 3 to the multi model. The results are quite as
expected. The models have similar prediction
capability in regime 3 whereas the multi-model is
clearly the better in regime 1 and 2.

3 NONLINEAR MPC CONTROL

In industrial applications, most control system will
have more inputs than outputs. This brings to us a
problem of how to optimize the excessive
manipulated variables. We solve this by including
ideal resting values (IRV) in the objective. Our
MMPC problem can be described as follows.
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Fig. 5.  5 Minutes predictions when 5 inputs vary as
a pseudo random binary signal and feed flow-
rate varies from 1320 to 1720 kmol/h.

ysp is the setpoint of controlled variable, yr is the
measured output, ymin, ymax are boundary constraints
on y, umin and umax are the boundary constraints on
u, ud is the velocity constraint on u, p1, p2 are



predictive horizons and M is the control horizon.
The equality constraint formulations are based on
the discrete form of (9) and (10). The sampling time
is 30 seconds. x̂  is the estimated state from the
following state estimator.
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K is chosen such that the eigenvalue of the state
estimator is approximately 5 time steps. The
nonlinear programming problem is solved through a
feasible sequential quadratic programming (FSQP)
algorithm (Lawrence et. al., 1997).

4 RESULTS

The MMPC is evaluated on a set of realistic
simulation scenarios. They include temperature
setpoint change (tracking process), feed flow-rate,
feed temperature variation and feed composition
(disturbance resistance). The control problems are
simulated with values p1=1, p2=20, M=2. Boundary
limit umax=100, umin=0, and ud=1.
Fig. 6 compares MMPC and Single (local) Model
Based Predictive Controller (SMPC), i.e. linear
MPC after a setpoint change. SMPC works very
well within the local regime where the local model
is valid. It does, however, not give good control
performance when operation moves away from this
regime. MMPC gives good control performance in
all the operating regimes.
Fig. 7 shows performance to measurable
disturbance changes i.e. feed flow-rate changes. Fig.
8 and  Fig. 9 show performance to unmeasurable
disturbances. For all these disturbances, MMPC
improves performances vs. SMPC.
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and the local model used by SMPC is based on
regime 3.
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Fig. 7.  Feed flow-rate increased by 50 kmol/h as a
measurable disturbance.
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Fig. 8.   Feed temperature decreased by 20 °C as an
unmeasurable disturbance.
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Fig. 9.   Feed composition became heavier as an
unmeasurable disturbance

The MMPC’s coordinated control ability is shown
in Fig. 10, moving both controlled variables and
some of the manipulated variables to their setpoint
if it is possible. When there is more inputs than
outputs, MMPC will first make full use of all
available control efforts to drive the controlled
variables to their setpoint regardless where the IRVs
of manipulated variables are located. After the
controlled variables arrive at their setpoint, MMPC
coordinates some of the manipulated variables to
their IRV slowly. The manipulated variables to be
coordinated are selected depending on their
economic importance.
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5 DISCUSSION AND CONCLUSION

MMPC is introduced as an option to migrate from
linear to nonlinear MPC in a graceful fashion. By
using linear local models the well-proven properties
of linear MPC are retained as far as possible. If, for
instance, the system operate within one regime the
MMPC will in actual fact operate like a linear
MPC. It is only during transients that the nonlinear
capabilities of the MMPC will be activated. Further,
refining MMPC is conceptually straightforward
since new local models may be added in operating
regimes where the existing multi-model is deficient.
In the simulating example we directly manipulate
the control inputs. We world have manipulated the
setpoints of basic control loops instead. This would
most probably reduce the necessity for nonlinear
MPC.
This investigation has indicated that multi-model
based MPC can be an attractive way to introduce
nonlinear MPC in a graceful fashion.

NOMENCLATURE:

Cp  specific heat, kJ/(kmol.°C)
H   liquid enthalpy,  kJ/kmol
h    vapor enthalpy, kJ/kmol
Kst  heat transfer coefficient, kJ/°C.h.m2

L    liquid flow-rate, kmol/h
M   mass holdup, kmol
Q   heat loss, kJ/h
T    temperature, °C
Tsi  input temperature of heat exchange medium, °C
Tso output temperature of heat exchange medium, °C
u    manipulated variable, valve position, fraction
u1   top pump-around flow-rate, kmol/h
u2   top reflux, kmol/h
u3   top tee valve position, fraction
u4   middle pump-around flow-rate, kmol/h
u5   middle tee valve position, fraction
v   measurable disturbance, vapor phase flow-rate,

kmol/h.
x1   top vapor temperature, °C
x2   middle vapor temperature, °C
x3   top exchanger outlet temperature, °C

x4   middle exchanger outlet temperature, °C
x    state variable
y    controlled variable

Greek letters
Ω   heat transfer area, m2

ρ    density, kg/m3

Subscripts
i     component i
j     tray No.
p    pump-around

Superscripts
L    liquid  phase
V   vapor phase
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