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ABSTRACT
A BMI-based approach to an on-line computation-
ally efficient robust nonlinear MPC is proposed. The-
oretical results and a simple example accompany the
proposed method.

1 INTRODUCTION

Model predictive control (MPC) has been an active
research area for close to two decades. The research
has been driven by numerous successful applications of
the technology [1], and during the last years a sound
theoretical foundation has been established; [2], [3], and
[4].

The issue of robust stability of MPC based control
systems, however, is largely unsolved, at least for non-
linear MPC. Some results are available though. Works
on robust MPC for linear systems include: [5] on con-
strained stable systems; [6] on unconstrained systems;
[7] and [8] on constrained systems. Works on robust
analysis of nonlinear MPC include: [9] and [10] on con-
strained continuous-time systems, and [11] on uncon-
strained discrete-time systems. Finally, works on ro-
bust synthesis, i.e. an uncertainty model is explicitly
used when synthesizing the controller, of nonlinear MPC
include: [12] on stable constrained discrete-time sys-
tems, [13] on input-affine constrained continuous-time
systems, and [14] (based on [7]) on input-affine feedback
linearizable constrained discrete-time systems.

In this paper we consider robust synthesis of MPC
controllers for nonlinear constrained discrete-time sys-
tems. The approach applies to stable as well as unsta-
ble plants, it is not restricted to input-affine plants, and
the on-line computational load is low (the off-line load,
however, may be very high) as opposed to [13]. Further-
more, the approach does not have a min-max nature
as have [13] and [14], this may give better performance
when the nominal model used in the predictor is close
to the real plant [12], thus its nature is close to the ap-
proach in [12] where nominal performance is optimized
subject to robust stability.

Roughly speaking, our approach is based on ensur-
ing that the constraint ||zg41]|% < ||zk||% is satisfied for
any possible plant within the model uncertainty class (to
be defined later), where x; € R™ denotes the plant state
at time-step k and ||z||% := 2T Pz (P = PT > 0). If
this is the case, then certainly the origin is (robustly)
asymptotically stable since = +— T Px constitutes a Li-
apunov function for the origin of the closed loop. This

constraint is added to the other constraints on the pre-
dicted control inputs and states in the MPC associated
optimization problem to be solved at each time-step k.
The problem now, of course, is how to find a suitable P,
and also how to find an initial feasible predicted control
sequence at every time-step k > 0. To this end we have
utilized results and ideas from LMI based control [15]
and multi-model systems [16], [17].

In LMI-based control, which has gained a lot of in-
terest in the last few years, control system analysis-
and synthesis problems are formulated as convex op-
timization problems involving linear matrix inequali-
ties (LMIs). The reason for this interest is the devel-
opment of very efficient interior point algorithms for
solving such problems [18]. Many interesting control
problems, in particular robust control problems, can be
solved within the LMI framework. There are, however,
interesting control problems which are very hard or im-
possible to formulate within the LMI framework. Some
of these problems can be formulated within the more
general bilinear matrix inequalities (BMIs) framework
[19]. BMI problems are much harder than LMI prob-
lems since they, in general, are nonconvex. The efficient
algorithms developed for the LMI problems do, however,
provide a constructive basis on which branch-and-bound
algorithms for BMI problems can be developed, see [20],
[21], [22], and [23].

In recent years much work has also been put into the
development of nonlinear models which are composed
of a set of local models [16], [17]. The local models
are valid in different parts of some predefined operat-
ing set in which the operating point typically will be
defined by some of the measured control inputs and/or
systems outputs. Further, the nonlinear (global) model
is formed as a convex combination of the local mod-
els. Other names for multi-model systems are operating
regime based models and fuzzy models. In this work we
focus on multi-model systems in which the local models
are affine discrete-time state-space models, and we uti-
lize this model structure to describe the model uncer-
tainty class. This structure has at least three important
advantages: (i) It is possible to utilize the affine struc-
ture of the local models for analysis and synthesis; (%)
the model class is rich in the sense that it approximates
arbitrarily close a very large class of nonlinear systems;
(i43) the model structure is transparent and there exist
support tools for model identification.

Finally, we note that work on computationally



procedures for stability analysis of certain classes of
continuous-time nonlinear systems, in particular multi-
model systems composed of affine local models, is lately
reported in [24], and [25].

We utilize a piecewise affine state-feedback structure
to formulate the robust constrained nonlinear stabiliza-
tion problem as a BMI feasibility problem. If this prob-
lem is solvable, we get a quadratic Liapunov function
and a piecewise affine state-feedback which can be used
to provide an initial feasible control sequence at every
time-step & > 0 provided the initial state is within a
given level set of the Liapunov function.

The paper is organized as follows. Firstly, we
present the considered multi-model uncertainty class.
Then a BMI is found, which, if it is feasible, guaran-
tees robust constrained stabilization of the origin of the
uncertain system. After this, an approach to nonlinear
constrained robust MPC is presented based on a solu-
tion to a BMI feasibility problem. Before the conclusion,
an example is provided.

2 MODEL UNCERTAINTY CLASS
The problem we investigate is to robustly stabilize
the origin of a plant which can be described by a convex
combination of affine discrete-time state-space systems.
That is, the (nonlinear) plant is assumed to be given by

Topr = wji(wk, wk, k)(Ajzy + Bjuk + ¢)),
j€IN,, (1)

where k > 0, zg given, z € X,, C R", uy € U,, C R™,
the local models (A;, Bj,c;j)’s are triplets which ele-
ments have appropriate dimensions, N,, is the num-
ber of local models (subscript m indicates “model”),
In, ={1,...,Np},

wj: Xm X Uy xN—=[0,1], Vj € Iy,,,
and

Z wj(z,u, k) =1, Y(z,u, k) € X;,, x Up, x N.
JEIN, (2)

X, and U, are assumed to be connected sets containing
the origin.

Uncertainty is represented by allowing w(:,-,-) =
(wi(sy+)yev.ywn,, (4, %)) to vary within a predefined
set 2. Next, this set will be defined.

The uncertainty description is based on knowledge
of the state-space supports, X JS (superscript S indicates
“support”), for the weights w;(-,-,-), i.e., knowledge of
the sets

X]S = U

(u,k)EUm XN

suppw;(-,u, k),Vj € In,,, (3)

where, for a nonnegative real-valued function a(-),
supp a(-) returns the set on which a(-) is positive. By
Eq. (2) the X7’s cover X,p,.

X ﬁ/ :

Figure 1: The state-space supports; X1, X5, and X§ for a
multi-model system with three local models (left), and the
associated 5 clusters (right).

An example of state-space supports for a 2-
dimensional system is shown in the left part of Figure
1.

We notice that the projection on the state-space for
all u € Uy, in Eq. (3) implies that nonlinearities as-
sociated with the control input will be conservatively
handled. It should be noted, however, that an arbitrary
nonlinearity associated with the control input can be
handled.

Associated with the state-space supports we define
the following sets: for all j € Iy,,

Q ={®| ®: XppxUpxN —[0,1] and &(z,u, k) > 0
only when x € XJS},

i.e. the set of all possible weights for local model number
j. Now, let

Q:: {w: (CUl,... 7wNm) S Ql X QNm|
Z wi(z,u, k) =1, V(z,u, k) € X, x Up, x N},
j€IN,,

i.e. the set of all valid convex combinations, and

fol@,uk) == > wi(w,u, k)(4;z + Bju + ¢;).
j€IN,,

Finally
M= {f,|w e Q}.

Thus, M denotes the assumed multi-model uncertainty
class.

Local models with ¢; # 0 are assumed not to
have support in some neighborhood of the origin. This
amounts to assuming that all the plants f € M, and in
particular the real plant, satisfies 0 = f(0,0, k) for all
k > 0, i.e. the equilibrium state and control input are
assumed to be known.

With the state-space supports, X JS , we also associate
a partitioning of the state space into a set of N, clusters.
A cluster, X ]C , is a set on which the same local models
have support on the whole set, and if it is extended, at
least one of the local models will not have support on



the extension. In Figure 1 (right part) the 5 clusters
associated with the state-space supports given in Figure
1 (left part) are shown.

We will let X,,, and U,,, denote the state- and control
constraints, respectively. In what follows the state- and
control constraint sets could have been any connected
subsets of, respectively, X,, and U, containing the ori-
gin.

3 RoOBUST CONSTRAINED STABILIZATION
3.1 PIECEWISE AFFINE STATE-FEEDBACK
We finitely parameterize the state-feedback, u(x), as
a piecewise affine state-feedback. With the cluster con-
taining the origin and the clusters which closure contains
the origin, assumed (without loss of generality) to be the
first V¢ clusters, we associate a linear state feedback

u(z) = Kjz when z € X7, 1 € Iyo. (4a)

With all the other clusters we associate an affine state
feedback, i.e. for I € {N? +1,...,N.}

u(z) = Kz + k; when z € XF. (4b)

Remember that the clusters form a partition of X,,, so
the above defined piecewise affine state-feedback is in-
deed well defined.

It should be noted that there is, in principle, no
problem associating the piecewise state-feedback with a
different partitioning of X,,, than the one associated with
the clusters. For reasons of clarity, however, we restrict
the piecewise affine state-feedback to be associated with
the clusters.

3.2 BMI FOR ROBUST STABILIZATION

In this subsection we present the essential results
from [26] in a very condensed form (due to page con-
straints). This forms the basis for the forthcoming ro-
bust MPC result.

Theorem 1 [26] says that if a specified BMI, which
basically describes conditions for the decrease, in the
different clusters, of the Liapunov function  — zT Pz
along all possible closed-loop trajectories which can be
generated by plants in M under the state-feedback (4),
and conditions for that the level curve {z|zTPzr =
a, a > 0} is within X,, and outside the prespecified
smallest acceptable region of attraction {z|xTRaz <
1, R4 > 0}, is feasible, then the origin is quadratically
stable and has a region of attraction associated with
{z|zTRaz < 1} of at least {z|zT Pz < a}. Quadratic
stability [15] is a stability notion for uncertain systems
which is natural to use when formulating LMIs or BMIs
for robust stabilization. In this result we assume that
U, = R™, i.e. no control constraints, only state con-
straints X,,.

Theorem 2 [26] handles the case where both the
states and controls are constrained. It can be shown that

control constraints can be formulated as LMIs, or, less
conservatively, as BMIs. Thus, by adding these LMIs
or BMIs to the ones in Theorem 1, we get that feasi-
bility of the resulting BMI guarantees that the origin is
quadratically stable and has a region of attraction asso-
ciated with {z|zTRaz < 1} of at least {z|zT Pz < o}
and that the control input constraints are satisfied on all
closed-loop trajectories starting within {z|z” Pz < a}.

As mentioned earlier, solving BMI problems is much
harder than solving LMI problems. We use branch-and-
bound algorithm 3 in [22] for solving the BMI feasibility
problems associated with Theorems 1 and 2 in [26]. A
similar approach for BMI problems can be found in [21].
In algorithm 3 the branching is done on a set of lower
dimension, in our case much lower, than the total prob-
lem dimension, as opposed to [20] and [23] where the
branching is done on a set with dimension equal to the
total problem size. The number of so-called complicat-
ing variables gives the dimension of this lower dimen-
sional set. The number of complicating variables is the
smallest number of variables that need to be fixed to
make the BMI an LMI. In our case the BMI structure
arises due to one single BMI (when control constraints
are represented as LMIs)

SP+PS<2l («S§<PY

where 0 < § = ST, P = PT ¢ R™". This gives
(n? + n)/2 complicating variables which is much lower
than the total problem size which can be maybe ten
times the number of complicating variables. From this
we also observe that the BMI problem reduces to an
LMI problem if the Liapunov function is fixed, i.e. only
the state-feedback (4) is computed.

4 RosusT MPC

The results from the preceding sections will now be
used to robustify MPC. This will be done by introduc-
ing the precomputed Liapunov function into the MPC
optimization problem. Further, the precomputed feed-
back matrices (cf. (4)) will be used to compute an initial
value for the optimization problem to be solved at each
time-step.

First, an optimality criterion is defined on the pre-
diction horizon N.

(b(ﬂ-k; Xk k7 Tk, u’k:—l)

o= {un, - ukeN-1}, Xk = A{Tkg1, o Then T
¢ R - - xR™XR™x- - -XR"XNxR"XR™—[0, 00).

Second, the following optimization problem, to be
found feasible or solved at each time step k, denoted
Pumpc is specified.

: nom.,
min (Trank; 7k7$k7u’k—1)
7 €11



subject to
ion2 2 2y . xS
74 llp = llznlle < —llzkllag, Vi€ {jlar € X7},

and the soft constraint: xz°" € X x --- x X.

P and M are given by Theorem 2 [26], cf. Section 3.2.
II:=U,, X - xUp. mi 41 denotes the one-step ahead

prediction using affine local model j, i.e. mi 41 =
Ajzy 4+ Bjug 4+ ¢j. x3°™ denotes the prediction on the
N-step ahead horizon using some model which typically,
when restricted to X, x U,, x N, is within the model
uncertainty class M. This model is denoted the nominal
model. The so-called soft constraint is defined by X. It
should be noted that it is sensible that X C X,,, so as
to “softly” force the predicted states to be within the
state constraints. If the nominal model is within M on
X xUpxNand X C {z|zT Pz < a} then the soft con-
straint can be satisfied, if wanted, for every k£ > 0. If the
choice of X or the choice of nominal model makes the
soft constraint infeasible at some k it can be dropped at
that k£ while retaining the closed-loop plant state within
X,n. This follows from the hard constraint.

The solution procedure for the MPC is defined as
follows.

Step 1 At time-step k the initial choice for 7y in the itera-

tive optimization algorithm is computed by the pre-
computed state-feedback (4), {Kl}f\;cl,{kl}f\;cNOH,
derived from Theorem 2 [26], using the nominal
model for prediction.

Step 2 The iterative optimization algorithm for solving

Pumpc is run until convergence or, alternatively, ter-
minated earlier.

We may now formulate the following Theorem,
based on Theorem 2 [26].

THEOREM 1 (NONLINEAR RoBUST MPC)

Assume that the system to be controlled is given by some
element in M. Then an MPC based on the solution
procedure above renders the origin of the closed-loop
quadratically stable with a region of attraction associ-
ated with {z|zTRaz < 1} of at least {z|zT Pz < a} C
X, while satisfying the constraints on the control in-
put. A

From the discussion above and the one to follow this
Theorem should be clear, for a rigorous proof, see [26].
As mentioned above the soft constraint in Pupc
may or may not be satisfied. Importantly, it should be
observed that the result does not depend on this.

The solution procedure utilizes an iterative opti-
mization algorithm. Since the initial choice satisfies the
hard constraint, consecutive iterations will also satisfy
these constraints. The importance of the iterative search
is to improve nominal performance within the frame of

a robust stability guarantee. By this, the iterative al-
gorithm may be terminated at an arbitrary iteration
without affecting (quadratic) stability. This may e.g.
be caused by limited computation time.

The optimization problem may be non-convex
if the nominal prediction model is nonlinear, or if
(-, 3 k, g, up—1) is non-convex. The latter is rarely en-
countered since ¢(, -; k, zx, up_1) typically is chosen as a
norm-based function, and all such functions are convex.
Again, this does not affect the stability result.

The proposed MPC algorithm may be interpreted
as follows: (i) Robust stability is guaranteed by con-
sidering the 1-step ahead prediction of the whole model
uncertainty class. This is possible since the set of pos-
sible 1-step ahead predictions is defined by a polytope
where the vertices are given by the affine systems that
are active at the present state xp. It should be noted
that this is, of course, less conservative than letting all
the models have support X,,; (ii) Performance is taken
care of by considering a nominal model on the entire
prediction horizon. In practice the nominal model will
be chosen as the most likely model. It may either be a
linear or a nonlinear model.

5 EXAMPLE

The example system, which is  taken
from [27], is  depicted in  Figure 2.
It is a mechanical
system  consist-

i 7
ing qf a mass, % o(2)
a spring, and a % u
damper. The % M
li -
o ot 0
_ —

have the following

structure Figure 2: Example system.

T1 = T2

B2 = — (—g1(z1, 22) — g2(21) + )

1
M
where

g1(z1,m2) = D(c1m1 + c213); ga(w1) = c3xy + cazl
and system knowledge permits us to limit the parame-
ters to

M=1 09<D<12 0<¢ <£0.02(4)
01<¢2<02 001 <¢3<0.02 0.7<es<1 (5)

To facilitate the uncertainty modeling of this system we
rewrite o as

o = fi(z1) + fa(z2) + il

M
DC2

fi(@) = _% ((Dcl + c3)21 + 0435%) i fa(ze) = T b2



Next, we develop the model class M, which provides
an outer approximation to the set of possible systems
defined by the uncertainty (4)-(5).

This is done by first finding the upper and lower
bounds for each of fi(-) and f2(-) on [—1.5,1.5]. Piece-
wise affine functions are then chosen, which tightly ap-
proximate the lower bounds from below, and the upper
bounds from above. The upper and lower bounds for
f1(+) and f2(-) as well as their tight outer approximations
are shown in Figure 3 to the upper left and upper right,
respectively. The bends of the piecewise upper and lower
bounds for both functions are at +0.8667. Both the up-
per and lower outer approximations for each function
consists of four pieces, this gives rise to 4 x 4 x 2 = 32

“local” planes covering f(x1,22) := f(z1) + f(x2) on
[-1.5,1.5] x [-1.5,1.5] =: X,;,, as shown at the bottom
in Figure 3.

For each of the 32 “local” planes it is straightfor-
ward to find an associated discrete-time local model
(Aj, Bj,c;). We have used a sample-period of 0.2 and
forward Euler in all our simulations.

The supports X JS are given by 8 x 2 rectangles and
8 X 2 squares, as can be seen in Figure 3. M is now
defined by the supports and the local models. There
are 4 X 4 = 16 clusters associated with the 32 supports.
Two local models have support in each cluster, X ]C (an
upper and a lower bound for f(-,-)).

In this example we let U, := [—0.5,0.5], while the
smallest acceptable region of attraction is chosen to be
{z|zTx < 1}, i.e. the closed unit ball. We are now in
a position to formulate a BMI for constrained robust
stabilization of the origin. Solving the BMI feasibil-
ity problem, which in this case involves solving 5 LMI
problems or three iterations in the branch-and-bound
algorithm, results in a robust controller giving a closed
loop trajectory as depicted by the dashed trajectory in
the left part of Figure 4. The accompanying control in-
put sequence is depicted by the dashed line in the right
part of Figure 4. We observe that both the relation
{z]zTx < 1} C {z]zTPz < a} C X,,, and the con-
trol constraints are satisfied. In the simulations, D and
c4 have sinusoidal variations between their upper and
lower bounds, the other parameters are fixed as follows:
M =1, ¢; = 0.02, co = 0.15, and c3 = 0.015 while
zo = (—0.6325, —0.9518).

Now, suppose that instead of merely robustly sta-
bilize the plant while satisfying state and control con-
straints, we, in addition, want to optimize the perfor-
mance as defined by the following cost function.

P({ur}io; o, u—1)
(o]
= (@api1 —w2p)? +aF g+ (ur —up—1)”
k=0

where xp+1 = f(xg, ug, k) is the state of the real plant at
time k41, while x; j, denotes the ¢’th element of the real

plant’s state vector at time k. This cost function express
natural objectives as minimize actuator wear and mass
acceleration while keeping the position at zero. Mini-
mizing ¢(+; xo, u—_1) is of course impossible since the real
plant, f(-,-,-), is not known. Moreover, there is an in-
finite number of decision variables and constraints. We
propose to approach this problem using the robust MPC
developed in Section 4. As a cost function we propose

AT, XE°™5 Thy U—1)
10
2
= Z(mgiﬁi—m%ﬁi—ﬂa‘ TP A (U1 —Ukgi—2)?
=1

Using the solution procedure proposed in Section 4 with
X = R", u_; = 0, and a nominal model defined by:
M =1,D =11 ¢ = 0.02, cg = 0.15, c3 = 0.015,
¢y = 0.7, we get the closed loop trajectory as shown by
the solid trajectory in the left part of Figure 4. The
accompanying control input sequence is shown by the
solid line in the right part of Figure 4. If we compare
d({ur}io; o, u—1) for the two simulations, we get 10.61
for the piecewise affine state-feedback versus 4.79 for the
robust MPC, that is, a 55 % cost reduction. Further,
we note that the control constraints are reached in the
MPC case as opposed to the case when the piecewise
affine state-feedback is used. This is because the control
constraints are somewhat conservatively handled when
transforming them into LMIs or BMIs. Thus, such con-
servatism can be removed while retaining the robust sta-
bilization property when using the MPC approach.

— —
— (]
S S

=1 =

0 <2

~15 1

15 -1.5 ) 15

Figure 3: Graphs illustrating the development of the non-
linear multi-model uncertainty class for the example.
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Figure 4: Left: Phase-plane plot of closed-loop trajecto-
ries using piecewise affine state-feedback (dashed) and robust
MPC (solid). Right: Accompanying control input sequences.

6 CONCLUSION

An approach to nonlinear constrained robust MPC

is presented. The method utilizes structural model un-
certainty and guarantees robust stability.
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