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Abstract
In this paper we investigate the use of model predic-

tive control (MPC) as a means for controlling a class of

sampled-data hybrid systems. A weak form of uniform

asymptotical stability is established for the closed-loop.

This is done by �rst establishing stability results for an

associated discrete-time system. Conditions for existence

of a solution to the underlying optimization problem are

also provided.

1 Introduction
Industrial control systems are generally comprised of logic

and continuous controllers. The logic performs functions

like starting process equipment, controlling low-level (or

regulatory) controllers, and controlling discrete control in-

puts (on/o� valves, pumps etc.). The logic may for in-

stance switch between di�erent continuous controllers de-

pending on the operating conditions of a process. Contin-

uous controllers are used for regulatory control and for su-

pervisory control. On the regulatory level PID-controllers

constitute the typical continuous controllers. On the su-

pervisory level continuous controllers compute the set-

points for the regulatory controllers using for instance an

optimization algorithm. In our context it is important

to note that the logic and continuous controllers in many

cases are closely coupled, hence they form a hybrid dy-

namic system (HS). Typically, industrial design practice

is based on a separate construction of the continuous and

logic part of a control system. By this, the e�ect of the in-

teraction between the continuous and logic part is di�cult

to foresee during the design-phase.

The hybrid nature of a system may also originate from

the controlled system itself. In chemical process control a

process may change its characteristics abruptly. One ex-

ample of this is the change between laminar and turbulent


ow conditions.

The above observation forms the motivation for this

study in which we investigate the design of hybrid control

systems. We utilize optimization-based control, or more

speci�cally, MPC for this purpose. This is done by includ-

ing both continuous- and discrete control inputs as deci-

sion variables in the optimization. Further, the switching

instants of the control inputs are also decision variables.

There are extensive research e�orts in HS today. Re-

search is conducted in both mathematical-, control-, and

computer science communities, see eg. [1] and references

therein. Some of this research is directed towards process

control as reported in [2].

MPC has been an active research area for close to two

decades. The research has been driven by numerous suc-

cessful applications of the technology, and during the last

years a sound theoretical foundation has been established

[3].

This paper consists of two parts. First, the proposed

control strategy is presented and certain aspects of it are

discussed. Second, we present stability results for our pro-

posed control strategy.

In what follows := (=:) denotes assignment, a function

f : X�: : :�Y! W is denoted f(�; : : : ; �), N := f0; 1; : : :g,
N
+ := f1; : : :g, IN := f0; : : : ; Ng, and I+N := f1; : : : ; Ng.

2 Problem formulation
We have tried to keep the notational complexity as low

as possible. Further the symbolism is, as far as possible,

made consistent with mainstream work in the MPC area.

2.1 The Plant
The plant to be controlled is assumed to be known and

described by the following continuous-time, time-invariant

constrained linear system:

� :
d

dt
x(t) =: _x(t) = Ax(t) +Bu(t); t � 0;

x(0)� given,

n := dim(x(t)) ; m := dim(u(t));

x(t) 2 X � Rn ; u(t) 2 U � Rm;

A 2 Rn�n ; B 2 Rn�m;

where x(t) is the state of � at time t, and u(t) is its

control input at time t. We have available a sampled state

measurement. We assume that the state and control input

of � are chosen so that the control objective is to bring

the state to the origin. Thus, naturally we let 0 2 X �U .
Also, X and U are assumed to be closed.

2.2 The Controller
As mentioned in the introduction, an MPC strategy is

used to design the controller. Thus, as a part of the con-

troller, a predictor is needed.

2.2.1 Predictor
We are considering the nominal case, and use the sampled

solution of � as the predictor:

z(� ;�) := eA�z0 +

Z �

0

eA(���)B�(�;�) d�
(1a)

zj := z(j�;�) (1b)

where



� the sample period (� > 0).

Let k � 0 be the current discrete-time index, then

tk := k� the current time;

j a generic future (relative to k) discrete-time
index;

z0 in general some estimate of x(tk). In this

study z0 = x(tk);

z(� ;�) the prediction of the state of � at time tk+�
using � (see below);

zj the prediction of the sampled state at time

tk + j� using �;

�(�;�) the open-loop control input at time tk + �,
induced by �. Cf. Eq. (2).

Further, we de�ne the following symbols:

TM denotes both the �nite move horizon and the

endpoint of the move horizon (the open-loop

control input is identically zero beyond this

horizon);

M the (maximum) allowable number of control

input switches on the move-horizon;

�� := (�i)i2I+
M

where �i 2 [0; TM ] ^ �i � �i+1;

the open-loop timing sequence;

�0 := 0;

�M+1 := TM ;

�� := (�i)i2IM�1
where �i 2 U , the open-loop

control input sequence;

�i; i 2 IM�1 the open-loop control input at the time-

interval [tk + �i; tk + �i+1);

�i; i 2 I+M instants at which the open-loop control input

is switched.

At last,

� := (�� ; ��) the timed open-loop control input

sequence.

The open-loop control input, �(�; �), used in the predictor,

Eqs. (1), is de�ned as:

�(�;�) :=

(
�i; � 2 [�i; �i+1); i 2 IM�1;

0; � � �M :
(2)

2.2.2 Performance index
The performance index is de�ned as:

�(�;xk ; k) :=
X

j2IN�1

Lz;k+j(zj)

+
X

i2IM�1

Lk�;i(�� ; �i);

where

Lz;j(�); j 2 N nonnegative real functions,

Lk�;i(�; �); (k; i) 2 N � IM�1 nonnegative real functions,

xk := x(tk),

N� the prediction horizon.

The notation Lk�;i(�; �) is necessary since L�;i+k(�; �) do

not, in the present approach, provide the desired 
exibil-

ity. Note that, of course, L�;k+(i+1)(�; �) = L�;(k+1)+i(�; �).
We, however, would like to avoid this forced equality,

and, indeed, Lk�;i+1(�; �) and Lk+1�;i (�; �) may be chosen in-

dependent of each other. A typical choice for Lk�;i(�; �)

would be Lk�;i(�� ; �i) = (�i+1 � �i)=TM ~Lk+i(�i), where
~Lj(�); 8j 2 N, are nonnegative real functions.

2.2.3 Optimization
Let

�� := f�� : �� satis�es its de�nitiong;

�� := f�� : �� satis�es its de�nitiong:

We de�ne the set of all possible timed open-loop control

input sequences by

� := �� ��� :

The optimal timed open-loop control input sequence at

time tk is given by the solution to the minimization prob-

lem, P(xk; k),

P(xk; k) : min
�2�

�(�;xk ; k)

s.t. Eqs. (1);

zi 2 X;8i 2 I+N�1;

zN = 0:

The �nal state equality constraint, zN = 0, is present for

closed-loop stability reasons.

We denote the minimizer ��k(xk), i.e.

��k(xk) := argP(xk; k):

Let

��(xk ; k) := �(��k(xk);xk ; k):

We recursively de�ne

��k(xk) =: (�
�
�;k(xk); �

�
�;k(xk))

=: ((��k;i(xk))i2I+
M

; (��k;i(xk))i2IM�1
):



With the solution of P(xk; k) we also associate ��k(�; �),
z�k(�; �), and z�k;j(�), where

��k(� ;xk) := �(� ;��k(xk));

z�k(� ;xk) := z(� ;��k(xk));

z�k;j(xk) := z�k(j�;xk):

The control input at the time-span [tk; tk+1) is by de�ni-

tion of MPC

u(t) := ��k(t� tk;xk); t 2 [tk; tk+1): (3)

Observe that sampled state feedback is present. Signals

and symbols are depicted in Fig. 1.

z0
z1

�0

z(� ; �)

�1

�(� ; �)

�

0

TM

tk+1 tk+2tk tk+N Time

�2 �3

z2

zN

tk+TM

�M

�0

�1

Figure 1: The control input �(�; �) switches on the con-

tinuum [tk; tk + TM ]. The switching times are denoted

�i. The continuous-time system is sampled at equidis-

tant time-instants with sample period �, as indicated by

(tk+j ; zj). The control input returns to zero at �M . If the

depicted �(�; �) is the optimizing ��k(�; �), then the \fat"

part of �(�; �) would represent u(t), t 2 [tk; tk+1).

2.3 Discussion
We allow U to be formed by a Cartesian product of unions

of closed connected sets (associated with the continuous

control inputs) and �nite sets (associated with the dis-

crete control inputs). Note that such sets will always be

disconnected (and nonconvex), as opposed to most work

on model predictive control where it is assumed that U
is at least connected, in fact U is almost always assumed

to be convex. Convex X and U combined with a predic-

tor/performance index pair giving a convex optimization

problem lead to readily computable optimal solutions. In

our case, however, P(xk; k) becomes a nonlinear mixed-

discrete programming problem when there are discrete

valued elements in u(t). Even if the performance index

is a quadratic form, the system is linear, and u(�) takes on
values in some convex set, P(xk; k) is in general a noncon-
vex programming problem due to the predictor's nonlinear

dependence on the �i's.
The controller is assumed to receive the current state of

the plant at known time-instants, tk, further, we assume it

can change the control input at any time-instant, limited,

however, to a �nite number of times, M , on a �nite time

interval, TM . This assumption makes our approach dif-

ferent from both pure discrete-time and continuous-time

MPC approaches. We let the time-instants at which we

obtain information be equidistant, and the time-span be-

tween each instant equals the sample period, �. It is also

assumed that the quantization of x(t) and u(t) is in�nitely
�ne.

Our choice of parameterization of the open-loop control

input, cf. Eq. (2), induce a piecewise constant closed-loop

control input. There are, of course, also other sensible

parameterizations. However, discrete control inputs are

easily included in our choice, further it is the simplest

parameterization possible, hence it does not complicate

the analysis more than necessary.

In our case we may have an in�nite or �nite prediction

horizon combined with a move-horizon restricted to be �-

nite with a �nite number of moves on it. In addition the

number of moves, M , and the number of stages, N , on

the prediction horizon is not necessarily equal in the �nite

case (certainly not in the in�nite case), and either one can

be the larger. However, the move horizon cannot be longer

than the prediction horizon (TM � N�). The control in-

put is not restricted to switch only at the sample instants,

tk | the switching times, �i, are decision variables. In

particular this latter point does not allow an application

of the previously reported results known to the authors.

Neither the predictor nor the performance index may be

cast into the general discrete-time framework of Keerthi

and Gilbert [4].

As is seen from the above discussion, there are sev-

eral di�erences between our approach and others. How-

ever, we note that if we drop the switching times as deci-

sion variables and instead �x �� = ��� := (�; : : : ;M�),

then convex X and U , and quadratic forms as stage-costs

give a \standard" linear MPC formulation, apart from the

sampled-data formulation.

3 Stability analysis of the pro-

posed MPC approach
Several MPC approaches which ensure nominal closed-

loop stability have been proposed. Cf. [5] for a review. In

our work we will use the line of reasoning used in [4] as a

basis, and also we will use ideas from [6].

Let R+ denote the set of nonnegative reals. jj�jj denotes

the Eucledian norm. For " 2 R+, N(") := fx : jjxjj � "g.
A function W : R+ ! R+ is said to belong to class K0 if:

(a) it is continuous; (b) W (s) = 0 , s = 0. W (�) is in

class K+ if W (�) 2 K0 and is strictly increasing. W (�) is

in class K1 if W (�) 2 K+ and W (s) ! 1 when s ! 1.

btc denotes the largest integer smaller than or equal to

t, while dte denotes the smallest integer greater than or

equal to t.

3.1 Stability preliminaries
The stability properties of the closed-loop will be estab-

lished by using the following theorem with ��(�; �) as the



Liapunov function V (�; �).
Consider the constrained time-varying system

xk+1 = fk(xk); xk 2 ~X � Rn; k � 0; (4)

where fk : ~X ! ~X for all k � 0. For (l; a) 2 N � ~X, let

xk(l; a), k � l, denote the solution of (4), given xl = a. A
state xe 2 Rn is said to be an equilibrium state for (4) if

xe 2 ~X and fk(xe) = xe for all k � 0. Assume that x = 0

is an equilibrium state for (4).

Theorem 1

Suppose 9� > 0; V : N � N(�) ! R, �(�) 2 K+,
�(�) 2 K+, 
(�) 2 K+, which satisfy the following
conditions: (a) N(�) � ~X; (b) �(jjajj) � V (l; a) �

�(jjajj); 8(l; a) 2 N � N(�); and (c) V (l; a) � V (l +
1; xl+1(l; a)) � 
(jjajj);8(l; a) 2 N � N(�): Then for (4),
the following result holds: x = 0 is uniformly asymptoti-
cally stable (UAS).

The proof is omitted due to page limitation. It can be

found in [7].

3.2 Existence of a solution to P(xk; k)
The stability results depend on solving P(xk; k), hence at
least su�cient conditions for this to be possible should be

found.

Su�cient conditions for existence of solutions to discrete

optimal control problems are also reported elsewhere, in-

cluding [6], [8], and [9].

By a feasible timed open-loop control input sequence,

it is meant a � that satis�es the constraints imposed on

P(xk; k).

Proposition 1

If Lz;j : R
n ! R; j 2 N, and Lk�;i : �� �R

m ! R; (k; i) 2
N � IM�1, is nonnegative lower semicontinuous; 8(k; i) 2
N � IM�1; �� 2 �� L

k
�;i(�� ; �)!1 as jj�jj ! 1; and X

and U are closed, then the existence of a feasible timed
open-loop control input sequence � that yields a bounded
performance index �(�;x; k) for initial condition x implies
the existence of an optimal timed open-loop control input
sequence, ��k(x), for this initial condition.

The proof is omitted due to page limitation. It can be

found in [7].

3.3 Stability results
In what follows we assume the prediction horizon, N , is

�nite, contrary to the existence proposition where there

was no such restriction.

The (continuous-time) closed-loop system is:

�CL : _x(t) = Ax(t) +B��k(t� tk;x(tk));

x(tk) 2 ~XF ; t 2 [tk; tk+1); k � 0:

We also have the following associated discrete-time closed-

loop system | �CL as observed at the sampling instants:

�ACL : xk+1 = x(tk+1) = z�k(�;�
�
k(xk)) = z�k;1(xk);

xk 2 ~XF ; k � 0:

Below, ~XF is de�ned and shown to be nonempty.

We proceed by considering �ACL. Let the solution of

�ACL be denoted xk(l; a) for k � l given xl = a.
Similar to [4] we de�ne a predictor property CF , which

is implied by controllability (for interpretation, see imme-

diately below) of the predictor, see [4]. Let �� = ��� ,
and delete the columns of the control distribution ma-

trix corresponding to the discrete control inputs before

performing the usual algebraic test for controllability on

the resulting associated linear discrete-time system. In

the nominal case considered here, controllability of the

predictor follows from controllability of � (in the sense

described above) as long as we have a non-pathological

sampling period with respect to A [10].

De�nition 1 (Property CF )

The predictor (1) has property CF if 9W (�) 2

K1; M 0; T 0M ; N 0 such that for every a 2 Rn, 9� 2

�0� � (Rc �D1 � : : :�Dm�c)
M 0

such that for z0 = a:

zN 0 = 0 and

M 0
�1X

i=0

jj�ijj+

N 0
�1X

j=0

jjzj jj �W (jjz0jj);

where c is the number of continuous control inputs, Di,

i 2 I+m�c, are the control input sets associated with the

discrete control inputs, and �0� is a rede�nition of �� using

M 0 and T 0M instead of, respectively, M and TM .

In addition to the predictor property and the assumptions

made in the existence proposition, A1-A4 (see below), we

need some additional assumptions on the functions com-

prising the performance index, and the constraints. (Note

that A4 is a stronger version of the growth condition in

the existence proposition.) For completeness we restate

the previous assumptions together with the ones which

are purely related to the stability question, A5-A10.

A1 X and U are closed.

A2 8j 2 N Lz;j : R
n ! R nonnegative lower semicon-

tinuous real functions.

A3 8(k; i) 2 N�IM�1 L
k
�;i : ���R

m ! R nonnegative

lower semicontinuous real functions.

A4 8(k; i) 2 N � IM�1; �� 2 �� ; 9H1(�) 2

K1 Lk�;i(�� ; �) � H1(jj�jj).

A5 8(k; i) 2 N � IM�1; �� 2 �� ; 9H2(�) 2

K1 Lk�;i(�� ; �) � H2(jj�jj).

A6 8j 2 N; x 2 Rn; 9H3(�) 2 K1 Lz;j(x) � H3(jjxjj).

A7 8j 2 N; x 2 Rn; 9H4(�) 2 K+ Lz;j(x) � H4(jjxjj).

A8 0 2 InteriorX�Uc, where Uc denotes the Cartesian
product of the c control sets associated with the

continuous control inputs.

A9 M �M 0; TM � T 0M , and N � N 0.



A10 8(k; i) 2 N � IM�1; (�� ; ~�� ) 2 �2
� ; (�1; �2) 2 U2

Lk+1�;i (~�� ; �1) � Lkv;i+1(�� ; �2), where ~�� is gener-

ated as in the proof of Proposition 2 with ���;k = �� .

Let

~XF := fa 2 X : P(a; k) for N �nite has a feasible timed

open-loop control input sequenceg.

Note that ~XF is time-invariant, since the constraints are

time-invariant. Further, by A2 and A3, the performance

index is �nite for every feasible � when N is �nite.

The stability proof for �ACL will make use of the fol-

lowing lemma.

Lemma 1

i. CF , A8, and A9 imply 0 2 Interior ~XF .

ii. A1, A2, A3, A4, and a 2 ~XF imply P(a; k) for N
�nite has a solution.

Proof:

i: From A8 we have, for some " > 0, N(") � X �Uc. Let
W (�) be the K1 function given by property CF . Choose

� > 0 such that � � W�1("). If jjajj � �, then by A9,

A8, and property CF , there exists a timed open-loop con-

trol input sequence which is feasible for P(a; k). That is,
N(�) � ~XF , and part i is proved.
ii: Follows directly from the hypothesis and the existence

proposition. �

Proposition 2

Suppose that (1) satis�es property CF and that the above
assumptions hold. Then:

i. for all l � 0 and a 2 ~XF , limk!1 xk(l; a) = 0 and
limt!1 u(t) = 0.

ii. x = 0 is the only equilibrium state for �ACL and it
is UAS with region of attraction equal to ~XF .

Proof:

i: Pick arbitrary l � 0 and a 2 ~XF and let the solution

xk(l; a) of �ACL be denoted xk for short. In what follows

we omit the argument xk unless presence is vital for the

proof. From Lemma 1 part ii, 8(k; x) 2 N � ~XF ��(x; k)
exists. Furthermore, at any k � l a feasible solution for

P(xk+1; k + 1) may be extracted from the solution at k,
cfr. ~� below. Thus, for any k � l we have

��(xk ; k) = Lz;k(xk) + Lz;k+1(z
�
k;1) + : : :

+ Lz;k+N�1(z
�
k;N�1) + Lkv;0(�

�
�;k; �

�
k;0) + : : :

+ Lkv;M�1(�
�
�;k; �

�
k;M�1):

The �nal state constraint, A5, A6, and A10 imply

��(xk ; k) � Lz;k(xk) +X
i2I��1

Lk�;i(�
�
�;k; �

�
k;i) + �(~�; z�k;1(xk); k + 1)

Next we de�ne ~� and �. ~� := ((~�1; : : : ; ~�M ) ; (~�0;
: : : ; ~�M�1)).

Case 1: ��M > �:

� := minfi 2 I+M : ��k;i(xk) > �g

~�i := ��k;�+i�1 �� ; ~�i�1 := ��k;�+i�2 ; i 2 I+M��+1:

If � > 1, then

~�i := TM ; ~�i�1 := 0 ; i 2 fM � �+ 2; : : : ;Mg:

Case 2: ��M � �:

� :=M , ~�i := 0, i 2 I+M , and ~�i := 0, i 2 IM�1.

Next, by optimality and �ACL:

��(xk; k)��
�(xk+1; k+1) � Lz;k(xk)+

X
i2I��1

Lk�;i(�
�
�;k; �

�
k;i):

The sequence ��(xk ; k) is non-increasing by non-

negativity of the right-hand side, it is also bounded below

(by zero) by A2 and A3, hence it converges as k ! 1.

This implies that the right-hand side converges to zero. By

A7, A4, and continuity of the norm this implies xk ! 0

as k ! 1, and using the de�nition of u(�), Eq. (3), it is
clear that u(t) ! 0 as t ! 1. By the arbitrariness of l
and a, i follows.
ii: x = 0 being the only equilibrium follows from the �rst

part. Next we apply Theorem 1 with ��(�; �) as the Lia-

punov function V (�; �). Let � > 0 be the constant de�ned

in the proof of Lemma 1 part i. Pick a 2 N(�) � ~XF

and l � 0. Let �(jjajj) := (N � 1)H3(W (jjajj)) +
MH2(W (jjajj)), then property CF , A9, and the proper-

ties of H3(�) and H2(�) imply �(�; a; l) � �(jjajj) where
� is given by CF , clearly �(�) 2 K+. Now, by optimality

��(a; l) � �(�; a; l) � �(jjajj). Let �(�) = H4(�), then, by

A2 and A3, ��(a; l) � �(jjajj). Let 
(�) = H4(�), then,

by A2 and A3, ��(a; l) � ��(xl+1(l; a); l + 1) � 
(jjajj).
In conclusion we see that conditions (a), (b), and (c) of

Theorem 1 are satis�ed, and hence the origin is UAS for

�ACL. ~XF is the region of attraction by part i. �

Now, we proceed to analysis of �CL.

De�nition 2 (�-UAS)
Given the system

_x(t) = f(x(t); x(tk); t); x(tk)2 ~X�Rn; t2[tk ; tk+1); k � 0;
(5)

where f : Rn � ~X � R ! Rn is su�ciently smooth for

existence and uniqueness of a solution, and f(0; 0; t) = 0

for all t � 0. Let x(t) denote the solution of Eq. (5) for

t � t0 given x(t0) and x(b t
0

�
c�). The origin is said to be

�-uniformly asymptotically stable (�-UAS) if:
1.

8x(b
t0

�
c�) 2 ~X; t0 � 0; " > �; 9�(") > 0;

s.t. x(t0) 2 N(�)) x(t) 2 N(") 8t � t0:



If this is satis�ed we say that the origin is �-US for Eq. (5).
2. It is uniformly convergent (UC) in the following sense:

9r > 0; s.t 8x(b
t0

�
c�) 2 ~X; t0 � 0; � > 0; 9T (�) � 0;

s.t. x(t0) 2 N(r)) x(t) 2 N(�) 8t � t0 + T:

Theorem 2

Suppose U compact, and let K := maxu2U jjujj. Also,
suppose

ejjAjj�K�jjBjj < minfrACL; p(�)g;

where rACL > 0 and p(�) 2 K+ are known [7]. Combined
with assumptions A1-A10 and property CF this implies
that the origin is �-UAS for �CL.
Proof:

f(�; �; �) in Def. 2 is given by: f(x(t); x(tk); t) := Ax(t) +
B��

bt=�c(t � b
t
�
c�;x(tk)) and ~X := ~XF . f(0; 0; t) = 0,

8t � 0 by optimality and since A0 = 0.

�-US: Pick t0 � 0, x(b t
0

�
c�) 2 ~XF , and " > �. For t 2

[t0; d t
0

�
e�] we have:

jjx(t)jj = jjeA(t�t
0)x(t0) +

Z t

t0
eA(t��)Bu(�) d� jj;

� ejjAjj�(jjx(t0)jj+K�jjBjj):

When there are no perturbations (i.e. nominally) it can

be shown ([7]) that for t 2 [tk; tk+1]:

jjx(t)jj � H(jjxkjj); H(�) 2 K1;

where H(�) is given by jjAjj, jjBjj, �, and some of the

functions in the assumptions and property CF . From this

we see that if we, with H�1("), associate an "ACL :=

H�1(") for �ACL and ensure by restricting jjx(t0)jj that

jjx(d t
0

�
e�)jj � �ACL =: p(") where �ACL corresponds to

"ACL we will, by the property of H(�) and (uniform) sta-

bility of �ACL, be guaranteed that jjx(t)jj � ", for all

t � t0. By the hypothesis this can be done by restricting

x(t0) to N(�) where �(") := p(")

ejjAjj�
�K�jjBjj > 0.

UC: This follows in the same manner as for �-US. By the

hypothesis there is an initial set, in which x(t0) can be

picked, with radius r := rACL
ejjAjj�

�K�jjBjj > 0 which en-

sures that jjx(d t
0

�
e�)jj � rACL, where rACL is the radius

of the initial set for �ACL. Now, given some � > 0 we

let �ACL := H�1(�), and T := TACL�+�, where TACL
corresponds to �ACL. This implies that jjx(t)jj � � for

all t � t0 + T by the property of H(�) and since the state

of �ACL is (uniformly) convergent to the origin (starting

within N(rACL)). �

4 Discussion
Our control approach is limited to linear time-invariant

systems, a natural extension would be to consider lin-

ear time-varying systems, or even nonlinear systems. For

nonlinear systems, the controllability property, CF , will in

general be di�cult to verify [4]. Including the possibility

for a delayed sampled-state measurement would also in-

crease the applicability of the approach. In our analysis we

have assumed that the global optima of the optimization

problems are found. Although we have proved existence

of global solutions, the problem of �nding them is not

investigated.

5 Conclusions
An MPC strategy for control of a class of constrained

sampled-data hybrid systems is proposed, and so called

�-UAS of the origin for the closed-loop system is estab-

lished.
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