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Abstract: In this paper we develop a BMI based method for nonlinear robust

stabilization. Robustness against model uncertainty is handled. The development

is based on an uncertain multi-model representation of the plant, and an associated

piecewise a�ne state-feedback structure. Assuming a quadratic Liapunov function,

a BMI condition for robust (quadratic) stabilization is found. Control constraints

are formulated as BMIs or LMIs. A branch-and-bound algorithm is used for solving

the BMI problem, that is, �nding the unknown quadratic Liapunov function and

the piecewise a�ne state-feedback. Finally, an example is given.
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1. INTRODUCTION

Robust controller design is a key factor for im-

plementing controllers. Robust design becomes

particularly important, but also challenging, for

nonlinear uncertain systems, the outset for this

work.

In our approach we have utilized results and

ideas from LMI based control (Boyd et al.,

1994), (Johansson and Rantzer, 1997), and

(Petterson and Lennartson, 1997), and multi-

model systems (Murray-Smith and Johansen,

1997).

In recent years much work has been put into

the development of nonlinear models which are

composed of a set of local models (Murray-

Smith and Johansen, 1997). The local models

are valid in di�erent parts of some prede�ned

operating set in which the operating point typ-

ically will be de�ned by some of the measured

control inputs and/or system outputs. Further,

the nonlinear (global) model is formed as a

convex combination of the local models. Other

names for multi-model systems are operating

regime based models and fuzzy models. In this

work we focus on multi-model systems in which

the local models are a�ne discrete-time state-

space models, and we utilize this model struc-

ture to describe the model uncertainty class.

This structure has at least three important ad-

vantages: (i) It is possible to utilize the a�ne

structure of the local models for analysis and

synthesis; (ii) the model class is rich in the
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sense that it approximates arbitrarily close a

very large class of nonlinear systems; (iii) the

model structure is transparent and there exist

support tools for model identi�cation (Johansen

and Foss, 1997).

In LMI-based control, which also has gained

a lot of interest in the last few years, control

system analysis- and synthesis problems are for-

mulated as convex optimization problems in-

volving linear matrix inequalities (LMIs). The

reason for this interest is the development of

very e�cient interior point algorithms for solv-

ing such problems (Boyd et al., 1994). Many

interesting control problems, in particular ro-

bust control problems, can be solved within the

LMI framework. There are, however, interest-

ing control problems which are very hard or

impossible to formulate within the LMI frame-

work. Some of these problems can be formulated

within the more general bilinear matrix inequal-

ities (BMIs) framework (Goh et al., 1994). We

utilize a piecewise a�ne state-feedback struc-

ture coupled with the uncertain multi-model

to formulate the robust constrained nonlinear

stabilization problem as a BMI feasibility prob-

lem. BMI problems are much harder than LMI

problems since they, in general, are nonconvex.

The e�cient algorithms developed for the LMI

problems do, however, provide a constructive

basis on which branch-and-bound algorithms

for BMI problems can be developed, see (Goh et

al., 1994), (Tuan et al., 1997), and (Kawanishi

et al., 1997).
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with other approaches as shown in (Slupphaug

and Foss, 1998a). In that paper the method de-

veloped herein constitutes a basis for developing

a robust MPC scheme for constrained uncertain

nonlinear systems.

The paper is organized as follows. Firstly, we

present the considered multi-model uncertainty

class. Then a BMI is found, which, if it is feasi-

ble, guarantees robust constrained stabilization

of the origin of the uncertain system. Before the

conclusion, the solution of the BMI feasibility

problem is discussed, and an example is pro-

vided.

Some notation: I
M

:= f1; : : : ;Mg; N(x) is a

neighbourhood of x; P > 0 (P � 0) implies

P = P T ; jjxjj2
H

:= xTHx where H > 0; let

a; b 2 N then fa; : : : ; bg := ; and fc
l
gb
l=a := ;,

when b < a.

2. PROBLEM STATEMENT AND

UNCERTAINTY MODEL

The problem we investigate is to �nd a state-

feedback which robustly stabilize the origin of a

plant which can be described by a convex com-

bination of a�ne discrete-time state-space sys-

tems. That is, the uncertain (nonlinear) plant is

assumed to be given by

x
k+1 =

X
j2INm

!
j
(x

k
; u

k
; k)(A

j
x
k
+B

j
u
k
+ c

j
);

(1)

where k � 0, x0 given, x
k
2 X

m
� R

n ,

u
k
2 U

m
� R

m , the local models (A
j
; B

j
; c
j
)'s

are triplets which elements have appropriate

dimensions, N
m

is the number of local models

(subscript m indicates \model"),

!
j
: X

m
� U

m
� N ! [0; 1]; 8j 2 I

Nm
;

andX
j2INm

!
j
(x; u; k) = 1; 8(x; u; k) 2 X

m
� U

m
� N:

(2)

The model validity sets X
m

and U
m

are as-

sumed to be connected sets containing the ori-

gin in their interior.

Uncertainty is represented by allowing !(�; �; �) :=
(!1(�; �; �); : : : ; !Nm

(�; �; �)) to vary within a pre-

de�ned set 
. Next, this set will be de�ned.

The uncertainty description is based on the

assumption that all that is known about the

weights are their state-space supports, XS

j
(su-

perscript S indicates \support"), i.e., knowledge

of the sets

XS

j
:=

[
(u;k)2Um�N

fxj!
j
(x; u; k) > 0g;8j 2 I

Nm
:

(3)

X
S
1

X
S
2

Xm

x2

X
S
3

x1

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

x1

X
C

2

Xm

X
C

3

X
C

1 X
C

5
X
C

4

Fig. 1. The state-space supports; XS

1 , X
S

2 , and
X
S

3 for a multi-model system with three local
models (left), and the associated 5 clusters
(right).

We notice that the projection on the state-space

for all u 2 U
m

in Eq. (3) implies that nonlin-

earities associated with the control input will

be conservatively handled. It should be noted,

however, that an arbitrary nonlinearity associ-

ated with the control input can be handled.

Associated with the state-space supports we

de�ne the following sets: for all j 2 I
Nm



j
:= f~!j ~! : X

m
� U

m
� N ! [0; 1]

and ~!(x; u; k) > 0 only when x 2 XS

j
g;

i.e. the set of all possible weights for local model

number j. Now, let


 := f! = (!1; : : : ; !Nm
) 2 
1 � : : :�


Nm
jX

j2INm

!
j
(x; u; k) = 1; 8(x; u; k) 2 X

m
�U

m
�Ng;

i.e. the set of all valid convex combinations, and

f
!
(x; u; k) :=

X
j2INm

!
j
(x; u; k)(A

j
x+B

j
u+c

j
):

Finally

M := ff
!
j ! 2 
g:

Thus,M now denotes the assumed multi-model

uncertainty class.

Local models with c
j
6= 0 are assumed not

to have support in some neighborhood of the

origin. This amounts to assuming that all the

plants f 2 M, and in particular the real

plant, satis�es 0 = f(0; 0; k) for all k � 0,

i.e. the equilibrium state and -control input are

assumed to be known.

With the state-space supports, XS

j
, we also

associate a partitioning of the state space into

a set of N
c
clusters. A cluster, XC

j
, is a set on

which the same local models have support on

the whole set, and if it is extended, at least one

of the local models will not have support on the

extension. With each cluster, XC

j
, we associate

a set of local models, or, more precisely, a set of

local model numbers �
j
. In Figure 1 (right part)

the 5 clusters associated with the state-space

supports given in Figure 1 (left part) are shown,

in this case; �1 = f1g, �2 = f1; 2g, �3 = f2g,
�4 = f1; 3g and, �5 = f3g.

We will let X
m

and U
m

denote the state- and

control constraints, respectively. In what follows



,

however, have been any connected subsets of,

respectively, X
m

and U
m

containing the origin

in their interior.

3. ROBUST STABILIZATION

The aim of this section is to provide compu-

tationally veri�able su�cient conditions for ro-

bust stabilizability of the origin of system (1).

The outcome of the computation will, when it is

successful, be a piecewise a�ne state-feedback

controller, and a quadratic Liapunov function

for the origin of the closed-loop.

3.1 Piecewise A�ne State-Feedback

We �nitely parameterize the state-feedback,

u(x), as a piecewise a�ne state-feedback. With

the cluster containing the origin and the clus-

ters which closure contains the origin, assumed

(without loss of generality) to be the �rst No

c

clusters, we associate a linear state feedback

u(x) = K
l
x when x 2 XC

l
; l 2 I

N
o
c
: (4a)

With all the other clusters we associate an a�ne

state feedback, i.e. for l 2 fNo

c
+ 1; : : : ; N

c
g

u(x) = K
l
x+ k

l
when x 2 XC

l
: (4b)

Remember that the clusters form a partition of

X
m
, so the above de�ned piecewise a�ne state-

feedback is indeed well de�ned.

It should be noted that there is, in princi-

ple, no problem associating the piecewise state-

feedback with a di�erent partitioning of X
m

than the one associated with the clusters. For

reasons of clarity, however, we restrict the piece-

wise a�ne state-feedback to be associated with

the clusters.

3.2 Set Approximations

To get BMI conditions for robust (constrained)

stabilization we need to approximate the clus-

ters, and state- and control constraints using

polytopes or ellipsoids. A short discussion on

the outer approximations below is given in

(Slupphaug and Foss, 1998b). Here, we only

note that the given approximations exist for the

given sets, and save them for later reference.

Assume that for l 2 I
N
o
c
the polytope

fxjE
l
x � 0g � XC

l
(5)

is used as an outer approximation of XC

l
. For

l 2 fNo

c
+1; : : : ; Np

c
g assume that the polytope

fxj[E
l
e
l
]

�
x

1

�
� 0g � XC

l
(6)

is used, and, �nally, for l 2 fN
c
+ 1; : : : ; N

c
g

assume that the ellipsoid

fxj

�
x

1

�
T
�
E
l
e
l

eT
l
�
l

� �
x

1

�
� 0g � XC

l
(7)

is used. Np

c
is the number of clusters outer ap-

proximated by polytopes. Furthermore, assume

that X
m
is inner approximated as follows

\
i2INqx

fxj jjx� x
i;c
jj2
Hi;x

� 1g � X
m
;

i.e. by an intersection of ellipsoids where x
i;c

denotes the centers of the ellipsoids, and N
qx

denotes the number of ellipsoids. Similarly, we

assume

\
i2INqu

fuj jju� u
i;c
jj2
Hi;u

� 1g � U
m
: (8)

3.3 BMI for Robust Stabilization

In this subsection, we investigate quadratic sta-

bility of the origin of the closed-loop using

the piecewise a�ne state-feedback de�ned by

Eqs. (4). We will let U
m
= R

m , i.e. it assumed

that no input constraints are present. The con-

strained case is deferred to Section 5.

First, we precisely de�ne quadratic stability in

the present context. Based on (Corless, 1994)

the following de�nition is adopted.

Definition 1

Given an uncertain system

x
k+1 = f(x

k
; k) (10a)

f 2 ~M (10b)

where k � 0, x
k
2 R

n , x0 given, and all

f 2 ~M satis�es: f : ~X
m
� N ! R

n and

f(0; k) = 0 for all k � 0. We say that the

origin is a quadratically stable equilibrium for

system (10) if there 9M; P > 0; N(0) such

that N(0) � ~X
m
and 8(a; i) 2 N(0)� N

f(a; i)TPf(a; i)� aTPa � �aTMa;

If, in addition, there exists � 2 (0;1) such that

for a given set ~R
A

~R
A
� fxj xTPx � �g � N(0)

then the origin is said to be a quadratically

stable equilibrium for system (10) with a region

of attraction associated with ~R
A

of at least

fxj xTPx � �g. M

Note that quadratic stability implies robust

exponential stability.

Next, the main result is presented.

Theorem 1

If, restricting the W
l
's to be symmetric and

have nonnegative elements, there 9M > 0; P =

P T ; S = ST ; fK
l
gNc

l=1; fklg
Nc

l=No
c+1

; fW
l
g
N

p
c

l=1;



f�
l
2 Rg

l=N
p
c +1

such that

8l 2 I
N
o
c
; j 2 �

l
,�
S A

j
+B

j
K
l

? P �M �ET

l
W
l
E
l

�
� 0;

(11a)

8l 2 fNo

c
+ 1; : : : ; Np

c
g; j 2 �

l
,

2
4S A

j
+B

j
K
l

B
j
k
l
+ c

j

? P �M �ET

l
W
l
E
l
�ET

l
W
l
e
l

? ? �eT
l
W
l
e
l

3
5 � 0;

(11b)

8l 2 fNp

c
+ 1; : : : ; N

c
g; j 2 �

l
,

2
4S A

j
+B

j
K
l

B
j
k
l
+ c

j

? P �M + �
l
E
l

�
l
e
l

? ? �
l
�
l

3
5 � 0;

(11c)

and

SP + PS � 2I; (12)

then the origin is a quadratically stable equilib-

rium for the closed-loop.

If, in addition, there exist reals �; f�
i
g
i2INqx

,

and � such that �
P � �R

A
0

0 � � �

�
� 0;

(13a)�
�
i
H
i;x
� P ��

i
H
i;x
x
i;c
;

? �
i
(xT

i;c
H
i;x
x
i;c
� 1) + �

�
� 0;

(13b)

then the origin is a quadratically stable equi-

librium for the closed-loop with a region of

attraction associated with fxjjjxjj2
RA

� 1g of

at least fxj xTPx � �g.
M

The ? elements are induced by symmetry of the

associated matrices. The given set fxjjjxjj2
RA

�
1g would typically denote the smallest accept-

able region of attraction.

The proof (Slupphaug and Foss, 1998b) pro-

ceeds by using the so-called S-procedure and

Schur complements (Boyd et al., 1994), and

some other results on matrix inequalities.

The LMIs (11) are conditions for decrease of

the Liapunov function along closed-loop tra-

jectories in the di�erent clusters. The LMIs

(13) are conditions for the Liapunov level set

fxjxTPx � �g to contain fxjjjxjj2
RA

� 1g (13a),
while simultaneously being contained in X

m

(13b). The BMI (12) origins from the inequality

P�1 � S, which emanates from using Schur

complements to get the LMIs (11). The core of

the problem with getting an equivalent condi-

tion involving only LMIs, which of course would

be much more attractive from a computation-

ally point of view, is the inde�niteness of the S-
procedure terms, which seems to necessarily call

for a BMI formulation. It is this inde�nitness,

, p

di�erent local models and state-feedbacks with

di�erent parts of the state-space, thus removing

it will de�nitely introduce signi�cant conser-

vatism. Lastly, it should be noted that a, in

general very conservative, LMI transformation

of the BMI in Theorem 1 exist. This can be done

by forcing S = P and replacing the BMI (12)

by the LMI �
2(I + P ) P + I

? I

�
� 0;

which stems from P�1 � P . To illustrate

0

0.5

1

−1
0

1
0

5

10

15

p11p12

p
2
2

Fig. 2. Satisfaction of P�1 � P and
P > 0 vs. P > 0 only.

why this

may be very

conservative

take P 2
R
2�2 , then,

for P�1 �
P and P >

0 to be

satis�ed, the

elements of

P must lie

between the

two sur-

faces in Fig-

ure 2, whereas

P > 0 for

any point

above the lowest surface.

4. BRANCH-AND-BOUND FOR THE BMI

FEASIBILITY PROBLEM

With the BMI feasibility problem associated

with Theorem 1 we associate the following

eigenvalue optimization problem denoted PEV:

min #

subject to

M > �#I;

A(P; S;M; fK
l
gNc

l=1; fklg
Nc

l=No
c+1

; : : : ) � �#I;

B(P; S) � �#I:

The minimization is over all matrix and scalar

variables in the matrix inequalities. The a�ne

symmetric matrix valued mapping A(�; : : : ; �)
is given by (11), (13) and the nonnegativity

condition on the elements of the W
l
's, and

the bia�ne symmetric matrix valued mapping

B(�; �) is given by (12).

It is clear that if #� < 0, where #� is the value

of # at the optimum, then, and only then, the

BMI and LMIs in Theorem 1 is satis�able. PEV
is a biconvex non-smooth optimization problem

(Goh et al., 1994).

We use branch-and-bound algorithm 3 in (Tuan

et al., 1997) for solving PEV (of course we



stop when a feasible # < 0 is found). In

algorithm 3 the branching is done on a set

of lower dimension, in our case much lower,

than the total problem dimension, as opposed to

(Goh et al., 1994) and (Kawanishi et al., 1997)

where the branching is done on a set with

dimension equal to the total problem size. The

number of so-called complicating variables gives

the dimension of this lower dimensional set.

The number of complicating variables is the

smallest number of variables that need to be

�xed to make the BMI an LMI. In our case

the BMI structure arises due to the single BMI

(12) (when control constraints are represented

as LMIs). Since P = P T 2 R
n�n , this gives

(n2+n)=2 complicating variables (the number of

independent elements in P ) which is much lower

than the total problem size which might be ten

times the number of complicating variables.

The lower bounding in algorithm 3 is done by

a tight relaxation of the BMI (12) to an LMI

and then the resultant LMI problem is solved,

while the upper bounding is done by solving an

eigenvalue problem which is parameterized by

the solution of the lower bounding problem. The

branching is done so as to force the di�erence

between the relaxed BMI and the original BMI

\quickly" towards zero.

5. CONTROL INPUT CONSTRAINTS AS

BMIS OR LMIS

To satisfy the control constraints, U
m
, on all

possible closed-loop trajectories starting within

fxjjjxjj2
RA

� 1g it is su�cient to satisfy

them on the positively invariant embracing set

fxjxTPx � �g � X
m
. For this to be the case it

is su�cient that for all (i; l) 2 I
Nqu

� I
Nc

and

for all x 2 XC

l

\ fxjxTPx � �g

jjK
l
x+ k

l
� u

i;c
jj2
Hi;u

� 1: (14)

When outer approximating the clusters XC

l

in

connection with formulating BMI or LMI con-

ditions for satisfying control constraints one

can use anyone of the approximations (5), (6),

or (7). One is not restricted to use (5) when

l 2 I
N
o
c
. We present the results when using (7),

similar results for the other two cases can be

derived. In this case we get, by invoking the

S-procedure followed by using Schur comple-

ments, that (14) can be transformed into the

following su�cient BMI condition2
4�

P

l;i
P + �E

l;i
E
l

�E
l;i
e
l

KT

l

? 1� �P
l;i
�+ �E

l;i
�
l
k
l
� uT

i;c

? ? H�1
i;u

3
5 � 0:

where all the (scalar) � 's must be nonnegative,

and k
l
:= 0 when l 2 I

N
o
c
. Notice that this

results in only one more complicating variable

(�). It is also possible to �nd a (more conserva

tive) LMI condition for satisfaction of the con-

trol constraints (Slupphaug and Foss, 1998b).

6. EXAMPLE

In this example we show that the proposed

design procedure provides stabilizing controllers

for multi-model systems where there are uncon-

trollable local models, as well as local models

which are a�ne and not merely linear. In partic-

ular, having uncontrollable local models means

that no controller can simultaneously stabilize

all the local models on the whole state-space.

The uncertain multi-model consists of three

a�ne local models, and has three clusters. The

local models are as follows

A1 =

�
�1 2

�1:2 1

�
B1 = 100

�
:1 0

:1 1

�
c1 =

�
0

0

�
;

A2 =

�
�1:1 0

:3 �1:1

�
B2 = 100

�
1 0

0 0

�
c2 =

�
1

0

�
;

A3 =

�
1:5 0

:4 �:7

�
B3 = 100

�
0 0

0 1

�
c3 =

�
0

1

�
:

Notice that all local models are open-loop un-

stable. Furthermore local model number 3 is

not controllable. In this example we let U
m

=

[�1; 1]�[�1; 1], and X
m
= fxjx21+x

2
2�25 � 0g.

X
m
, being itself an ellipsoid, is equal to its inner

approximation. U
m
is inner approximated using

two ellipsoids with centers at the origin and

with longest axes ten times the length of the

shortest.

The clusters and sets of associated local models

are

XC

1 = X
m
n (XC

2 [XC

3 );

XC

2 = fxj(x1 � 3)2 + (x2 � 3)2 � 1 � 0g;

XC

3 = fxj(x1 + 3)2 + (x2 + 3)2 � 1 � 0g;

�1 = f1g; �2 = f1; 2g; �3 = f1; 3g:

XC

1 is outer approximated by X
m
, while XC

2

and XC

3 equal their outer approximations.

Applying the developed BMI based robust de-

sign strategy to this example system, we get the

following piecewise a�ne state feedback con-

troller

K1 =

�
0:0637 �0:0746
0:0061 �0:0043

�
;

K2 =

�
0:0117 0:0010

0:0121 �0:0129

�
k2 =

�
�0:0094
0:0011

�
;

K3 =

�
0:1459 �0:1554
�0:0051 0:0060

�
k3 =

�
0:0666

�0:0087

�
;

and Liapunov matrix

P =

�
0:8760 0:2634

0:2634 1:8861

�

accompanied by � = 73:8766.
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closed-loop motions ('o' and 'x') is given in the

left part of Figure 3 ('o' starts at x � (�9; 4:5)T

and 'x' starts at x � (3:5; 3:5)T ). We observe

that the closed loop trajectories are con�ned

to the set fxjxTPx � �g when starting in-

side it, and that the prescribed relationship

fxjjjxjj
RA

� 1g � fxjxTPx � �g � X
m

is

satis�ed (the borders of each of these sets are

shown). In the right part of Figure 3 we observe

that the Liapunov function is indeed decreas-

ing, and that the control input constraints are

satis�ed (these plots show the 'o' simulation).

In the simulations the following weights de�ned

the real system

!1 = 1 on XC

1 ; 0:2 on X
C

2 ; and 0:6 on XC

3 ;

!2 = 0 on XC

1 ; 0:8 on X
C

2 ; and 0 on XC

3 ;

!3 = 0 on XC

1 ; 0 on X
C

2 ; and 0:4 on XC

3 :
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Fig. 3. Simulation results.

7. DISCUSSION AND CONCLUSIONS

We note that important problems such as out-

put feedback and disturbance rejection cannot,

at the moment, be addressed by the given de-

sign procedure. However, the work (Dussy and

El Ghaoui, 1997) provides hope for such exten-

sions.

In conclusion, a computationally solvable ro-

bust constrained controller synthesis method

is developed. Robustness against model uncer-

tainty is investigated, and the problem solved is

a stabilization problem.
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