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Abstract

Identi�cation and control experiments were per-
formed on a laboratory scale heat transfer process.
An NARX model based on a combination of several
local ARX models is identi�ed. This model is com-
pared to a simple ARX model and a non-linear mecha-
nistic model, both for prediction and model predictive
control.

1. Introduction

In science and engineering, there are two basic ap-
proaches to modeling, the empirical and the mecha-
nistic approaches. The mechanistic approach is char-
acterized by i) An understanding of the underlying
physical mechanisms that governs the system's be-
havior is needed. ii) It is often very time-consuming.
iii) The model is often valid for a wide range of op-
erating conditions. iv) The model (and the modeling
process itself) contributes to our understanding of the
phenomena being studied. v) The model representa-
tion is compatible with many engineers understand-
ing of the system behavior, and allows easy interpre-
tation. vi) The model may form a basis for a wide
range of purposes. The empirical approach, on the
other hand, is characterized by i) A large amount of
empirical data from all interesting operating condi-
tions is needed. ii) The model may give very accurate
predictions when applied under similar operating con-
ditions as the data were logged under, but may give
very inaccurate predictions when applied under dif-
ferent operating conditions. iii) One does not need to
understand the system mechanisms. iv) The model is
often di�cult to validate, interpret, and analyze. v)
The applicability of the model is often restricted to
prediction and control.

Hence, when choosing a modeling framework, there
are several bene�ts and disadvantages that must be
weighted against each-other. In this paper we will try
to illustrate some of these aspects, with emphasize on
models developed for model based control purposes.
In particular, we will compare a model developed us-
ing the semi-empirical non-linear modeling framework
described in [1, 2] with models developed using more
traditional methods, namely an ARX model and a
mechanistic model.

The non-linear modeling framework described in [1, 2]
is based on a decomposition of the system's operating
range into a number of operating regimes, and the
use of local models to describe the system's behav-
ior within each operating regime. The local models
are combined using an interpolation procedure, based
on smooth weight functions. The decomposition into
regimes is based on model variables that character-
izes the system's di�erent modes of behavior. More
details and other examples can be found in [1, 2, 3].

2. Identi�cation results

Consider the experimental setup illustrated in Fig. 1.
The output y(t) of this system is given by a tempera-
ture sensor, the input is the voltage over the resistor
u(t) 2 [0; 10]. In addition, the valve opening angle
v(t) 2 [0�; 180�] is an independent measured variable
that can be manipulated by hand only.

v(t)
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Temperature
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Figure 1: Heat Tube: Air is pulled into the tube by
a fan through a valve. The air is heated
by a resistor, and the air temperature is
measured at the outlet. The length of the
tube is about 30 cm.

On this system the following experiments have been
performed. First, consider the responses to a 10 volt
step input, for v1 = 20�; v2 = 50�, and v3 = 100�

plotted in Fig. 2a. From these curves, we make two
observations.

First, there seems to be two dominating time-
constants, at least for small valve opening angles v.
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Figure 2: a) Response to a 10 volt step input, and
b) the same response on a shorter time-
scale.
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Figure 3: Steady-state response.

The fast mode (about 1 second) is related to the heat
capacity of the air in the tube, while the slower one
(a few minutes) is related to the heat capacity of the
tube and the rest of the equipment. In the proceed-
ing modeling and identi�cation experiments, we will
only attempt to �nd a model with good prediction
performance on the horizon of the shortest of these
time-constants, as this is the one that is interesting
for typical control purposes.

Second, the steady-state gain seems to be a functions
of the valve opening. On a shorter time-scale, cf.
Fig. 2b, we see that also the time-constant and time-
delay are functions of v. Similar experiments with
�xed v but varying input step size indicates that the
steady-state gain, time-constant, and time-delay are
functions of u, too, cf. the steady-state response in
Fig. 3.
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Figure 4: Time-series used for identi�cation.

For the purpose of identi�cation, we use the data se-
quence in Fig 4. The sampling interval is �t = 0:11 s,
and the sequence contains about 1300 samples. The
input u(t) is a random signal exciting the system
about a sequence of random operating points. The
valve opening v(t) varies over the full range of opera-
tion in a random manner. For the purpose of model
validation, we use another data sequence with some-
what di�erent excitation signals. The input varies in
a qualitatively similar manner, while the valve open-
ing angle varies more or less systematically to cover
a wide range of frequencies and levels.

2.1. Identi�cation of ARX model
Using the identi�cation data sequence and the least
squares algorithm, we �nd the following �rst-order
ARX model

y(t) = 0:2247 + 0:9284y(t� 1) +

0:0352u(t � 4)� 1:286 � 10�3
v(t� 5) (1)

The order and time-delays are determined from the
step-responses, cf. Fig. 2b.

2.2. Identi�cation of non-linear model based
on local models
From the discussion above, it is clear that the coef-
�cients of the ARX model (1) should be functions of
both u and v. On the basis of the step-responses and
the steady-state response, cf. Figs. 2 and 3, we there-
fore try to combine 4 local ARX model structures into
an NARX model structure as described by [2]. The
idea is to decompose the system's full range of opera-
tion into a set of operating regimes with a local ARX
model that describes the system behavior within each
regime. The 4 local ARX models are given relative
weight in the interpolation of the local models as il-
lustrated in Fig. 5. These weights are chosen to give a
reasonable overlap. It is our experience that the exact
shape and amount of overlap is of minor importance.
The motivation behind this particular decomposition
is that we believe a linear ARX model gives an ade-
quate description of the system within each regime.
Using the least squares algorithm and a cost index
that penalizes mismatch between the global model
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Figure 5: Weight functions for the local models.

prediction and the data gives the model

y(t) = (0:3338 + 0:9196y(t� 1) + 0:0049u(t� 4)

�1:411 � 10�3
v(t � 5)

�
�w1(u(t� 4); v(t� 5))

+ (0:2029 + 0:9368y(t � 1) + 0:0397u(t� 4)

�2:389 � 10
�3
v(t � 5)

�
�w2(u(t� 4); v(t� 5))

+ (0:5433 + 0:8347y(t � 1) + 0:0139u(t� 3)

�0:946 � 10�3
v(t � 5)

�
�w3(u(t� 4); v(t� 5))

+ (0:5181 + 0:8601y(t � 1) + 0:0522u(t� 3)

�2:135 � 10�3
v(t � 5)

�
�w4(u(t� 4); v(t� 5))

(2)

which we will denote \the 4-local model". The time-
delays are chosen to be smaller at large valve opening
angle, cf. Fig. 2b. We see that the local models
have captured the facts that the dynamics is faster
at large valve-opening, and that the gain is larger at
high input voltages.

2.3. Identi�cation of a mechanistic model
A simple energy balance for this system is

�V cp
d

dt
T (t) = �cpq(v(t� �v))(T0 � T (t))

+U(T1 � T (t)) +Gu
2(t � �u) +Q (3)

where the symbols are de�ned in Table 1. The vol-
umetric air ow rate q as a function of the valve
opening angle v depends on the uid dynamics in
the fan housing. We choose the empirical correla-
tion q(t) = kv(t), as a higher order correlation does
not appear to give a model with signi�cantly better
prediction performance. In addition, the following
measurement equation is determined experimentally

y(t) = 0:8173(T (t) � 26:6)

where y(t) is the output voltage of the tempera-
ture sensor. Again, we identify the unknown phys-
ical parameters using the least squares algorithm,

which gives Ĝ = 0:0318 
�1, Û = 0:5616 J=Ks,

k̂ = 1:4920 � 10�3
l=s, and Q̂ = 2:0346 W . Discretiz-

ing the model (3) using the identi�ed parameters, we

may write this model on the NARX form

y(t) = 0:3028 + 0:9265y(t � 1) + 0:540 � 10
�3
v(t� 5)

�0:234 � 10
�3
y(t� 1)v(t � 5) + 2:401 � 10

�3
u
2
(t� 4)

The design of semi-mechanistic models of this form is
discussed in [4].

Variable Value Unit
v Valve opening �

� Mass density for air 1.2 g/l
V Volume of tube 0.7 l
cp Air spec. heat cap. 1.0 J/g K
q Volumetric air ow l/s
k \Fan coe�cient" l/s
G Resistor conductance 
�1

U Heat transfer coe�. J/K s
Q Heat through fan W
T Tube air temp. �

C

T0 Envir. air temp. 24 �
C

T1 Equip. temp. 28 �
C

�v Time-delay 0.55 s
�u Time-delay 0.44 s

Table 1: Symbols, constants and variables used in
the mechanistic model.

2.4. Discussion of identi�cation results
The prediction performance of the three identi�ed
models are compared by simulations on the valida-
tion data, cf. Fig. 6. It is evident that both the em-
pirical 4-local and mechanistic models perform better
than the ARX model, as one should expect. However,
there does not appear to be any signi�cant di�erence
between the 4-local and mechanistic models. Notice
that because the validation data were logged on a
day with higher environment temperature, there was
a signi�cant, but constant, o�set between the out-
put of the simulation and the logged data. As this is
easily compensated for with integral action in a con-
troller, this o�set was removed in Fig. 6 to simplify
the comparison.

Model 1-step 10-steps
pred. error pred. error

ARX 0.0788 0.4669
4-local 0.0787 0.3447
Semi-physical 0.0654 0.3182

Table 2: Estimated average prediction errors, where
a) is with the ARX model, b) is with the 4-
local mode, and c) is with the mechanistic
model.

The average 1-step-ahead and 10-steps-ahead predic-
tion errors are estimated using the validation data
sequence for the three models are shown in Table 2.
We see that the mechanistic model performs some-
what better than the 4-local model. The 10-steps-
ahead prediction errors reveal that there is a signi�-
cant amount of unmodeled dynamics left. This may
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Figure 6: Simulation of the identi�ed models on
the validation data. a) ARX model, b)
4-local model, and c) mechanistic model.

be due to the slow time-constant we have neglected
and other e�ects that are not adequately modeled,
as well as the fact that the one-step-ahead prediction
error criterion need not lead to a model with good
multi-step prediction performance.

3. Model predictive control (MPC) results

For control purposes, we suggest a model of the fol-
lowing form

y(t)= f(y(t� 1); u(t� 4); v(t� 5)) + e(t) (4)

e(t)= e(t� 1) + �(t) (5)

where �(t) is white noise, and f is given by any of
the identi�ed models described in the previous sec-
tion. This model includes the slowly time-varying dis-
turbances and slow unmodeled dynamics, and auto-
matically gives integral action when applied for MPC
[5, 6]. On the basis of this model, we formulate an
on-line multi-step-ahead predictor where the bias is
estimated by

ê(t) = ê(t� 1) +K(y(t)� ŷ(tjt� 1))

where the constant K = 0:003 may be viewed as a
\Kalman-�lter gain". This value is chosen in an ad.
hoc. manner in order to get a good trade-o� between

fast integral action and robustness. The input is pa-
rameterized as follows

u(t+ �) =

(
�1; if � 2 f0; 1g
�2; if � 2 f2; 3; 4g
�3; if � � 5

The control input is chosen as the �rst part of the
control sequence minimizing the criterion

J(t; �1; �2; �3) =
1

Th

ThX
�=1

(y
?
(t)� ŷ(t+ � jt; �1; �2; �3))

2

+�
�
(u(t� 1)� �1)

2 + (�1 � �2)
2 + (�2 � �3)

2
�

at every sampling instant. We have chosen the predic-
tion horizon Th = 14 samples, which is about equal to
the system's time-constant, and � = 1:0 for all control
experiments. In other words, only the models are dif-
ferent in the experiments. The optimization problem
is a non-linear programming problem, that is solved
using Powell's direction set algorithm [7]. The search
is initialized with the optimal control input from the
previous step. The control algorithm is run on a 486
PC, and to meet the real-time requirement, the search
algorithm is allowed to run for at most 5 iterations,
which is su�cient to give a close-to-optimal solution.
No convergence problems were observed.

Tracking of a reference signal y? is illustrated in Fig.
7, while rejection of \disturbances" v is illustrated in
Fig. 8. We see that the disturbance rejection proper-
ties of the 3 controllers are essentially the same, while
the controller based on the 4-local model is some-
what better for tracking than the others. This may
be somewhat surprising, since the mechanistic model
appeared to give better predictions, cf. Table 2. How-
ever, the introduction of a noise model has apparently
improved the prediction accuracy of the 4-local model
somewhat more than the other models.

4. Concluding Remarks

Based on our earlier experience with models based on
local models, and this investigation, we can make the
following comments on the relationship between the
mechanistic and 4-local model. i) Both are relatively
simple and give comparable prediction performance.
The reason for this may be that our physical under-
standing of this simple system is quite good, and we
have available a complete set of empirical data that
covers all interesting modes of the system behavior.
ii) The model predictive controllers based on the three
models give comparable results. The conclusion must
be that the non-linearities are so weak that they are
not signi�cant for control design. iii) The mechanis-
tic model is based on an energy balance. The de-
velopment of this model was quite straightforward,
as the system is simple and most parts of it is well
understood. The empirical model is based on empir-
ical knowledge gained through experiments, and the
development of this model was quite straigthforward
as well. iv) The interpretability of both models are
quite good. The mechanistic one obviously reects
the deepest understanding about what is going on in
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Figure 7: Tracking performance for the 3 con-
trollers. Dashed lines (� � �) are with
the ARX model, solid lines (|) are
with the 4-local model, and dotted lines
(� � � � � �) are with the mechanistic model.

the system. The empirical model is, however, intu-
itively quite easy to understand. v) The mechanistic
model has less parameters than the 4-local model,
and the computational complexity may be somewhat
larger with the 4-local model.

This example has shown that the modeling frame-
work based on local models and interpolation may
give models that are as useful, accurate, and reli-
able as with mechanistic modeling, even if the sys-
tem is well understood. Such models may serve as
an alternative that may be attractive especially for
systems that are not well understood. Moreover, we
believe empirical models developed in this framework
has signi�cant advantages over many other non-linear
empirical modeling frameworks. The reason is that
it admits interpretability of the model through the
intuitive and easily understandable operating regime
concept, and the fact that the local ARX models can
be interpreted independently.
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