
t

t , + N

t ,

t ,

Bjarne Foss and
Tor Aksel N. Heirung

Merging Optimization
and Control

Merging Optimization and Control

Bjarne Foss and Tor Aksel N. Heirung

Department of Engineering Cybernetics
Norwegian University of Science and Technology — NTNU

Copyright c© 2016

NTNU
Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics, and Electrical Engineering
Department of Engineering Cybernetics

Technical report 2016-5-X

Copyright c© 2016
Bjarne Foss and Tor Aksel N. Heirung

ISBN 978-82-7842-200-7 (printed version)
ISBN 978-82-7842-201-4 (electronic version)

4220077882789

ISBN 9788278422007

90000 >

Contents

Contents iii

1 Introduction 1

2 Optimization 3
2.1 Classes of optimization problems 3
2.2 Solution methods . 10

3 Optimization of dynamic systems 13
3.1 Discrete time models . 15
3.2 Objective functions for discrete time systems 17
3.3 Dynamic optimization with linear models 18
3.4 The choice of objective function in optimal control 22

3.4.1 Norms in the objective function 31
3.5 Optimal open loop optimization examples 31
3.6 Dynamic optimization with nonlinear discrete time models . . 36

4 Optimal control 39
4.1 Model predictive control . 39
4.2 Linear MPC . 42

4.2.1 Ensuring feasibility at all times 43
4.2.2 Stability of linear MPC 46
4.2.3 Output feedback . 47
4.2.4 Reference tracking and integral action 50

4.3 Linear Quadratic control . 55
4.3.1 Finite horizon LQ control 55
4.3.2 Moving horizon LQ control 63

4.4 Infinite horizon LQ control . 63
4.4.1 State feedback infinite horizon LQ control 64
4.4.2 Output feedback infinite horizon LQ control 68
4.4.3 Stability of linear MPC with infinite horizon LQ control 70

iii

iv CONTENTS

4.5 Nonlinear MPC . 72
4.6 Comments . 73

4.6.1 The control hierarchy and MPC 73
4.6.2 MPC performance . 77
4.6.3 Feedforward control . 79
4.6.4 MPC models . 80
4.6.5 Practical MPC formulations 80

Acknowledgments 83

Bibliography 85

Chapter 1

Introduction

This text is intended as a basic introduction to optimization of dynamic
systems, in particular Model Predictive Control (MPC). The material is a
result of many years of teaching an undergraduate course in optimization
and MPC at NTNU (Norwegian University of Science and Technology). Stu-
dents taking this course have at least some familiarity with control systems,
and in particular linear-systems theory at the level of Chen (1999). Key
learning outcomes of this course are the ability to formulate appropriate en-
gineering problems as mathematical optimization problems, and analyze and
solve such optimization problems. Important optimization problem classes
are presented and optimality conditions are discussed. Further, algorithms
for solving optimization problems are treated, including some information
on relevant software. This material is for the most part covered by the opti-
mization textbook Nocedal and Wright (2006).

The second half of the course covers optimization of dynamic systems with
a focus on MPC. Instead of using MPC textbooks written for a graduate-
student audience, like Rawlings and Mayne (2009), Goodwin et al. (2004),
Rossiter (2003), or Maciejowski (2002), we have written this note. The ratio-
nale is to provide a smooth transition from optimization to MPC via open
loop optimal control. This approach is not taken in any available textbook on
MPC. Rather than being a comprehensive treatment, the text is intended to
explain the principles of MPC to undergraduates in an easy-to-grasp manner,
better positioning the students to benefit from the more thorough treatments
in the texts mentioned above.

The outline of this note is as follows. Section 2 repeats key concepts in
optimization before Section 3 treats optimization of discrete time dynamic
systems. This section shows how optimization based on static models eas-
ily can be extended to include dynamic time discrete models. This section
introduces two important concepts, dynamic optimization and open loop

1

2 Chapter 1. Introduction

optimization. This provides a foundation for the optimal control section, in
which the MPC concept is introduced. Section 4 discusses linear MPC, which
is extensively used in practice. Linear quadratic control is an interesting case,
which is treated separately. This section also includes material on state esti-
mation, nonlinear MPC and comments related to practical use of MPC.

Chapter 2

Optimization

This section presents relevant background on optimization. It first classifies
optimization problems and discusses some basic properties. Subsequently so-
lution methods and computational issues are discussed. The notation mostly
matches that of Nocedal and Wright (2006), which is also the basis for most
of the material in this section.

2.1 Classes of optimization problems
Mathematical optimization problems include three main components, an ob-
jective function, decision variables and constraints. The objective function
is a scalar function which describes a property that we want to minimize or
maximize. The decision variables may be real variables, integers or binary
variables, or belong to other spaces like function spaces. In this note the
decision variables will mostly be limited to the Euclidean space, i.e., vectors
of real variables. Constraints are normally divided into two types, equality
constraints and inequality constraints. This background allows us to define
an optimization problem, the nonlinear program (NLP).

min
z∈Rn

f(z) (2.1a)

subject to

ci(z) = 0, i ∈ E (2.1b)
ci(z) ≥ 0, i ∈ I (2.1c)

Some further explanation is required. f takes an n-dimensional vector and
projects it onto the real axis. Further, the decision variables are defined on

3

4 Chapter 2. Optimization

a Euclidean space since z ∈ Rn which excludes integer or binary decision
variables. E and I are disjunct index sets, i.e., E ∩I = ∅, for the constraints.
Due to the constraints the decision variables z may be selected from a subset
of Rn. This subset is called the feasible region or the feasible set and is defined
by the constraints ci. More precisely the feasible set is defined by

Ω =
{
z ∈ Rn

∣∣∣ (ci(z) = 0, i ∈ E
)
∧
(
ci(z) ≥ 0, i ∈ I

)}
(2.2)

In some cases the feasible set may be further limited by the domain of f
itself. A function like

√· is only defined for positive arguments. Such cases
are, however, not considered in this note.

Example 1 (Optimization problem and feasible area)
Consider the optimization problem

min
z∈R2

f(z) = z2
1 + 3z2 (2.3a)

s.t. c1(z) = z2
1 + z2

2 − 1 = 0 (2.3b)
c2(z) = z1 + z2 ≥ 0 (2.3c)

Here, we have that E = {1} and I = {2}. The feasible area for this problem
is

Ω =
{
z ∈ R2

∣∣ c1(z) = 0 ∧ c2(z) ≥ 0
}

=
{
z ∈ R2

∣∣ z2
1 + z2

2 = 1 ∧ z1 + z2 ≥ 0
}

(2.4)

The feasible area Ω is a half circle (not a half-disc) with radius 1, marked
with red in Figure 2.1. 4

The optimization problem in (2.1) is stated as a minimization problem.
Some problems, where for instance the objective function represents profit,
are clearly maximization problems. One should observe that any maximiza-
tion problem can be translated into a minimization problem by observing
that ‘max f(z)’ and ‘min−f(z)’ provide equal solutions apart from the op-
posite sign of the objective function value. The feasible set may be empty,
i.e., Ω = ∅. In this case there is no solution, or no feasible points, to the
optimization problem in (2.1). f(z) has to be bounded below for all feasible
solutions meaning that f(z) 6= −∞ for all z ∈ Ω. This has no practical con-
sequence since all reasonable engineering problems will be constrained such
that the objective function remains bounded.

A point z∗ ∈ Ω is the solution of (2.1) if

f(z∗) ≤ f(z), for all z ∈ Ω

2.1. Classes of optimization problems 5

z1

z2z1 + z2 = 0

z21 + z22 = 1

0.5−0.5

0.5

−0.5

Ω

Figure 2.1: Feasible area (thick red curve) for Example 1.

Such a point is a global minimizer. There may be several such minimizing
points. In the case of only one single global minimizer the global minimizer
is a strict global minimizer. A local minimizer z∗ provides a minimum value
within some neighborhood rather than the whole feasible region and is defined
by

f(z∗) ≤ f(z), for all z ∈ ‖z − z∗‖ < ε

where z can take values in a feasible open set about z∗. A strict local mini-
mizer is defined by replacing ≤ with < above.

A key question is how to identify a minimization point. Provided certain
smoothness conditions and regularity conditions are satisfied the Karush-
Kuhn-Tucker (KKT) conditions define necessary conditions for optimality.
First, however, we need to define the Lagrange function and active con-
straints.

L(z, λ) = f(z)−
∑
i∈E∪I

λici(z) (2.5)

where λi are the Lagrange multipliers.
An active constraint is a constraint for which ci(z) = 0, which implies that

all equality constraints are active at a feasible point. An inequality constraint,
however, may either be active or not active at a feasible point.

Since the KKT conditions is a key results in constrained optimization we
state this result in some detail.

Theorem 1 (First order necessary conditions).
Assume that z∗ is a local solution of (2.1) and that f and all ci are differen-
tiable and their derivatives are continuous. Further, assume that all the ac-

6 Chapter 2. Optimization

tive constraint gradients are linearly independent at z∗ (meaning that LICQ1

holds). Then there exists Lagrange multipliers λ∗i for i ∈ E ∪ I such that the
following conditions (called the KKT conditions) hold at (x∗, λ∗);

∇zL(z∗, λ∗) = 0 (2.6a)
ci(z

∗) = 0, i ∈ E (2.6b)
ci(z

∗) ≥ 0, i ∈ I (2.6c)
λ∗i ≥ 0, i ∈ I (2.6d)

λici(z
∗) = 0, i ∈ I (2.6e)

The KKT conditions are necessary conditions for a local solution. Suffi-
cient conditions, however, can be derived through second order conditions.

Theorem 2 (Second order sufficient conditions).
Suppose that for some feasible point z∗ ∈ Rn there exists Lagrange multipliers
λ∗ such that the KKT conditions (2.6) are satisfied, and that f and all ci are
twice differentiable and their derivatives are continuous. Assume also that

∇zzL(z∗, λ∗) � 0 (2.7)

Then z∗ is a strict local solution of (2.1).2

∇zzL(z∗, λ∗) needs only be positive in certain directions, more specifically
in directions defined by the critical cone3. Hence, the theorem above can be
relaxed by requiring w>∇zzL(z∗, λ∗)w > 0 where w ∈ C(x∗, λ∗). For further
discussion on this we refer to Chapter 12 in Nocedal and Wright (2006).

A major divide in optimization is between convex and nonconvex prob-
lems. Convex problems hold the following key property.

A local minimizer of a convex optimization problem is also a global minimizer.

This implies that Theorem 1 provides necessary conditions and Theorem 2
sufficient conditions for a global solution for convex problems. It is therefore
important to be able to identify convex problems.

An optimization problem is convex if it satisfies the following two condi-
tions:

• The objective function is a convex function.
1LICQ stands for Linear Independence Constraint Qualification.
2The notation � 0 means a positive definite matrix. Similarly, � 0, ≺ 0, and � 0 mean

positive semidefinite, negative definite, and negative semidefinite, respectively.
3The critical cone is loosely speaking directions that do not violate the constraints

locally, see also Chapter 12 in Nocedal and Wright (2006).

2.1. Classes of optimization problems 7

• The feasible set Ω is a convex set.

If a problem is strictly convex there will always only exist one (global) solu-
tion. For definitions of convex functions and convex sets we refer to Nocedal
and Wright (2006).

We will now discuss some specific optimization problems defined by (2.1).

• If the objective function f is linear and all constraints ci are linear,
(2.1) is a linear program (LP) which is be defined by

min
z∈Rn

d>z (2.8a)

subject to

ci(z) = a>i z − bi = 0, i ∈ E (2.8b)
ci(z) = a>i z − bi ≥ 0, i ∈ I (2.8c)

Since all constraints are linear the feasible set is convex, and since f
is linear it is also a convex function. Hence, LP problems are convex
problems. LP problems are, however, not strictly convex since there
may exist many solutions with equal optimal objective function values.

(2.8) can be formulated in various ways. In particular all LP problems
can be written on the standard form which is shown below, see e.g.,
Chapter 13 in Nocedal and Wright (2006).

min
z∈Rn

d′>z (2.9a)

subject to

c′i(z) = a′
>
i z − b′i = 0, i ∈ E ′ (2.9b)

c′i(z) = zi ≥ 0, i ∈ I ′ (2.9c)

(2.8) and (2.9) are hence equivalent problems provided all vectors and
sets are chosen appropriately. It may be noted that a constant term
may be added to (2.8) or (2.9) without changing the solution except
for the optimal objective function value. Hence, such a bias term is
usually removed.

It is worth mentioning that the KKT conditions are both necessary
and sufficient conditions for the LP problem. Moreover, since the LP
problem is convex the KKT conditions define a global solution.

8 Chapter 2. Optimization

• When the objective function f is a quadratic function and all con-
straints ci are linear, (2.1) is a quadratic program (QP) which is defined
by

min
z∈Rn

z>Qz + d>z (2.10a)

subject to

ci(z) = a>i z − bi = 0, i ∈ E (2.10b)
ci(z) = a>i z − bi ≥ 0, i ∈ I (2.10c)

Again all constraints are linear. Hence, the feasible set is convex. A
constant term may be added to (2.10a). QP problems may be convex or
nonconvex depending on the quadratic form z>Qz and the constraints.
Q is an n-dimensional symmetric matrix and the following statement
holds.

– If Q is positive semidefinite, i.e., Q � 0, then (2.10) is a convex
problem.

It may noted that Q = 0 is a positive semidefinite matrix. In this case
(2.10) turns into a LP problem which indeed is a convex problem. The
Q � 0 condition may be relaxed as follows, see also Chapter 16 in
Nocedal and Wright (2006).

– If Z>QZ is positive semidefinite where Z spans the null space of
the active constraints, then (2.10) is a convex problem.

The KKT conditions are both necessary and sufficient conditions for
a convex QP problem. Moreover, the KKT conditions define a global
solution in this case.

• If the objective function f is a convex function, all the equality con-
straints are linear and −ci are convex functions for i ∈ I, then (2.1)
is a convex programming problem. Hence, the optimization problem is
convex. It is useful to note that nonlinear equality constraints always
give rise to nonconvex problems.

• If there are no constraints, i.e., both E and I are empty sets, (2.1) is
an unconstrained problem meaning that Ω = Rn.

• If the objective function is some arbitrary nonlinear function or the
constraints ci are nonlinear functions, then (2.1) is a nonconvex prob-
lem.

2.1. Classes of optimization problems 9

Sketches of convex and nonconvex sets are shown in Figure 2.2 while
convex and nonconvex functions are depicted in Figure 2.3. Note that the
region above the graph of a convex function is a convex region, and that the
region above the graph of a nonconvex function is a nonconvex region.

z1

z2

(a) A convex set.

z1

z2

(b) A nonconvex set.

Figure 2.2: Comparison of a convex and a nonconvex set.

z2z1
z

f(z)

(a) A convex function.

z2z1
z

f(z)

(b) A nonconvex function.

Figure 2.3: Comparison of a convex and a nonconvex function.

For completeness some comments on mixed integer formulations are in-
cluded. A mixed integer nonlinear program (MINLP) is defined by

min
z∈Rn,y∈Zq

f(z, y) (2.11a)

subject to

ci(z, y) = 0, i ∈ E (2.11b)
ci(z, y) ≥ 0, i ∈ I (2.11c)

where Zq defines a vector of integer variables. It is quite common to replace
integer variables by binary variables, i.e., y ∈ {0, 1}q. By the definition of
convex sets (2.11) is always a nonconvex problem since Zq is a disconnected
set. Integer variables are useful to describe discrete decisions such as a rout-
ing decision. One example is a stream which can be routed to one out of two

10 Chapter 2. Optimization

pipelines and a second example are on-off valves, which are either fully open
or closed. An important sub-class of problems are mixed integer linear pro-
grams (MILP) where the problem is convex except for the integer variables.
Another important class of problems are integer programs (IP) with only dis-
crete decision variables meaning that z is removed from (2.11) (Nemhauser
and Wolsey, 1999).

2.2 Solution methods

Solution methods for optimization problems do in principle vary from ex-
plicit solution to complex iterative schemes. Explicit solutions are however
only available for some simple problems. We will encounter one such relevant
problem later, namely the linear quadratic control (LQ) problem. Otherwise
the solution approach is always an iterative algorithm. There are different
ways of categorizing such algorithms. We will start of by describing the struc-
ture of many such algorithms.

Algorithm 1 Iterative solution procedure
Given initial point z0 and termination criteria
while termination criteria not satisfied do

Compute the next iteration point
end while

Iterative algorithms need an initial value for z to start off. Some algo-
rithms require a feasible initial point while this is no requirement for other
algorithms. The well known Simplex method for solving LP problems and the
active set method for solving QP problems require an initial feasible point
while for instance the sequential quadratic programming (SQP) method does
not require an initial feasible point.

Algorithms also need termination criteria4. These will include one or sev-
eral of the following criteria: (i) a maximum allowed number of iterations,
(ii) one or several progress metrics, and (iii) a characterization of the opti-
mal point. A progress metric may be the change in objective function value,
its gradient (∇f), or the gradient of the Lagrange function (∇L) from one
iteration to the next. Optimal points may characterized by ‖∇f‖ < ε or
‖∇L‖ < ε where ε > 0 is a small number.

Item 2 in Algorithm 1 is usually the most extensive point and there are a
variety of methods. A large class of methods are gradient based methods in

4Also called stopping criteria.

2.2. Solution methods 11

which the new iteration point uses gradient information to compute a new
iterate according to the following scheme.

zk+1 = zk + αkpk (2.12)

k denotes the iteration number, while pk ∈ Rn is the search direction and
αk ∈ R+ is a positive line search parameter. The search direction pk depends
on gradient information. Several alternatives exist, one alternative being the
steepest descent direction in which pk = −∇f(zk) and the Newton direction
where pk = −(∇zzf(zk))

−1∇f(zk). In the latter case ∇zzf is the Hessian of
f . A key point in all gradient based schemes is that pk points in a descent
direction for f(zk). Therefore the directional derivative should be negative,
i.e., ∇f(zk)pk < 0. It should be noted that both the derivative and Hessian
information is required in Newton schemes. In practice, however, a Quasi-
Newton method is usually applied which means that the Hessian matrix is
approximated, i.e., Bk ≈ ∇zzf(zk), and pk = −B−1

k ∇f(zk). The calculation
of Bk will be fast compared to the Hessian matrix since Bk uses gradient
information only. Further, positive definiteness of Bk can be controlled. The
latter is important since Bk � 0 implies that −B−1

k ∇f(zk) is a descent direc-
tion. A robust and efficient Quasi-Newton algorithm, which computes B−1

k ,
is the BFGS algorithm.

Gradients can be computed using finite differencing and automatic differ-
entiation. Finite differencing is based on Taylor’s theorem and the gradient is
estimated using perturbations. Approximation accuracy varies. A central dif-
ference scheme is for instance more accurate than forward differencing. The
computation time for the former is, on the other hand, roughly the double of
the latter. Accuracy also depends on the perturbation size. Automatic differ-
entiation is an efficient way of computing derivatives. It basically adopts the
chain rule by dividing complex functions into elementary operations. This
approach is gaining popularity and is gradually implemented in optimiza-
tion packages, see also Chapter 8 in Nocedal and Wright (2006) for more
information.

Some methods exploit structural properties in order to compute the next
iteration point. This is the case for the Simplex method, which uses the fact
that it is sufficient to look for a solution in vertexes of the feasible polytope
given by the linear constrains in LP problems. Hence, the iterates zk jump
from one feasible vertex to another until the KKT conditions, which are both
necessary and sufficient conditions for a solutions, are met.

There are many derivative free methods (Conn et al., 2009), i.e., methods
where no explicit gradient information is used in the search. These methods
can be divided into two main groups, pattern search methods and model based

12 Chapter 2. Optimization

methods. Examples of pattern search techniques are the Hooke Jeeves direct
search (Hooke and Jeeves, 1961), the Nelder-Mead algorithm (Conn et al.,
2009), generalized pattern search (Torzcon, 1997) and the mesh adaptive di-
rect search (Audet and Dennis JR., 2006). These methods are applicable to
problems with a limited number of decisions variables, typically less than
a few hundred optimization variables. They are, however, fairly easy to im-
plement in a distributed computing environment, a measure that improves
efficiency. Model based methods approximate f in the vicinity of zk by a
simple, typically quadratic, model. These methods are called trust region
derivative free methods, cf. Conn et al. (2009). An advantage of the trust
region methods is that it is possible to establish stringent convergence proofs
for these algorithms.

Derivative-free methods are popular since they are easily understood and
straightforward to implement. To elaborate further, evaluating the objective
function will in some cases require extensive computations. This is for in-
stance the case if the equality constraints are embedded in a simulator. One
example, among many, is a simulator of the electricity grid in Southern Nor-
way where the decision variables are capacitors placed in different locations
of the grid. The objective would typically be to keep the voltage within upper
and lower bounds by changing the capacitor load. In this case the simula-
tor must be run once in order to compute the objective function once. Now,
simulators do not usually supply gradients. Hence, one may be forced to use
a derivative free method. To reiterate, a parallel implementation in this case
may reduce runtime significantly.

Chapter 3

Optimization of dynamic systems

Dynamic systems are characterized by changes over time which means that
variables are functions of time. On the other hand, static systems are time
independent. Dynamic systems are modeled in many different ways, for in-
stance with differential equations, and there are different approaches to opti-
mization of such systems. Two main categories, quasi dynamic optimization
and dynamic optimization, are explained below.

• Quasi dynamic optimization: Optimize a dynamic system by repetitive
optimization on a static model. The idea is that the dynamic changes
can be compensated for by frequent reoptimizing on a static model.
This approach works well for slowly varying systems and systems that
are mostly in steady state.

• Dynamic optimization: Optimize on a dynamic model. In this case the
solution will be a function of time, i.e., all decision variables will be
functions of time. Dynamic optimization is necessary when dynamics
plays a major role, which quite often is the case for systems with fre-
quent changes in the operating conditions.

This note will focus on dynamic optimization. Before discussing this, how-
ever, we illustrate an example of quasi dynamic optimization.

Example 2 (Optimizing oil production)
Assume that 5 wells are producing according to the sketch in Figure 2. The
well streams contain gas, oil and water. Further, the mass fraction of gas,
oil and water in a well varies slowly with time. Hence, a well will produce
according to

qi(t) = agi(t)qgi(t) + aoi(t)qoi(t) + awi(t)qwi(t), i = 1, . . . , 5

13

14 Chapter 3. Optimization of dynamic systems

Pipeline

Wells Wells

Oil export

Gas export

Water disposal

Processing facilities

Figure 3.1: Sketch of oil production system for Example 2.

where t defines time. qi(t) is the total rate from well i while qgi(t), qoi(t), qwi(t)
are gas, oil and water rates, respectively. Since we use mass rates the mass
fractions always add up to one, i.e., agi(t) + aoi(t) + awi(t) = 1.

Assume that the goal is to maximize oil production while honoring op-
erational constraints like gas processing and water processing capacities on
a platform, and rate limits in each well. This may be formulated as an LP
problem as in (2.8).

min
z∈R20

(0, 0,−1, 0, . . . , 0, 0,−1, 0)z (3.1a)

subject to

qi(t)− agi(t)qgi(t)− aoi(t)qoi(t)− awi(t)qwi(t) = 0, i = 1, . . . , 5 (3.1b)
agi(t) + aoi(t) + awi(t) = 1, i = 1, . . . , 5 (3.1c)

qi(t) ≤ qmax
i , i = 1, . . . , 5 (3.1d)

qg1(t) + · · ·+ qg5(t) ≤ qmax
gas (3.1e)

qw1(t) + · · ·+ qw5(t) ≤ qmax
water (3.1f)

z ≥ 0 (3.1g)

where
z = (q1, qg1, qo1, qw1, . . . , q5, qg5, qo5, qw5)> (3.1h)

This is a simple LP problem, which is easily solved. One interesting ques-
tion, however, is how to account for variations in time. One approach is to
take a snapshot at a given time t0 and solve (3.1) assuming static conditions,
i.e, constant mass fractions. This solution is denoted by z∗(t0). After some
time, i.e., t1 > t0, the mass fractions may have changed significantly, thus,

3.1. Discrete time models 15

z∗(t0) is no longer an (optimal) solution and it may even be infeasible. Hence,
a new solution z∗(t1) is computed. A valid strategy is therefore to compute
a new solution once the mass fractions have changed significantly1.

A second approach is to is to treat the problem as a dynamical system.
Let us assume that the flow dynamics associated with changes in flow rates
are important. One operational example of the latter is during start up of a
well, i.e., starting production after the well has been closed in for some time.
Such a start up may take several hours. This behavior is not included in the
description above since it requires a model with flow dynamics. Such a model
may for instance be based on differential equations. 4

We will from now on only consider dynamic optimization and start by
categorizing these problems by model type and control parametrization, i.e.,
how the control input is defined. Model formats are many and range from
differential or differential algebraic (DAE) systems to transfer functions and
further state space models. In this note we use state space models, see e.g.,
Chen (1999), since this is a fairly general class of system and such models
are frequently used in dynamic optimization. The presentation is limited to
discrete time models since continuous time models require quite different
solution methods.

3.1 Discrete time models
A discrete time system is sampled at discrete points in time. These sampling
points are usually equidistant in time. Such a system can be described by a
finite difference model in the following form

xt+1 = g(xt, ut) (3.2a)

where system dimensions are given by

ut ∈ Rnu (3.2b)
xt ∈ Rnx (3.2c)

The function g maps an (nu + nx)-dimensional vector onto Rnx . The
subscript t is a discrete time index. A slightly more general model is obtained
if g is an explicit model in time, i.e., gt(xt, ut). The control input ut is assumed
to be piecewise constant, i.e., it is constant on the continuous time [t, t+ 1〉,
and hence the change from ut to ut+1 occurs in a stepwise manner at t + 1.

1The meaning of “significantly” in terms of a quantitative measure will have to be
chosen in each individual case.

16 Chapter 3. Optimization of dynamic systems

As opposed to the control inputs the states xt are only defined at discrete
points in time, and not in between these sampling points.

Note that subscript t is used above. It refers to discrete time, i.e., discrete
points in time, as opposed to subscript k which is used as an iteration index,
see e.g., (2.12).

The linear equivalent of (3.2) is obtained by replacing g with a linear
function,

xt+1 = Axt +But (3.3)

Equation (3.3) represents a linear time invariant (LTI) system since the
matrices A and B are constant while the more general formulation below
shows a linear time variant (LTV) since A and B are functions of time.

xt+1 = Atxt +Btut (3.4)

The LTV and LTI models are often used since nonlinear systems may be
approximated by linear ones. The link between (3.2) and the linear models
is established by the following approximation.

Assume that x̄t, ūt is a stationary point for g

xt+1 = x̄t = g(x̄t, ūt) (3.5)

and that g is at least one time differentiable. Further, define a perturbation
about the stationary point by δxt, δut. This situation may be approximated,
or modeled, using a first-order Taylor series expansion.

xt+1 = g(xt, ut) = g(x̄t + δxt, ūt + δut)

≈ g(x̄t, ūt) +
∂g(x̄t, ūt)

∂xt
δxt +

∂g(x̄t, ūt)

∂ut
δut

By defining a perturbation on the next state xt+1 = x̄t + δxt+1 we obtain
the following expression

xt+1 = x̄t + δxt+1 ≈ g(x̄t, ūt) +
∂g(x̄t, ūt)

∂xt
δxt +

∂g(x̄t, ūt)

∂ut
δut

which reduces to

δxt+1 ≈
∂g(x̄t, ūt)

∂xt
δxt +

∂g(x̄t, ūt)

∂ut
δut (3.6)

This is equivalent to an LTV model if we replace the Jacobian matrices,
i.e., ∂g(x̄t,ūt)

∂xt
and ∂g(x̄t,ūt)

∂ut
, by At and Bt, and define δxt as the states and δut

as the control inputs. A few observations are however in order:

3.2. Objective functions for discrete time systems 17

• If g is highly nonlinear the linear approximation (3.6) will be poor.
Hence, it makes sense to use the nonlinear model (3.2) in such cases.

• If g is mildly nonlinear (3.6) may suffice.

• If g is mildly nonlinear and the the range in which xt and ut varies is
small, an even coarser approximation than (3.6) may be used, namely
an LTI model like in (3.3).

The discussion above may be repeated for non-stationary points by re-
placing (3.5) with x̄t+1 = g(x̄t, ūt) and xt+1 = x̄t+1 + δxt+1.

3.2 Objective functions for discrete time sys-
tems

The dynamic optimization problem always stretches over time meaning that
the objective function will include time. We therefore define the following
objective function.

f(x1, . . . , xN , u0 . . . , uN) =
N−1∑
t=0

ft(xt+1, ut) (3.7)

This objective function will now be explained.

• The objective function is defined on a time horizon from t = 0 to
t = N where subscript t is the discrete time index. The time span
from 0 to N is called the prediction horizon. It should be noted that it
is straightforward to replace the prediction horizon by a time horizon
which starts at time t = j and continues until t = j + N . In this note
we assume equidistant times, i.e., all the sampling times are equal.

• The number of decision variables (x1, . . . , xN , u0 . . . , uN) increases lin-
early with the prediction horizon N .

• The objective function is structured such that it sums the contributions
from each time step through ft(xt+1, ut).

• The initial state x0 is not a decision variable since it is assumed to
be given. It is either known exactly or it may be estimated. xt+1 is
the state at the end of the control interval for ut, i.e., at the end of
the continuous time interval [t, t+ 1〉. This is why we pair xt+1, ut and
therefore use ft(xt+1, ut) instead of ft(xt, ut).

18 Chapter 3. Optimization of dynamic systems

• ft may focus on different types of desired properties. Some examples
are mentioned below.

– Economic measures like revenue and cost may be maximized or
minimized over the time horizon. One example is an objective
function which mimimizes the energy consumption of an airplane
or a ship on its journey between two destinations. Another exam-
ple could be minimizing energy use in a building.

– A system may need to follow a reference trajectory. Examples
include a vessel that needs to follow a prescribed route, or a batch
chemical reactor where the temperature profile over time is critical
for product quality.

– A system should reach a given state at the end of the time horizon.
An example is a rocket that should reach a certain altitude.

– Limit wear and tear on equipment while honoring operational con-
straints. An example is minimizing valve movements while main-
taining required control performance.

There are problems which are not covered by (3.7), e.g., the minimal time
case. An example of the latter is a fighter plane that should move from one
location to another as fast as possible. In this case the prediction horizon N
also becomes a decision variable.

3.3 Dynamic optimization with linear models
Given the options above a variety of dynamic optimization problems may be
formulated. We start off with linear models and assume a quadratic objective
function since this is a commonly used formulation.

Objective function (3.7) may now be written as

f(z) =
N∑
t=0

ft(xt+1, ut) =
N−1∑
t=0

1

2
x>t+1Qt+1xt+1 + d>xt+1xt+1 +

1

2
u>t Rtut + d>utut

with Qt � 0 and Rt � 0, which gives rise to the following QP problem.2

min
z∈Rn

f(z) =
N−1∑
t=0

1

2
x>t+1Qt+1xt+1 + dxt+1xt+1 +

1

2
u>t Rtut + dutut (3.8a)

2It is common to include 1
2 as a part of the quadratic terms in dynamic optimization.

The reason is that some results, in particular linear quadratic control (LQ), which will be
discussed later, uses this convention.

3.3. Dynamic optimization with linear models 19

subject to

xt+1 = Atxt +Btut, t = 0, . . . , N − 1 (3.8b)
x0, u−1 = given (3.8c)

xlow ≤ xt ≤ xhigh, t = 1, . . . , N (3.8d)
ulow ≤ ut ≤ uhigh, t = 0, . . . , N − 1 (3.8e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh, t = 0, . . . , N − 1 (3.8f)

where

Qt � 0 t = 1, . . . , N (3.8g)
Rt � 0 t = 0, . . . , N − 1 (3.8h)

∆ut = ut − ut−1 (3.8i)
z> = (x>1 , . . . , x

>
N , u

>
0 . . . , u

>
N−1) (3.8j)

n = N · (nx + nu) (3.8k)

In the interest of simplifying the notation, we will not specify the set of times
t for the constraints whenever a special case of (3.8) is stated later in this
note.

Several comments are included to explain the formulation.

• The reason for using index t + 1 for the states xt is that the states of
interest are x1, . . . , xN since x0 is fixed. This is different for the control
input since u0 defines the control on the time interval [0, 1〉 and uN−1 the
control on [N − 1, N〉. Hence, we cover the whole prediction horizon.

• The discrete time model appears as an equality condition in the op-
timization problem. Further, we observe that it is repeated N times,
once for each time step on the horizon. The reason why t runs only to
N − 1 is the fact that xN is given by information at time N − 1 since
xN = AN−1xN−1 +BN−1uN−1.

• An initial value x0, i.e., the state at the beginning of the prediction
horizon, is required. It is given as an equality constraint meaning that
x0 is no free variable for optimization.

• Similarly, u−1 is a parameter in the optimization problem. We need
the previous input u−1 in order to calculate ∆u0 = u0 − u−1 which is
constrained in (3.8f). In cases where we have no constraints on ∆ut,
we do not need the u−1 in the optimization problem. Note that u−1

is the control applied to the plant at the previous time step; that is,

20 Chapter 3. Optimization of dynamic systems

the time step right before the beginning of our current horizon. We can
think of this as feedback from both the state x and the previous control
input u−1. This can be achieved by augmenting the state vector with
the extra state xnx+1 = u−1 when ∆ut is included in the formulation.

• Upper and lower bounds are placed on the states. These could be tem-
perature or pressure limits, or for instance speed constraints. The con-
straints are repeated N times while no limit is set on x0 since it is given
by (3.8c). xlow and xhigh are vectors and if no specific limits exists for
certain states the corresponding elements of xlow and xhigh may be set
to −∞ and +∞, respectively.

• Constraint (3.8d) may well be generalized by placing limits on some
controlled variable γt instead of the states, i.e., by replacing xt with
γt = h(xt) and constraining this function. An example of the latter
may be limits on product quality, say viscosity of paint, which can be
modeled as a function of the states which may include temperature,
humidity and concentration of certain species. If h is a linear function
then γt = Hxt.

• The objective function (3.8a) may weight the controlled variable γt
instead of xt. For a linear model, γt = Hxt, the objective function is
then given by

f(z) =
N−1∑
t=0

1

2
γ>t+1Qt+1γt+1 + d>γt+1γt+1 +

1

2
u>t Rtut + d>utut

=
N−1∑
t=0

1

2
x>t+1H

>Qt+1Hxt+1+d>γt+1Hxt+1+
1

2
u>t Rtut+d

>
utut (3.9)

whereH>Qt+1H replacesQt+1 in (3.8a). In this case we typically choose
Qt � 0 since γt has been selected to include only important controlled
variables.

• The objective function is of LTV type since Qt and Rt are time varying.
It is common to use an LTI objective where these matrices do not vary
with time.

• The control input is limited by upper and lower bounds. An obvious
example of this is a valve with a range from closed to fully open. The
control input constraints run from 0 till N − 1 since uN−1 defines the
control input on the time horizon t ∈ [N − 1, N〉.

3.3. Dynamic optimization with linear models 21

• The change in the control input is restricted by (3.8f). This is very
often an issue since for instance valves or motors do have limits on their
dynamic performance, i.e., the speed with which the control input may
change.

• (3.8) is called en open loop optimization problem since it does not in-
clude feedback control. Feedback control is a central topic in Section 4.

Discrete time models usually have many more states than control inputs,
i.e., nx � nu. Hence, the number of decision variables are essentially governed
by the state dimension and the prediction horizon N . An example of a typical
size could be N = 20, nx = 25, nu = 4 meaning that the number of decision
variables is 580 since n = N ·(nx+nu) = 20·(25+4) = 580. According to (3.8b)
and (3.8c), there are 525 equality constraints. Viewing this from a control
viewpoint the future state trajectory x1, . . . , xN is given by the initial state
x0 and the control trajectory u0, . . . , uN−1 through the discrete time model.
Therefore the states may be eliminated by substituting x0, . . . , xN in the
objective function and the state constraints with u0, . . . , uN−1 using (3.8b)
and (3.8c). At the end we are then left with 20 × 4 = 80 decision variables
instead of 580. There is a penalty to be paid, however, since in the latter
reduced-space case, the resulting constraint matrices (see Ch. 16 in Nocedal
and Wright (2006)) are dense, while in the full-space formulation they are
sparse3. All modern optimization codes include linear algebra routines to
utilize sparsity in the constraint matrices.

We have so far studied how a dynamic optimization problem can be con-
verted into a QP problem. Two important questions still need attention. First,
why is the quadratic objective function a reasonable option and, second, will
(3.8) be a convex QP problem?

The quadratic objective function (3.8a) is a reasonable option and it is
by far the most widely used objective function. Reasons for these are:

1. Economic measures like revenue or cost are often linear in one or sev-
eral states and one or several control inputs, respectively. The typical
structure of such terms are thus dxtxt and dutut where dxt and dut in-
clude sales prices and the cost of input factors, respectively. This is a
special case of (3.8a).

2. A system may need to follow a reference trajectory, one example being
a vessel which has been issued a prescribed route. In this case the

3In a sparse matrix the majority of elements are 0.

22 Chapter 3. Optimization of dynamic systems

following term where Q � 0 makes sense

1

2
(xt − xref

t)>Q(xt − xref
t), Q � 0 (3.10a)

This term can be rewritten as

1

2
x>t Qxt − (xref

t)>Qxt +
1

2
(xref

t)>Qxref
t (3.10b)

Hence, in the tracking case the objective function term includes a
quadratic term, a linear term, and a constant. Often we replace xt by
the output variable γt, which was discussed in conjunction with (3.9),
and which does not change the problem structure.

There is one common extension to (3.8a), which is to include the following
term

1

2
∆u>t R∆t∆ut (3.11)

with R∆t � 0. This penalizes control moves4 and thereby wear and tear on
actuators like valves.

In dynamic optimization Qt in (3.8) will almost always be diagonal. Fur-
ther, it is always positive semidefinite. The same holds for Rt and R∆t.

The conclusion from the above discussion is that a convex QP problem, or
alternatively an LP problem, is a useful formulation in dynamic optimization.
Hence, the theory and solution methods discussed in Chapter 16 in Nocedal
and Wright (2006), and in Chapter 13 for LP problems, do indeed provide
an excellent platform for solving dynamic optimization problems.

An interesting observation is that the use of an LTI or LTV model in (3.8)
is quite similar from a solution point of view. In both cases the problem is
convex. The only difference is that the linear model calculations in (3.6) are
more involved in the LTV case since A0, . . . , AN−1, B0, . . . , BN−1 are required
instead of just A,B. This may be an important difference if each Jacobian
matrix computation is demanding.

3.4 The choice of objective function in optimal
control

In the following two subsections we will discuss the choice of objective func-
tion and its links to closed loop system performance. Further, we provide

4A control move is defined by ∆ut = ut − ut−1.

3.4. The choice of objective function in optimal control 23

some examples. The discussion will be quite concrete and for simplicity cen-
ter on SISO systems5.

Consider the two sets of system and control trajectories in Figure 3.2.
For both of these cases, the state reference point for the controllers is xref

t ≡
0. Looking at the two different closed loop systems, it is clear that both
controllers are successful in getting the state xt close to zero by six time
steps. However, it is not clear whether one system performs better than the
other.

(a) Oscillating state and control pro-
files.

(b) Smooth but slower control and
state profiles.

Figure 3.2: Two different control strategies ut that lead to very different
system responses xt. Which one is better?

The state response shown in Figure 3.2a is somewhat oscillating, while
the response in Figure 3.2b is smoother. If we have a case where the plant
we wish to control does not operate safely whenever the state xt is outside
the region [−1, 1], the first response is the better one since the state reaches
the desired region at t = 1, i.e., xt ∈ [−1, 1] ∀ t ≥ 1, while the state response
in Figure 3.2b is slower in reaching the desired region [−1, 1]. On the other
hand, if an overshoot like the one in Figure 3.2a is unacceptable, the state
behavior in Figure 3.2b is the better one out of the two.

If we have no concern for neither a safe region nor overshoots, but simply
want the state xt to be close to the reference point (zero), we can compare
the two responses by evaluating the state’s deviation from its reference. The
most common way of comparing two state trajectories like the ones shown

5A SISO system is a Single Input Single Output system. It has one input (nu = 1) and
one output, which in this subsection is the state variable. As discussed earlier the output
may also be an auxiliary variable, e.g., γt = Hxt, instead of the states.

24 Chapter 3. Optimization of dynamic systems

in Figure 3.2 is to compare a norm function of the form

N∑
t=0

‖xt − xref
t ‖2 (3.12)

evaluated for each of the two trajectories. Here, N is the final time of interest
(6 in our example). Sometimes the sum starts at t = 1 instead of t = 0; this is
because the initial x0 is given and can therefore be left out since it contributes
the same amount regardless of trajectory. Instead of letting the sum over xt
go from t = 1 to t = N , we can take the sum over xt+1 from t = 0 to
t = N − 1. That is,

N∑
t=1

‖xt − xref
t ‖2 =

N−1∑
t=0

‖xt+1 − xref
t+1‖2 (3.13)

The relevance of this indexing convention will be apparent later.
Since xref

t ≡ 0, we compare

6−1∑
t=0

‖xt+1‖2 (3.14)

for the two cases. In (3.12), we implicitly assume that we use the 2-norm
(Euclidean norm) which is by far the most common choice of norm. Nev-
ertheless, we may in certain application use other norms such as 1-norm or
∞-norm. Calculating the performance measure (3.14) yields

6−1∑
t=0

‖xt+1‖2
2 =

5∑
t=0

x2
t+1 = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 (3.15)

for each of our example responses in Figure 3.2 we get 0.9 for the oscillating
state trajectory in Figure 3.2a and 2.4 for the smoother state trajectory in
Figure 3.2b. Hence, if our goal is to have the state close 0 as measured by
the 2-norm squared, the oscillating trajectory in Figure 3.2a is best.

The above discussion shows that there is no single answer to the question
of which trajectory is best. Determining the best trajectory is only meaningful
with respect to a measure of performance — no trajectory can be universally
best or optimal. When discussing optimality in control we need to decide
on a performance measure (an objective function) and compare trajectories
based on that. The trajectory that is optimal with respect to one objective
function may not be optimal with respect to another. In the following we
will discuss several possible objective functions for control and provide some
reasons for the most common choice of objective.

3.4. The choice of objective function in optimal control 25

(a) Identical response to that of Fig-
ure 3.2b.

(b) The state approaches zero slower
due to less control usage.

Figure 3.3: Another pair of different control strategies ut that lead to different
system responses xt. Which one is better?

If we compare the two state trajectories in Figure 3.3, many would say
that one in Figure 3.3a (the one where the state goes to zero fastest) is the
best one. This is certainly true if we use an objective function like (3.12).
However, we can imagine a system where it is potentially bad if the state is
moved too quickly, for instance if rapid changes may cause damage; in a case
like that the state trajectory in Figure 3.3b may be the best. If we want to
include the control input as part of our performance measure or objective
function, we might have more reasons to argue that the system behavior in
Figure 3.3b is the one we prefer out of the two. Think of cases where the use
of input ut has a high cost associated with it; two examples are vehicles that
run on expensive jet fuel and circuits powered by small batteries. In such
cases we may want the state to approach its reference as fast as possible, but
the cost associated with the use of input might be more important to us.

Looking at the two control input sequences ut in Figure 3.3, it is clear
that the control input in Figure 3.3a works the hardest (“spends the most
fuel”). Since we want a systematic way of comparing control input sequences,
we also here need a measure of performance. Again, there are many possible
choices, but we will for now use a quadratic measure and discuss alternatives
later. In fact, the measure we will use is almost identical to the one we used
for the state trajectories:

N−1∑
t=0

‖ut‖2 (3.16)

Note that it is possible to include a reference input uref
t that we want to stay

26 Chapter 3. Optimization of dynamic systems

close to, just like in (3.12)6. If we compare (3.14) and (3.16) we see that the
sums go to t = N and t = N − 1, respectively. This is due to the fact that
the last state we include in our performance measure is xN , which depends
on uN−1 since the discrete-time dynamic systems we study can be written as

xt+1 = g(xt, ut) (3.17)

Hence, the control uN affects the state xN+1, a quantity we are not interested
in (since it does not appear in the sum in (3.14)). Evaluating the control
performance measure

5∑
t=0

‖ut‖2
2 =

5∑
t=0

u2
t = u2

0 + u2
1 + u2

2 + u2
3 + u2

4 + u2
5 (3.18)

for the two input sequences in Figures 3.3a and 3.3b results in 21.3 and 5.3,
respectively. These numbers quantify the amount of work done by each of the
controllers and confirm that the controller in Figure 3.3a works more than
the other.

We now have a way of evaluating how well a dynamic system performs,
both in terms of how much the state deviates from its reference point and
how much work the controller does to achieve this. Both of these quantities
should be as small as possible — we want to minimize them. When the two
quantities are minimized we get a state trajectory that stays close to its
reference and a controller that achieves this with a small amount of work.

The task of determining the best performance gets more complicated
when we simultaneously consider both state and control trajectories. The
answer to which of the dynamic systems in Figure 3.3 has the best perfor-
mance depends whether we prioritize the state being close to its reference or a
small input signal. We can argue that Figure 3.3a performs best if one mainly
cares about how close the state is to its reference, and that Figure 3.3b is
best if how much input is being used is our main concern.

Let us consider combining the two performance measures (one for the
state and one for the control input) into one objective function f by adding
them together:

f =
N−1∑
t=0

x2
t+1 +

N−1∑
t=0

u2
t

=
N−1∑
t=0

x2
t+1 + u2

t (3.19)

6The use of the reference control input uref is also mentioned in Section 4.2.4.

3.4. The choice of objective function in optimal control 27

This objective function takes both state error and control usage into account.
However, it does not allow us to place any emphasis on what is most impor-
tant to us — control design. We can specify our priority by introducing the
weight parameters q and r and use an objective function of the form

f =
N−1∑
t=0

qx2
t+1 + ru2

t (3.20)

The (positive) weights q and r are chosen by the control designer as a way
to specify the desired system behavior and tune controller. In cases where a
small state error is more important than low use of control input we make
sure that q is large enough relative to r; similarly, when minimizing control
input usage takes precedence over keeping the state close to its reference we
increase r and/or decrease q until we are happy with the overall performance.
An example will clarify the effect of the weights.

Example 3 (Different objective function values)
We consider the simple example system

xt+1 = 0.9xt + 0.5ut (3.21)

with initial condition x0 = 4. As above, we want to control the state xt to 0
without using too much input u, and we still study N = 6 time steps. First,
assume that it is very important that the state reaches 0 quickly and stays
very close, and that we do not worry much about how much control input we
use. We can specify this by choosing a value of q that is large relative to the
value of r. We choose q = 5 and r = 1 and see if the system behavior that
minimizes the resulting objective function is acceptable. The optimal system
response with respect to this choice of weights is shown in Figure 3.4. We see
that the state fairly quickly goes to 0, and that there is a fairly liberal use of
control input to achieve this, especially for the first few time steps. We can
quantify the performance through

N−1∑
t=0

x2
t+1 = 1.9,

N−1∑
t=0

u2
t = 23.6 (3.22)

If we decide that in Figure 3.4 the state goes to 0 faster than strictly
necessary, or that the large values of the input is not worth the quick state
response, we can reconsider our choices of q and r. That is, we want to put
less emphasis on the state’s quick convergence to 0. We can specify this by
decreasing q, increasing r, or both. For simplicity, we just decrease q to q = 2

28 Chapter 3. Optimization of dynamic systems

Figure 3.4: Optimal system behavior with respect to the weights q = 5 and
r = 1.

and leave r = 1. The response shown in Figure 3.5 is optimal with respect
to the objective function (3.20) with q = 2 and r = 1. If we compare this
response with the one shown in Figure 3.4 that resulted from q = 5, we see
that the state now approaches 0 slower (it is very close to 0 at t = 6) and
that the magnitude of the control input is smaller. This is also seen through
the quantities

N−1∑
t=0

x2
t+1 = 4.8,

N−1∑
t=0

u2
t = 14.7 (3.23)

Figure 3.5: Optimal system behavior with respect to the weights q = 2 and
r = 1.

Let us assume that we have changed our minds, and now put even less
emphasis on how quick the state goes to 0, as long as it is decreasing, and put
a bigger emphasis on how much control input is used. This can be expressed
through the choice q = 1 and r = 2. The system behavior shown in Figure 3.6
is optimal with respect to this choice. The state is no longer close to 0 by

3.4. The choice of objective function in optimal control 29

t = 6, but the control usage now has a very small magnitude; specifically,

N−1∑
t=0

x2
t+1 = 14.3,

N−1∑
t=0

u2
t = 5.3 (3.24)

Figure 3.6: Optimal system behavior with respect to the weights q = 1 and
r = 2.

Note that no one out of these three system responses is better than the
others — they are all optimal with respect to a specific choice of objective
function weights. It is not always easy to predict what kind of response any
given choice of q and r will produce, and it it often necessary to try many
different combinations before a good combination is found. 4

In the discussion above we measured control performance in terms of con-
trol usage, meaning we wanted to minimize the the magnitude of the control
signal. We mentioned a few examples where this makes sense, one being when
the use of control input is directly related to consuming a resource, such as
electricity from a battery or fuel. In many applications, a large control sig-
nal magnitude has no direct cost. Examples of such cases include the rudder
angle of a ship and the valve opening in a pipe. In these examples we often
want to minimize how much the control signal changes from one time step to
the next, often due to the wear and tear associated with large and frequent
changes in the actuator set point.

We define the change in input at time t as, cf. (3.8i),

∆ut = ut − ut−1 (3.25)

which is simply the difference between the input at time t and the input at
the previous time t− 1. The quantity ∆ut is as mentioned earlier referred to
as a control move. If we want to limit how much the control input changes,

30 Chapter 3. Optimization of dynamic systems

we may include this in the objective function we minimize. This is usually
done by adding the square of the term (3.25) to the sum in the objective
function (3.20), commonly with an associated (positive) weight that we will
call r∆

7. This leads to the objective function8

f =
N−1∑
t=0

qx2
t+1 + ru2

t + r∆(∆ut)
2 (3.26)

As an exercise, find the value of

N−1∑
t=0

r∆(∆ut)
2 (3.27)

for each of the two input sequences in Figure 3.7 when r∆ = 1, N = 6, and
u−1 = 0. The answer can be found in the footnote.9

(a) A constant input sequence. (b) An on-off input sequence.

Figure 3.7: Two different control input sequences.

As with the other terms in the objective function, we could have achieved
reduction in the control moves in different ways. The approach we presented
here is the most common in the literature, and using the square of the change
in input from one time instant to the next is the most consistent with the
rest of the objective function. Alternatives to this approach is beyond the
scope of this text; furthermore, the main goal of this brief discussion of the
topic is to demonstrate that the chosen approach makes sense and to help
build some intuition for why it makes sense.

7The notation is consistent with (3.11).
8The ‘ 12 ’ term is skipped below.
9Answers to the exercise:

Thesumin(3.27)is5forthecontrolinputinFigure3.7b.
Thesumin(3.27)is1(not0!)forthecontrolinputinFigure3.7a.

3.5. Optimal open loop optimization examples 31

3.4.1 Norms in the objective function

All of our objective functions discussed here were based on the 2-norm. We
mentioned above that other norms can be used but the 2-norm is by far
the most common in optimal control. The 1-norm is used in certain appli-
cations, meaning performance is measured through absolute values, rather
than squares. As we will see in the subsequent sections, optimizing the per-
formance of linear systems using a quadratic objective function is done by
formulating quadratic programming problems. If we instead use the 1-norm,
the objective function is not quadratic and the resulting optimization prob-
lem is no longer a QP. In order to solve an optimization problem where the
objective function is a sum of absolute values of the variables, and the con-
straints are linear, it is possible to reformulate the problem and obtain a
linear programming problem. That is, using the 1-norm as a performance
measure in optimal control of linear systems leads to linear programming
problems. The technique used to reformulate a 1-norm objective function in-
volves introducing extra variables, but the details of this is outside the scope
of this text.

3.5 Optimal open loop optimization examples

We continue this section with two examples of open loop optimization prob-
lems. The first example uses a SISO system while the second discusses a
MIMO system10.

Example 4 (Finite horizon optimal open loop control for a SISO system)
Consider the scalar dynamic discrete-time system

xt+1 = axt + but (3.28)

Our goal is to keep the state xt as close to zero as possible while using
a minimal amount of input. This can be formulated as minimizing some
combination of qx2

t and ru2
t for all time instants t, where q and r are non-

negative scalars that reflect how we prioritize the two objectives relative to
each other. Assume we care more about keeping the state close to zero than
about how much input we use; this would be the case if performance is critical
and fuel is cheap. We could then choose values like

q = 4, r = 1 (3.29)

10A MIMO system is a Multiple Input Multiple Output system. Thus, it has more than
one input (nu > 1) and more than one output.

32 Chapter 3. Optimization of dynamic systems

for every value of t provided the values of xt and ut are similar11. If the time
horizon for optimization is of length N , we can formulate the objective as
minimization of

f(z) =
N−1∑
t=0

1

2
qt+1x

2
t+1 +

1

2
rtu

2
t (3.30)

where
z = (x1, . . . , xN , u0, . . . , uN−1)> (3.31)

That is, z is a vector containing all variables. For the remainder of this
example, we choose the rather short horizon length N = 4. We then have
that

z = (x1, x2, x3, x4, u0, u1, u2, u3)> (3.32)

With this definition of z, the objective function (3.30) can be written

f(z) =
1

2
z>



q1 0 0 0 0 0 0 0
0 q2 0 0 0 0 0 0
0 0 q3 0 0 0 0 0
0 0 0 q4 0 0 0 0
0 0 0 0 r1 0 0 0
0 0 0 0 0 r2 0 0
0 0 0 0 0 0 r3 0
0 0 0 0 0 0 0 r4


︸ ︷︷ ︸

G

z (3.33)

where we call the big matrix G. If we write out the quadratic form,

f(z) =
1

2
z>Gz =

1

2

(
q1x

2
1+q2x

2
2+q3x

2
3+q4x

2
4+r0u

2
0+r1u

2
1+r2u

2
2+r3u

2
3

)
(3.34)

it is clear that (3.30) and (3.33) are equivalent.
We now rewrite the state Equation (3.28) as

− axt + xt+1 − but = 0 (3.35)

With this formulation, we can write the state equation for each time instant
t:

−ax0 + x1 − bu0 = 0 (3.36a)
−ax1 + x2 − bu1 = 0 (3.36b)
−ax2 + x3 − bu2 = 0 (3.36c)
−ax3 + x4 − bu3 = 0 (3.36d)

11Similar values for xt and ut are obtained by scaling these variables.

3.5. Optimal open loop optimization examples 33

This set of the equations can then be written in this fashion.

x1 −bu0 = ax0

−ax1 +x2 −bu1 = 0
−ax2 +x3 −bu2 = 0

−ax3 +x4 −bu3 = 0

This suggests the matrix formulation


1 0 0 0 −b 0 0 0
−a 1 0 0 0 −b 0 0

0 −a 1 0 0 0 −b 0
0 0 −a 1 0 0 0 −b


︸ ︷︷ ︸

Aeq



x1

x2

x3

x4

u0

u1

u2

u3


︸ ︷︷ ︸

z

=


ax0

0
0
0


︸ ︷︷ ︸

beq

(3.37)

i.e., the set of system equations can be written as an equality constraint of
the form

Aeqz = beq (3.38)
Bounds on the states and controls are written

xlow ≤ xt ≤ xhigh (3.39a)
ulow ≤ ut ≤ uhigh (3.39b)

We can write these constraints in terms of z as

x1

x2

x3

x4

u0

u1

u2

u3


≥



xlow

xlow

xlow

xlow

ulow

ulow

ulow

ulow


, −



x1

x2

x3

x4

u0

u1

u2

u3


≥ −



xhigh

xhigh

xhigh

xhigh

uhigh

uhigh

uhigh

uhigh


(3.40)

The problem is fairly easy to implement and solve in MATLAB using this
formulation. For simplicity we let the system be stable and choose a = 0.9
and b = 0.5; we also set x0 = 4, xlow = −10, xhigh = 10, ulow = −2, uhigh = 2,
as well as the tuning parameters q = 4 and r = 1 for all t. The resulting
optimal open loop state and control sequences are shown in Figure 3.8. Note
that the first two control inputs are at the lower bound, and that the state
does not reach zero at the end of the horizon. 4

34 Chapter 3. Optimization of dynamic systems

Figure 3.8: Open loop optimal state trajectory and control sequence for Ex-
ample 4.

The next example is more general than the previous one, and extends the
formulation to MIMO systems.

Example 5 (Finite horizon optimal open loop control for a MIMO system)
Consider the MIMO system

xt+1 = Atxt +Btut (3.41)

where xt ∈ R2 and ut ∈ R2. Again, we wish to keep both states at zero with
minimal use of input. This can be formulated as minimizing some combina-
tion of x>t Qxt and u>t Rut for all time instants t, where Q and R are matrices
that reflect how we prioritize the different objectives relative to each other.
We have here assumed that Q and R do not vary with time. If there are two
states and two control inputs and we for instance care more about keeping
the first state of xt small than we care about keeping the second state of xt
small, we could use

Q =

[
2 0
0 1

]
(3.42a)

3.5. Optimal open loop optimization examples 35

If we care very little about how large the inputs are, we could choose

R =

[
0.1 0
0 0.1

]
(3.42b)

If the time horizon for optimization is of length N , we then formulate the
objective as minimization of

f(z) =
N−1∑
t=0

1

2
x>t+1Qxt+1 +

1

2
u>t Rut (3.43)

where z now is
z = (x>1 , . . . , x

>
N , u

>
0 , . . . , u

>
N−1)> (3.44)

Note that here, x1 is the state vector x at t = 1. We now choose a very short
horizon length, N = 2, and write the objective as

f(z) =
1

2
x>1 Qx1 +

1

2
u>0 Ru0 +

1

2
x>2 Qx2 +

1

2
u>1 Ru1 (3.45)

where
z = (x>1 , x

>
2 , u

>
0 , u

>
1)> (3.46)

Since nx = 2, nu = 2, and N = 2, z contains 8 variables. The objective can
be written in the matrix form f(z) = 1

2
z>Gz with

G =



Q1 0 · · · · · · · · · 0

0
.

... . . . QN
.

... . . . R0
.

... 0
0 · · · · · · · · · 0 RN−1


(3.47)

Note that this kind of matrix is called block diagonal. For our example, with
the weight matrices in (3.42), we get

G =


Q1 0 0 0
0 Q2 0 0
0 0 R0 0
0 0 0 R1

 =



2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0.1 0 0 0
0 0 0 0 0 0.1 0 0
0 0 0 0 0 0 0.1 0
0 0 0 0 0 0 0 0.1


(3.48)

36 Chapter 3. Optimization of dynamic systems

For some arbitrary horizon length N , we can write the state equations as the
equality constraint Aeqz = beq with

Aeq =


I 0 · · · · · · 0 −B0 0 · · · · · · 0

−A1 I
. 0

.

0
.

...
... 0

... 0
0 · · · 0 −AN I 0 · · · · · · 0 −BN

 (3.49a)

and

beq =


A0x0

0
...
0

 (3.49b)

For our short horizon (N = 2), we then get

Aeq =

[
I 0 −B0 0
−A1 I 0 −B1

]
, and beq =

[
A0x0

0

]
(3.50)

Regardless of the number of states, control inputs, and the horizon length,
this formulation is fairly simple to implement in MATLAB. 4

3.6 Dynamic optimization with nonlinear dis-
crete time models

In Section 3.3 the system dynamics were given by a linear dynamic model.
Now a nonlinear dynamic model is introduced. This changes (3.8) to

min
z∈Rn

f(z) =
N−1∑
t=0

1

2
x>t+1Qtxt+1 + d>xt+1xt +

1

2
u>t Rtut + d>utut (3.51a)

3.6. Dynamic optimization with nonlinear discrete time models 37

subject to

xt+1 = g(xt, ut) (3.51b)
x0, u−1 = given (3.51c)

xlow ≤ xt ≤ xhigh (3.51d)
ulow ≤ ut ≤ uhigh (3.51e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (3.51f)
Qt � 0 (3.51g)
Rt � 0 (3.51h)

The comments that apply to (3.8) and were discussed above are equally
relevant in this case. There is however one key difference and that is the non-
linear discrete time model which introduces nonlinear equality constraints.
Hence, (3.8) is an NLP problem and thus also a nonconvex problem. This
complicates matters since solution methods require much more runtime. Fur-
ther, solution methods are less robust in the sense that a solution, if it exists,
may not be found, and finally, there are few ways to determine the quality
of a solution12.

An NLP solver is needed to solve (3.51). There are two main classes of
solver, sequential quadratic programming (SQP) and interior point methods
as discussed in Chapter 18 and 19 in Nocedal and Wright (2006), respectively.

From a control viewpoint the future state trajectory x1, . . . , xN is given
by the initial state x0 and the control trajectory u0, . . . , uN−1 through the
nonlinear discrete time model. Therefore the states may be eliminated by
substituting x0, . . . , xN in the objective function and the state constraints
with u0, . . . , uN−1 using (3.51b) and (3.51c). As in the linear case this re-
duces the number of decision variables significantly when nx � nu. There is,
however, an additional penalty to be paid in the nonlinear case. The linear
state constraints (3.51d) are nonlinear in the control inputs. As an example
the state constraints at t = 1

xlow ≤ x1 ≤ xhigh

change to two nonlinear constraints in u0. (Remember that x0 is fixed.)

xlow ≤ g(x0, u0) ≤ xhigh

Problem (3.51) may be generalized by using ft(xt, ut) instead of the
quadratic term x>t Qtxt+dxtxt+u

>
t Rtut+dutut. As argued above the quadratic

term covers most practical cases. Further, for linear models, ft(xt, ut) trans-
form a convex QP problem, or an LP problem13, into an NLP problem. Thus,

12The quality of a solution may for instance be measured by the duality gap.
13If Qt = 0 and Rt = 0.

38 Chapter 3. Optimization of dynamic systems

this enforces a heavy penalty in terms of runtime and reliability. For non-
linear models the penalty by introducing ft(xt, ut) instead of the quadratic
term will be less since (3.51) is an NLP problem in the first place.

Chapter 4

Optimal control

In this chapter we attempt to bridge the gap between dynamic optimization
and control. This will be done by first presenting a concept which merges feed-
back control with dynamic optimization; Model Predictive Control (MPC).
Second, linear MPC in which a convex QP problem is the core component is
reviewed. Third, the linear MPC problem is relaxed by removing inequality
constraints. This is known as the linear quadratic (LQ) controller where the
solution is given by a linear controller. Fourth, nonlinear MPC (NMPC),
which uses a nonlinear dynamic model, is briefly treated before this section
ends with some additional comments.

4.1 Model predictive control

In Sections 3.3 and 3.6 we presented dynamic optimization where a discrete
time model is optimized on a time horizon from t = 0 to t = N . This is
an open loop optimization problem since there is no feedback present in the
solution. In other words the solution is computed at time t = 0 and this
solution is used throughout the prediction horizon. There is an alternative to
this, closed loop optimization, in which the optimal solution is recomputed at
every time step t to include feedback control. Mayne et al. (2000) formulate
the MPC principle as

Model predictive control is a form of control in which the current
control action is obtained by solving, at each sampling instant,
a finite horizon open loop optimal control problem, using the
current state of the plant as the initial state; the optimization
yields an optimal control sequence and the first control in this
sequence is applied to the plant.

39

40 Chapter 4. Optimal control

Algorithm 2 State feedback MPC procedure
for t = 0, 1, 2, . . . do

Get the current state xt.
Solve a dynamic optimization problem on the prediction horizon from t
to t+N with xt as the initial condition.
Apply the first control move ut from the solution above.

end for

A basic MPC algorithm is given below.
The dynamic optimization problem referenced in the algorithm may be

the convex QP problem (3.8) or the nonconvex NLP problem (3.51).
One remark is in order. We will always assume that the constraints, which

in (3.8) and (3.51) are defined on the time intervals 0, . . . , N−1 and 1, . . . , N ,
are aligned with t meaning that they are shifted to t, . . . , t + N − 1 and
t+ 1, . . . , t+N at time t.

The concept is illustrated in Fig. 4.1 and it essentially solves a similar
optimization problem over and over again at each time step. Hence, MPC
uses a moving horizon1 approach in which the prediction horizon changes
from t, . . . , t+N to t+ 1, . . . , t+N + 1 from one time step to the next.

One obvious question is “What is the advantage of MPC vs. the open
loop solution?” The brief answer is that MPC couples open loop optimization
with feedback control in the following way: At each time step MPC requires a
new solution of the dynamic optimization problem. This solution z∗t contains
the future states x∗t+1, . . . , x

∗
t+N . Recalling (3.8c) or (3.51c) the optimization

problem at t+ 1 requires an initial value, i.e., xt+1. A key question is how to
select this initial value. One option is to use the prediction x∗t+1 computed at
t. However, this prediction does not account for errors in the discrete time
model and disturbances that occur on the time interval between t and t+ 1.
Hence, a better option is to compute a state estimate x̂t+1 which relies on the
latest available measurements and use this instead of x∗t+1. State estimation
extends Algorithm 2 as follows.

Before moving on we reiterate on the difference between Algorithm 2 and
Algorithm 3. Algorithm 2 requires an exact measure of the state at each time
step and is for this reason called state feedback MPC. Algorithm 3 relies on a
state estimate which uses available measurements, i.e., available output data,
and is for this reason denoted output feedback MPC.

To clarify, the term measured data in Algorithm 3 includes both the
control input ut and the measured output. The latter will be defined in

1The name receding horizon is also used.

4.1. Model predictive control 41

xt′

xt

ut

t

t′ t′ +N

← Past Future →

Present

Plant

xt′

xt

ut′

t′

ut

Solution to the open loop
optimization problem at t = t′

(measured history)
(most recent measurement)
(control history)
(most recent control input)

(most recent measurement)
(predicted)
(predicted)

First control input
ut′ from solution

Measured
state at t′

Figure 4.1: Illustration of the MPC principle.

Algorithm 3 Output feedback MPC procedure
for t = 0, 1, 2, . . . do

Compute an estimate of the current state x̂t based on the measured data
up until time t.
Solve a dynamic optimization problem on the prediction horizon from t
to t+N with x̂t as the initial condition.
Apply the first control move ut from the solution above.

end for

42 Chapter 4. Optimal control

conjunction with state estimation (4.9).
Several books are available on MPC. Arguably the most comprehensive

reference is Rawlings and Mayne (2009)2.

4.2 Linear MPC

Linear MPC applies the MPC concept to problems with quadratic objective
functions and linear constraints. Hence, a convex QP problem, like (3.8), is
solved at each time step. We make two changes to this QP problem before
stating the algorithm. First, it runs for all times, i.e., t = 0, 1, . . ., and second,
it includes control input changes, i.e., ∆ut, in the objective function since this
is common in MPC.

min
z∈Rn

f(z) =
N−1∑
t=0

1

2
x>t+1Qt+1xt+1 + dxt+1xt+1

+
1

2
u>t Rtut + dutut +

1

2
∆u>t R∆tut (4.1a)

subject to

xt+1 = Atxt +Btut (4.1b)
x0, u−1 = given (4.1c)

xlow ≤ xt ≤ xhigh (4.1d)
ulow ≤ ut ≤ uhigh (4.1e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (4.1f)

where

Qt � 0 (4.1g)
Rt � 0 (4.1h)
R∆t � 0 (4.1i)

z and ∆ut is defined as in (3.8).
The state feedback linear MPC algorithm is given by Algorithm 4.
We will now discuss this algorithm starting with a simple example, and

address the non zero reference case as in (3.10) later.

2This book is freely available for download at http://www.nobhillpublishing.com.

http://www.nobhillpublishing.com

4.2. Linear MPC 43

Algorithm 4 Linear MPC with state feedback
for t = 0, 1, 2, . . . do

Get the current state xt.
Solve the convex QP problem (3.8) on the prediction horizon from t to
t+N with xt as the initial condition.
Apply the first control move ut from the solution above.

end for

Example 6 (Comparing MPC with an open loop strategy)
Consider the unstable scalar system

xt+1 = axt + but (4.2)

with a = 1.2, and b = 0.5, and objective function

f(z) =
N−1∑
t=0

1

2
qx2

t+1 +
1

2
ru2

t (4.3)

with N = 4, q = 1, and r = 4. Figure 4.2 shows all open loop solutions with
a prediction horizon length of N = 4 in a simulation of 15 time instants. The
open loop solution at t = 0 is shown with one filled blue dot at t = 1 and
three unfilled blue dots at t = 2, 3, 4. The same holds for the control input.
The same coloring scheme is repeated for each time step. 4

There are some important observations to be made from this idealized
example where the state is assumed to be known and where there are no
model errors3, i.e., the model used in the MPC algorithm equals the model
which drives the real system.

The open loop solution computed at t = 1, i.e., for t = 2, 3, 4, 5, clearly
differs from the open loop solution calculated at t = 0, both for the state xt
and the control input ut. This is seen by for instance comparing the filled
and unfilled blue dots at t = 2. The same also holds for all later time steps.
Hence, the open loop solution and the MPC solution, which are marked as
filled dots, differ even in this case with no uncertainty in the discrete time
model or noisy measurements.

4.2.1 Ensuring feasibility at all times

Returning to Algorithm 4 a relevant question is: “Will there always exist a
feasible point?” The answer is clearly no and a simple example illustrates
why.

3Model errors occur when the actual system differs from the MPC model. This is always
the case in a practical application.

44 Chapter 4. Optimal control

Figure 4.2: Simulation of the system (4.2) with MPC using the objective
function (4.3).

Example 7 (Infeasible solution)
Imagine a vehicle that moves along one axis and therefore has two states,
position and velocity. It is controlled by Algorithm 4. Further, there are linear
control input constraints as well as linear state constraints, which must be
satisfied at each time step, see (4.1d) and (4.1e). The control input constraints
could refer to a power limit while the state constraints may refer to limits
in allowable vehicle position. Now, imagine a severe disturbance occurring
between time step t − 1 and t, which moves the vehicle beyond the state
constraint limits. In this case no feasible point may exist at t since the state
constraints at t+ 1, and possibly at consecutive time steps, may be violated
for all feasible control inputs. 4

The example shows that a feasible point may not exist and that a control
input may not available. This is an unacceptable situation. To avoid this we
soften the state constraints in (4.1) by using slack variables. This is shown
below where the time index t runs indefinitely as in Algorithm 4.

4.2. Linear MPC 45

min
z∈Rn

f(z) =
N−1∑
t=0

1

2
x>t+1Qtxt+1 + d>xt+1xt+1 +

1

2
u>t Rtut + d>utut

+
1

2
∆u>t R∆tut + ρ>ε+

1

2
ε>Sε (4.4a)

subject to

xt+1 = Atxt +Btut (4.4b)
x0, u−1 = given (4.4c)
xlow − ε ≤ xt ≤ xhigh + ε (4.4d)

ulow ≤ ut ≤ uhigh (4.4e)
−∆uhigh ≤ ∆ut ≤ ∆uhigh (4.4f)

where
ε ∈ Rnx ≥ 0

ρ ∈ Rnx ≥ 0

S ∈ diag {s1, . . . , snx} , si ≥ 0, i = {1, . . . , nx}

The slack variable ε and the tuning parameters ρ and s1, . . . , snx are
defined such that all their elements are positive. Two terms have been added
to the original QP problem, ρ>ε and 1

2
ε>Sε. These are both positive terms,

hence there is a desire to drive these terms to zero. More precisely the slack
variables should be nonzero only if the corresponding constraints are violated.
This corresponds to the definition of an exact penalty function in Chapter 15.4
in Nocedal and Wright (2006). The function (4.4) will be an exact penalty
function in this sense provided the ρ elements are big enough. Again referring
to Chapter 15.4 in Nocedal and Wright (2006) the quadratic term 1

2
ε>Sε

alone can never guarantee an exact penalty function, no matter how large
the elements s1, . . . , snx are. In practice an application will either use the
linear term or the quadratic term.

The slack variable ε may be time dependent by for instance selecting
different variables for the first part of the horizon and the latter part, re-
spectively. The reason is to prevent unnecessary constraint violation during
the latter prediction horizon since constraint violation tends to appear early
on the prediction horizon. Such an approach increases the number of slack
variables and hence computation time.

The output constraints may be widened during the first time steps of the
prediction horizon, or remove these output constraints altogether, in order
to limit the use of slack variables.

46 Chapter 4. Optimal control

4.2.2 Stability of linear MPC

A second relevant question for Algorithm 4 is: “Will the linear MPC controller
always be stable?”, or which assumptions must be made in order to guarantee
stability4 of linear state feedback MPC? The somewhat surprising answer is
that stability cannot be guaranteed even if a feasible solution exists for all
t = 0, 1, A simple example illustrates this.

Example 8 (Stability of linear MPC)
Assume the following objective function

f(x1, u0) =
1

2
(x2

1 + ru2
0), r > 0 (4.5a)

subject to

xt+1 = 1.2xt + ut (4.5b)
x0 = 1 (4.5c)

There are no inequality constraints and the optimal control input at any time
step t, i.e., ut, can therefore be written as an explicit function of xt as follows:

ut = − 1.2

r + 1
xt (4.5d)

By inserting (4.5d) into (4.5b) we obtain the closed loop system dynamics.

xt+1 =

(
1.2− 1.2

r + 1

)
xt = αxt (4.6)

The open loop system (4.5b) has an eigenvalue 1.2 and is therefore an open
loop unstable system. The closed loop eigenvalue in (4.6) exceeds 1, i.e.,
α > 1, if r < 5, meaning that the closed loop system is unstable for these
choices of r. 4

This simple example illustrates the fact that an MPC controller may
give rise to an unstable closed loop system, even though a feasible point
exists at every time step. This rather confusing fact was an important reason
why stability analysis of MPC lagged behind practical applications for many
years. Early references of practical MPC applications dates back to the late
70’s and early 80’s, see e.g. Richalet et al. (1978) and Cutler and Ramaker
(1980), while the first sound stability proof was published in the early 90’s.
An excellent review of these topics is given in Rawlings and Muske (1993).

4By stability we mean asymptotic stability, see e.g., Khalil (2002)

4.2. Linear MPC 47

It is beyond the scope of this note to discuss stability in detail. We will
however include some theoretical as well as practical comments.

The example above shows that feasibility of MPC is no guarantee for
closed loop stability. Stability can, however, be proven by reformulating the
MPC problem. There are several approaches. We will discuss a reformulation
where the following equality constraint is added to (4.1):

xN = 0 (4.7)

In this case Algorithm 4 gives a stable closed loop solution provided a fea-
sible solution is available at all times and that there are no model errors.
Since there are no model errors, i.e., the MPC model and the actual system
are identical, this is a nominal stability result. Adding (4.7), however, may
cause infeasibility problems, in particular for short prediction horizons. An
alternative to (4.7) is to increase the weight on the final state constraint, i.e.,
QN , which has a similar effect to the equality constraint xN = 0. We refer to
Rawlings and Mayne (2009) for more theory on stability of linear MPC with
state feedback. If we use Algorithm 4 with output feedback instead of state
feedback, stability proofs are very involved and of limited use for practical al-
gorithms. The key problem comes from the interaction between the dynamics
of the estimation loop and the control loop. Some results are available, see
e.g., Imsland et al. (2003). We will return with some comments on stability
analysis in the later Section 4.4.3.

If we return to Example 8 stability is easily achieved by increasing the
prediction horizon. As a general rule the prediction horizon must be at least
as long as the dominant dynamics5 6. In practice stability is no major is-
sue provided the MPC controller is designed and tuned according to sound
principles. This includes the choice of model and the length of prediction
horizon. In addition MPC is seldom used to control unstable processes as
will be discussed later.

4.2.3 Output feedback

As discussed several times state feedback is no realistic option. Output feed-
back is needed meaning that Algorithm 4 changes to Algorithm 5.

The state estimate x̂t is needed. In linear MPC different estimators are
used depending on the model type. Since we focus on state space models there

5The dominant dynamics is a qualitative term, which may be defined by the longest
time constant of a stable system.

6Example 8 is an unstable system. In this case the time constant is not defined. However,
the unstable eigenvalue gives an indication of the minimum prediction horizon, which in
this case is about 5 time steps.

48 Chapter 4. Optimal control

Algorithm 5 Linear MPC with output feedback
for t = 0, 1, 2, . . . do

Compute an estimate of the current state x̂t based on the measured data
up until time t.
Solve the convex QP problem (3.8) on the prediction horizon from t to
t+N with x̂t as the initial condition.
Apply the first control move ut from the solution above.

end for

are two main estimator classes, Kalman filter based estimators and Moving
horizon estimators (MHE). The celebrated Kalman filter was first proposed
by Kalman (1960) and has been widely used since.

The structure of output feedback linear MPC is shown in Figure 4.3 and
the estimator equations are given by

x̂t+1 = Ax̂t +But +KF (yt − ŷt) (4.8a)
ŷt = Cx̂t (4.8b)
x̂0 = given (4.8c)

where KF is the Kalman gain and C is the measurement matrix, i.e., data yt
is measured at each sample. We assume a linear measurement model

yt = Cxt (4.9)

The real system is defined within the dashed lines marked “System” while the
estimator is marked by the “Estimator” dashed lines. The estimator receives
measurements yt and control signals ut, and computes estimated states x̂t
that are used by the controller. The system in the figure is an LTI system. In
the case of an LTV system the appropriate choice is a time varying Kalman
gain7. The controller solves the convex QP problem (3.8).

Using a Kalman filter complicates tuning of the MPC controller since the
Kalman filter itself needs tuning. A rule of thumb is to make the estimator
dynamics significantly faster than the linear MPC feedback loop to limit
interaction between the estimator and the control loop.

As a remark the Kalman filter is based on a stochastic model descrip-
tion by adding noise terms to the dynamic model equation as well as the

7Even in the LTI case a time varying Kalman gain can be applied by using the finite
horizon formulation instead of the infinite (stationary) Kalman filter solution. This is,
however, rarely done.

4.2. Linear MPC 49

xt+1

A

CBQP

x̂t+1

A

CB

KF

xt

x̂t

yt

ŷt

ut

−

System

Estimator

Controller

Figure 4.3: The structure of an output feedback linear MPC.

measurement model

xt+1 = Axt +But + vt (4.10a)
yt = Cxt + wt (4.10b)

where vt and wt are process noise and measurement noise terms, respec-
tively, and the noise covariances of these terms determine the Kalman gain
KF . Hence, these covariances are used to tune the filter gain. If for instance
the process noise covariance is much larger than the measurement noise co-
variance we rely a lot on the measurements, which in Kalman filter terms
imply a large Kalman filter gain. In the opposite case the Kalman filter gain
will be small. Kalman filter theory is described in many books, for instance
in the comprehensive textbook Brown and Hwang (2012).

MHE is an estimator type that computes x̂t by solving an optimiza-
tion problem (Rao et al., 2003). It uses recent data, i.e., data at times
{t−M, . . . , t}, to estimate the current state xt. Hence, MHE uses data on
a time horizon backwards in time as opposed to MPC, which computes the
control based on predictions forward in time. An advantage of MHE is that it
easily accommodates state constraints. Examples of the latter are bounds on
velocity, position, temperature and pressure. The MHE optimization prob-
lem is a convex QP problem in linear MPC. Hence, it can be solved by the
same algorithm as the MPC problem.

50 Chapter 4. Optimal control

4.2.4 Reference tracking and integral action

MPC should handle different types of control problems like disturbance re-
jection and setpoint tracking. The linear MPC formulation (4.1) may be
regarded as a basic formulation and extensions are therefore needed to ac-
count for some control problems. In the following two key problems will be
discussed; setpoint tracking and integral action.

A system may need to follow a reference trajectory, i.e., we may track
some output variable, e.g., the position of a vessel or pressure in a reactor.
This situation is covered by (4.1) as discussed in conjunction with (3.10)8.
To be more explicit, however, assume that the goal is to track a variable γt,
which depends linearly on the states, i.e., γt = Hxt. γt is usually called a
controlled variable9. A suitable objective function, derived from (4.1), may
be

f(z) =
N−1∑
t=0

1

2
(γt+1 − γref

t+1)>Q(γt+1 − γref
t+1) +

1

2
∆u>t R∆ut (4.11)

where Q � 0 and R � 0.
An important question is whether the reference trajectory is feasible. To
simplify the discussion let us assume a fixed setpoint γref

t = γref, an LTI
system and subsequently pose the question: Is the stationary point feasible?
This can be analyzed as follows:

A stationary point (xs, γs, us) is found by setting xt+1 = xt in the system
model.

xs = Axs +Bus

γs = Hxs

Since the control input ut is constrained by lower and upper bounds as in
(4.1e), there may not exist a stationary state xs such that γref = γs. This
can easily be checked since the model and constraints are all linear. A simple
example illustrates this.

Example 9 (Feasibility of a stationary point)

8If dxt = 0 and dut = 0 the origin is the optimal solution and hence the setpoint is 0 in
this case.

9The term controlled variable, or CV, is discussed later in conjunction with practical
aspects, see Section 4.6.5.

4.2. Linear MPC 51

Assume the following stable linear system:

xt+1 =

[
0.8 0.4
−0.1 0.9

]
xt +

[
1.0 0.5
0.0 2.0

]
ut

γt =
[
1.0 −1.0

]
xt

0 ≤ ut ≤ 1

A stationary point is given by

xs =

[
1.67 14.17
−1.67 5.83

]
us

γs =
[
3.33 8.33

]
us

Any reference γref < 0 or γref > 11.66 will be infeasible since 0 ≤ ut ≤ 1. 4

It is useful to note that the number of controlled variables usually is
smaller than the number of states, hence, there may exist several xs that
satisfy γref = γs. If the dimension of the control input ut is larger than
the dimension of the output γt, there may likewise exist several stationary
controls us that satisfy γref = γs. In this case we may specify preferred values
for some of the control inputs.

f(z) =
N−1∑
t=0

1

2
(γt+1 − γref

t+1)>Q(γt+1 − γref
t+1)

+
1

2
(ut − uref)>R(ut − uref) +

1

2
∆u>t R∆ut (4.12)

uref defines reference control input values and R � 0. It may be noted that
this objective is covered by (4.1a). We will subsequently explore the extra
degrees of freedom by returning to the example above.

Example 10 (Feasibility of a stationary point — revisited)
Assume a feasible reference output γref = 2.0 in the previous example. This
may be realized by an (infinite) number of control input combinations. Three

of these options are us =

[
0.00
0.24

]
or us =

[
0.17
0.17

]
or us =

[
0.60
0.00

]
. In this case

the second choice will usually be preferred since both control inputs then
operate away from their limits, i.e., none of the control input constraints are
active. Hence, in the case of a dynamic disturbance both control inputs can
move in both directions to compensate for the disturbance. 4

52 Chapter 4. Optimal control

The selection of reference outputs is not treated herein, apart from a
discussion in the later Section 4.6.1 where it is treated in the context of the
control hierarchy.

Integral action is an important feature of PID controllers and provides
the means to compensate for disturbances with a bias component. In other
words we want some controlled variables, which are measured, to converge
to a constant reference value despite a constant disturbance10.

We will now discuss how integral action can be embedded in an MPC
controller and show one way of doing this. We impose integral action on
the controlled variables γt, meaning that we want γt to approach a constant
reference γref in spite of a constant disturbance. The online measurements
are as earlier defined by the output vector yt, and we make the common
assumption that integral action is imposed on all or some of the variables that
are measured. Viewing the output model and the model for the controlled
variables, respectively,

yt = Cxt (4.13a)
γt = Hxt (4.13b)

Since we impose integral action on all or some of the measured variables yt,
then H will contain a subset of the rows of C.

The basis for the approach taken here is to extend the dynamic model
with a disturbance model,[

xt+1

dt+1

]
=

[
A Ad
0 I

] [
xt
dt

]
+

[
B
0

]
ut

yt =
[
C Cd

] [xt
dt

]
and the idea is to accurately estimate the disturbance. We observe that the
disturbance model is an integrating model. The augmented model, including
the states and disturbances, are estimated using a state estimator as discussed
in Section 4.2.3. Taking a stochastic viewpoint, as briefly commented upon
in that section, noise is added to the dynamic model and the output model,
and thus the state estimator updates an augmented state vector (xt, dt)

> as
shown below.[

x̂t+1

d̂t+1

]
=

[
A Ad
0 I

] [
x̂t
d̂t

]
+

[
B
0

]
ut +

[
KF

Kd

]
(yt − ŷt) (4.14a)

ŷt =
[
C Cd

] [x̂t
d̂t

]
(4.14b)

10One may seek zero offset for a time varying reference signal. This is, however, beyond
the scope of this exposition.

4.2. Linear MPC 53

An estimate of the controlled variable is then given by

γ̂t = Hx̂t (4.15)

and integral action is obtained by replacing the measured control variable γt
with its estimate γ̂t given by (4.14) and (4.15) in an appropriate objective
function. A typical objective is given below.

f(z) =
N−1∑
t=0

1

2
(γ̂t − γref)>Q(γ̂t − γref) +

1

2
∆u>t R∆ut (4.16)

It may be useful to compare (4.16) with (4.11). There are two differences.
First, we use a constant reference in (4.16) instead of a time varying reference
since we focus on the constant reference case. Second, the measured output yt
is corrupted by the disturbance dt, and thus this also holds for the controlled
variables γt. Therfore we use the estimate γ̂t in the objective function.

We use a simple example to explain the importance of the noise model in
the state estimator.

Example 11 (Integral action and noise model)
Assume a first order model, which is open loop stable.

xt+1 = axt + but

yt = xt + nt

|a| < 1

γt = xt

nt is the measument noise and the controlled variable equals the state. We
assume constant noise nt = n̄ and constant control ut = ū. The stationary
solution is given by

x̄ =
b

1− aū

ȳ = x̄+ n̄ =
b

1− aū+ n̄

γ̄ = x̄ =
b

1− aū

We will now test two different estimators starting with the simplest option.

x̂t+1 = ax̂t + but + k(yt − ŷt)
ŷt = x̂t

54 Chapter 4. Optimal control

The stationary value of the state estimate is given by

ˆ̄x = aˆ̄x+ bū+ k(ȳ − ˆ̄y)

ˆ̄y = ˆ̄x

⇓
ˆ̄x =

b

1− aū+
k

1− a+ k
n̄

ˆ̄γ =
b

1− aū+
k

1− a+ k
n̄

and we immediately observe that ˆ̄γ differ γ̄ from when n̄ 6= 0. Thus, there
will be a bias in the state estimate in this case and therefore a bias in the
controlled variables, i.e., γ̄ 6= γref.

The estimator will subsequently be extended with a noise model

x̂t+1 = ax̂t + but + k(yt − ŷt)
d̂t+1 = d̂t + kd(yt − ŷt)
ŷt = x̂t + d̂t

where d̂t is an estimate of the measurement noise. In this case the stationary
value of the state estimate is given by

ˆ̄x = aˆ̄x+ bū+ k(ȳ − ˆ̄y)

ˆ̄d = ˆ̄d+ kd(ȳ − ˆ̄y)

ˆ̄y = ˆ̄x+ ˆ̄d

⇓
ˆ̄x =

b

1− aū+
k

1− a+ k
(n̄− ˆ̄d)

ˆ̄d = ˆ̄d+ kd(ȳ − ˆ̄y)

⇓
ˆ̄x =

b

1− aū+
k

1− a+ k
(n̄− ˆ̄d)

ˆ̄d = ˆ̄d+
kdb

1− aū+ kdn̄− kd ˆ̄x− kd ˆ̄d

⇓
ˆ̄x =

b

1− aū+
k

1− a+ k
(n̄− ˆ̄d)

ˆ̄d = n̄

⇓

4.3. Linear Quadratic control 55

ˆ̄γ = ˆ̄x =
b

1− aū

Hence, the constant disturbance does not affect the estimate of the con-
trolled variable and it is thus an accurate estimate. If we apply objective
function (4.16) and replace γt with its estimate, the (stationary) solution is
ˆ̄γt = γref and ∆ut = 0 provided (possible) inequality constraints allow for
this solution. Since there is no bias in the stationary estimate, integral action
is guaranteed, that is, γ̄ = γref. 4

Integral action on γt will not always be feasible. First, the dimension of γt,
i.e., the number of variables with integral action, cannot exceed the number of
control inputs. Second, if some of the control inputs saturate, some degrees of
freedom are lost. One may thus loose integral action on some of the control
variables. Useful material on tracking and integral action can be found in
Rawlings and Mayne (2009).

4.3 Linear Quadratic control

In this section we remove the inequality constraints altogether. First, the
finite horizon LQ problem is presented and analyzed. Thereafter it is com-
pared to the linear MPC case. Second, the infinite horizon LQ problem is
discussed. This problem is subsequently discussed in the context of output
feedback.

4.3.1 Finite horizon LQ control

We now remove all inequalities from (4.1) and pose the following problem.

min
z∈Rn

f(z) =
N−1∑
t=0

1

2
x>t+1Qt+1xt+1 +

1

2
u>t Rtut (4.17a)

subject to

xt+1 = Atxt +Btut (4.17b)
x0 = given (4.17c)

where
z> = (x>1 , . . . , x

>
N , u

>
0 . . . , u

>
N−1) (4.17d)

n = N · (nx + nu) (4.17e)

56 Chapter 4. Optimal control

The linear terms and the quadratic ∆ut term have also been removed
from the objective function in addition to the inequality constraints. This
will be commented later. (4.17) is usually called the LQ problem. Referring
to Chapter 16.1 in Nocedal and Wright (2006) we should expect an explicit
solution in this case as opposed to linear MPC which includes inequality
constraints. We will now show that the solution of the LQ problem can be
written in closed form. Moreover, this closed form is given as a linear state
feedback controller, i.e., ut = Ktxt.

Theorem 3 (LQ control and the Riccati equation).
The solution of (4.17) with Qt � 0 and Rt � 0 is given by

ut = −Ktxt (4.18a)

where the feedback gain matrix is derived by

Kt = R−1
t B>t Pt+1(I +BtR

−1
t B>t Pt+1)−1At, t = 0, . . . , N − 1 (4.18b)

Pt = Qt + A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1At, t = 0, . . . , N − 1 (4.18c)

PN = QN (4.18d)

Proof. Part 1: KKT conditions
Define the Lagrange function

L(z, λ1, .., λN) =
N−1∑
t=0

1

2
x>t+1Qt+1xt+1 +

1

2
u>t Rtut

−
N−1∑
t=0

λ>t+1(xt+1 − Atxt −Btut)

The KKT conditions, see e.g., Chapter 12 in Nocedal and Wright (2006),
are given by11

∂

∂ut
L(z, λ1, .., λN) = Rtut +B>t λt+1 = 0, t = 0, . . . , N − 1 (4.19a)

∂

∂xt
L(z, λ1, .., λN) = Qtxt − λt + A>t λt+1 = 0, t = 1, . . . , N − 1 (4.19b)

∂

∂xN
L(z, λ1, .., λN) = QNxN − λN = 0 (4.19c)

and (4.17b) and (4.17c).12

11We skip the definition of the index set, e.g., t = 0, . . . , N − 1, many places below to
simplify notation.

12Equation (4.19b) can be difficult to apprehend Hence, it may be useful to derive it
from scratch for a simple example.

4.3. Linear Quadratic control 57

Since Rt is positive definite, it is also invertible. Then, (4.19a) gives

ut = −R−1
t B>t λt+1 (4.20)

We use (4.19c) to postulate that the Lagrange multipliers λt depend linearly
on the states xt.

λt = Ptxt (4.21)

This gives

PN = QN (4.22)

We substitute (4.20) and (4.21) into (4.17b)

xt+1 = Atxt +Bt(−R−1
t B>t Pt+1xt+1)

and, solving for xt+1, we obtain

xt+1 = (I +BtR
−1
t B>t Pt+1)−1Atxt (4.23)

Then, we substitute (4.21) into (4.19b)

Qtxt − λt + A>t λt+1 = Qtxt − Ptxt + A>t Pt+1xt+1 = 0 (4.24)

Now xt+1 can be removed from (4.24) by using (4.23)

Qtxt − Ptxt + A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1Atxt = 0

Since xt is a common factor, we can write

(Qt − Pt + A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1At)xt = 0

This equality must hold for any xt, in particular it must hold for xt 6= 0. This
gives

Qt − Pt + A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1At = 0,

which we recognize as (4.18c).
Now, (4.20), (4.21) and (4.23) give

ut = −R−1
t B>t Pt+1xt+1

= −R−1
t B>t Pt+1(I +BtR

−1
t B>t Pt+1)−1Atxt

= −Ktxt

58 Chapter 4. Optimal control

This shows that (4.18) satisfies the KKT conditions.

Part 2: Second order conditions
Note that the states x1, . . . , xN can be written:

χ =


x1

x2
...

xN−1

xN

 =


A0

A1A0
...

AN−2 · . . . · A0

AN−1 · . . . · A0

x0

+


B0 0 · · · 0 0

A1B0 B1
.

...
...

... . . . 0 0
AN−2 · . . . · A1B0 AN−2 · . . . · A2B1 · · · BN−2 0
AN−1 · . . . · A1B0 AN−1 · . . . · A2B1 · · · AN−1BN−2 BN−1

 v
= Âx0 + B̂v (4.25)

where

v> = (u>0 , .., u
>
N−1)

We define the following matrices

Q̂0 =


Q1 0 · · · 0 0

0 Q2
.

...

0 0
. . . 0 0

...
... . . . QN−1 0

0 0 · · · 0 QN

 (4.26a)

R̂0 =


R0 0 · · · 0 0

0 R1
.

...

0 0
. . . 0 0

...
... . . . RN−2 0

0 0 · · · 0 RN−1

 (4.26b)

By using (4.25) and (4.26) the objective function (4.17a) may be written as a
function of v instead of z, meaning that the states x1, . . . , xN are eliminated
through the equality constraints.

4.3. Linear Quadratic control 59

f(z) = g(v) =
1

2
χ>Q̂0χ+

1

2
v>R̂0v +

1

2
x>0 Q0x0

=
1

2
(Âx0 + B̂v)>Q̂0(Âx0 + B̂v) +

1

2
v>R̂0v +

1

2
x>0 Q0x0

=
1

2
v>(R̂0 + B̂>Q̂0B̂)v + x>0 Â

>Q̂0B̂v +
1

2
x>0 (Q0 + Â>Q̂0Â)x0.

Thus, minimizing g(v) without equality constraints is equal to the original
LQ problem. Note that R̂0 + B̂>Q̂0B̂ is positive definite since R̂0 is positive
definite13 and B̂>Q̂0B̂ is positive semidefinite14. Hence, g(v) is a strictly con-
vex function and second order conditions are therefore satisfied.15

Part 3: Summing up
We choose to use Theorem 12.6 in Nocedal and Wright (2006) to show

sufficiency.

a) (4.18) satisfies the KKT conditions.

b) In Part 2 of the proof we showed that g(v) is a strictly convex function
and (12.65) in Nocedal and Wright (2006) will hence be satisfied.

c) The LQ problem is a strictly convex problem; hence the solution is a
unique global solution.16

There are several interesting features related to the LQ solution. We note
that the solution can be formulated as a state feedback controller as shown
in Figure 4.4. The controller is a linear time varying (LTV) controller. It is
important to note that the gain matrix Kk can be computed independently of
the states. It only depends on the system matrices (At, Bt) and the weighting
matrices in the objective function (Qt, Rt). It can hence be computed and
stored prior to the actual use of the solution.

(4.18c) is the well known discrete Riccati equation. It is a discrete time
nonlinear matrix equation. A special feature of this equation is the fact that
the boundary condition is given at the end of the optimization horizon as
shown in (4.18d). This implies that the sequence of matrices (P1, P2, . . . , PN−1)

13Remember that Rt is assumed to be positive definite.
14The reason is that Q̂0 is positive semidefinite and hence B̂>Q̂0B̂ will be positive

semidefinite
15Theorem 12.6 in Nocedal and Wright (2006) will for instance be satisfied.
16As opposed to a local solution as in Theorem 12.6 in Nocedal and Wright (2006).

60 Chapter 4. Optimal control

is computed by iterating (4.18c) backwards in time. Note that these matrices
are necessary to obtain the gain matrices (K0, K1, . . . , KN−1) as shown in
(4.18b).

The matrices (P1, P2, . . . , PN) are known as the Riccati matrices. They
are symmetric positive semidefinite matrices. To ensure that this property
is retained during computation (4.18d) it is usually substituted by some
equivalent equation with improved numerical properties. One example is

Pt = Qt + A>t (P−1
t+1 +BtR

−1
t B>t)−1At.

In the event of an LTI system and constant weight matrices (4.18) is
slightly simplified.

Kt = R−1B>Pt+1(I +BR−1B>Pt+1)−1A, t = 0, . . . , N − 1 (4.27a)
Pt = Q+ A>Pt+1(I +BR−1B>Pt+1)−1A, t = 0, . . . , N − 1 (4.27b)
PN = Q (4.27c)

It is important to note that the feedback gain (Kt) is time varying even
though the system and weighting matrices are time invariant.

The tuning parameters of the LQ controller are the weighting matrices
(Qt, Rt). To make an analogy, in a SISO PI controller we adjust the gain and
integral time as opposed to the weighting matrices in a LQ controller. As a
side remark we note that the LQ controller is a MIMO controller since the
dimensions of the control input and states usually are greater than one.

xt+1

A

B−K xtut

SystemController

Figure 4.4: Solution of the LQ control problem, i.e., with state feedback.

A deeper understanding of how to select weighting matrices can only be
achieved through experience. Some insight can be obtained by inspection of
the equations. In particular increased values of the (diagonal) elements of Rt

reduces the gain of the LQ controller. This becomes quite clear by noting
that Kt = R−1

t B>t Pt+1(I + BtR
−1
t B>t Pt+1)−1At ≈ R−1

t B>t Pt+1At when Rt is
large. To provide some additional insight we present a simple example similar
to an example used earlier.

4.3. Linear Quadratic control 61

Example 12 (LQ control and tuning)
Assume a simple first order system

xt+1 = 1.2xt + ut (4.28a)
x0 = 1 (4.28b)

and an objective function where N = 11.

f(z) =
10∑
t=0

1

2
x2
t+1 +

1

2
ru2

t , r > 0 (4.28c)

The Riccati equation is given by

Pt = 1 + 1.2Pt+1(1 + r−1 · Pt+1)−11.2

= 1 +
1.44 r Pt+1

Pt+1 + r
, t = 0, . . . , 10 (4.29a)

P11 = 1 (4.29b)

and the gains are computed by

Kt = r−1Pt+1(1 + r−1Pt+1)−11.2 = 1.2
Pt+1

Pt+1 + r
, t = 0, . . . , 10 (4.29c)

The controller may be written as

ut = −Ktxt, t = 0, . . . , 10 (4.29d)

Figure 4.5 shows the Riccati matrix, which is a scalar in this example, and
the controller gain. The controller gain is clearly time varying even though
the system and weight matrices are time invariant. Further, the controller
gain increases with a reduced value of r. Figure 4.6 shows the state xt and
the control input ut. It is quite apparent from this figure that the bandwidth
of the controller increases with a decrease in r. 4

As in Section 3.3 we may include a reference trajectory by including a
term like (xt+1 − xref

t+1)>Qt+1(xt+1 − xref
t+1) in the objective function. This

will however extend the optimal solution with a feedforward term from the
reference17.

17The solution will in this case actually require knowledge of the future reference tra-
jectory at a given time t, see e.g., Anderson and Moore (1990).

62 Chapter 4. Optimal control

Figure 4.5: The figure shows Pt and the controller gain Kt. Solid line: r = 0.1.
Dashed line: r = 1. Dotted line: r = 20.

Figure 4.6: The figure shows the state xt and the control input ut. Solid line:
r = 0.1. Dashed line: r = 1. Dotted line: r = 20.

4.4. Infinite horizon LQ control 63

4.3.2 Moving horizon LQ control

Linear MPC, and finite horizon LQ control as discussed above, do have sig-
nificant similarities. By removing the inequality constraints from linear MPC
we find a simple closed form solution for the LQ problem. Hence, the compu-
tation at each time step is reduced to a simple matrix multiplication instead
of solving a QP problem. This is observed by comparing (4.18a) with Algo-
rithm 2, i.e. state feedback MPC.

The LQ controller is the solution of an open loop optimization problem
even though the solution appears as a state feedback controller. The structure
of the solution, however, accommodates a closed loop solution in a straight-
forward way. We just repeat the solution on a moving horizon. In this case
Kt will be constant for all t for an LTI system with constant weight matrices,
cf. (4.27), as opposed to the open loop solution in which Kt varies from one
time step to the next.

In the output feedback case (4.18a) is replaced by

ut = −Ktx̂t (4.30)

where x̂t is the state estimate. The algorithm is shown in Algorithm 6.

Algorithm 6 Output feedback moving horizon LQ
for t = 0, 1, 2, . . . do

Compute an estimate of the current state x̂t based on the data up until
time t.
Compute and apply the control ut = −Ktx̂t. Kt will be constant for
all t for an LTI system and an objective function with constant weight
matrices.

end for

4.4 Infinite horizon LQ control

In the above section the optimal controller was an LTV controller. We will
now develop an even simpler controller by seeking a controller with a constant
feedback gain, that is ut = −Kxt. We start with the state feedback case.

64 Chapter 4. Optimal control

4.4.1 State feedback infinite horizon LQ control

To guide the search we observe from Figure 4.5 that the gain seems to settle
to some stationary value after some iterations.18 This is a general property
of the Riccati equation provided the system satisfies certain conditions to
be defined later. By increasing the horizon sufficiently it should therefore be
possible to obtain an optimal controller with a constant gain matrix within
any time interval of interest provided A, B, Q and R do not vary with time.
This is the basis for the infinite horizon LQ controller where we optimize on
an infinite time horizon, i.e., N →∞. The problem is formulated as follows:

min
z
f∞(z) =

∞∑
t=0

1

2
x>t+1Qxt+1 +

1

2
u>t Rut (4.31a)

subject to equality constraints

xt+1 = Axt +But (4.31b)
x0 = given (4.31c)

and
Q � 0 (4.31d)
R � 0 (4.31e)

where system dimensions are given by

ut ∈ Rnu (4.31f)
xt ∈ Rnx (4.31g)
z> = (u>0 , . . . , u

>
∞, x

>
1 , . . . , x

>
∞) (4.31h)

There are some issues that need clarification before presenting the solu-
tion.

• Problem (4.31) is an infinite dimensional QP problem since n→∞ in
(4.31a). Hence, it cannot be solved using a conventional method since
the KKT matrix is infinetely large and hence not well defined19.

• The objective function must be bounded above, i.e., f∞(z) < ∞, for
some feasible z. Inspection of the objective function shows that this
implies that ut → 0 when t→∞. Otherwise f∞(z)→∞.

18Remember that the Riccati matrix and thereby the gain is computed backwards in
time.

19See e.g. Chapter 16 in Nocedal and Wright (2006) for a definition of the KKT matrix.

4.4. Infinite horizon LQ control 65

If the system (4.31b) is stabilizable20 there will always exist a well defined
solution of (4.31). Stabilizability is a weaker form of controllability21. It means
that at least all the unstable modes of a system must be controllable. The
relationship between controllability and stabilizability is therefore as follows:

System (A,B) is controllable⇒ System (A,B) is stabilizable

We may now state a formal result on the existence of a solution to (4.31a)–
(4.31b).

Theorem 4.
Let (4.31b) be stabilizable. Then there exists a static solution to (4.27b),
i.e., Pt → P when t → −∞. This solution is equal to the unique positive
semidefinite solution of the algebraic Riccati equation (4.32c).

Proof. See Chapter 2 in Lewis (1986).

Provided the above theorem is satisfied the infinite LQ controller is given
as follows:

Theorem 5.
The solution of (4.31) is given by

ut = −Kxt for 0 ≤ t ≤ ∞ (4.32a)

where the feedback gain matrix is derived by

K = R−1B>P (I +BR−1B>P)−1A (4.32b)
P = Q+ A>P (I +BR−1B>P)−1A (4.32c)
P = P> � 0 (4.32d)

Proof. See Chapter 2 in Lewis (1986).

The infinite horizon LQ controller ut = −Kxt is often called the Linear
Quadratic Regulator or just LQR.

It should be noted that the algebraic Riccati-equation (4.32c) is a quadratic
equation in the unknown matrix P . Thus, there may exist several solutions
to this equation. Only one solution, however, will be positive semidefinite
and therefore satisfy (4.32d).

20System (A,B) is stabilizable if all the uncontrollable modes are asymptotically stable.
21System (A,B) is controllable if for any initial state x0 and any final state xN , there

exists a finite number of inputs u0, . . . , uN−1 to transfer x0 to xN .

66 Chapter 4. Optimal control

Returning to Example 12 the Riccati equation was equal to

Pt = 1 +
1.44 r Pt+1

Pt+1 + r

The algebraic version, i.e., (4.32c) is obtained by choosing Pt = Pt+1 = P .

P 2 + (r − 1− 1.22r)P − r = 0

This equation has two solutions; one is positive and the other is negative.
Hence, the positive solution is chosen.

A key difference between the finite and infinite LQ problem is the fact
that the infinite LQ problem is defined on an infinite time horizon. Hence,
stability becomes an important issue. We therefore formulate the following
question: Under which conditions will the closed loop system

xt+1 = Axt +But = Axt −BKxt = (A−BK)xt (4.33)

be stable? By stability we mean asymptotic stability, which implies that the
states xt → 0, and thereby ut → 0, when t → ∞.22 The answer is given by
the following theorem.

Theorem 6.
Given problem (4.31). Let system (A,B)23 be stabilizable and (A,D)24 de-
tectable. D is defined by Q = D>D. Then the closed loop system given by the
optimal solution is asymptotically stable.

Proof. See Chapter 2 in Lewis (1986).

This theorem deserves some comments.

• Detectability25 is a milder form of observability26. This implies that an
observable system always is detectable. The opposite is however not
necessarily true.

22The system xt+1 = Axt is asymptotically stable if the absolute value of the eigenvalues
of A are less than 1, i.e., |λi(A)| < 1 for all 1 ≤ i ≤ nx, where λi(A) is the ith eigenvalue
of A.

23xt+1 = Axt +But
24The system xt+1 = Axt or xt+1 = Axt +But is observed through the output yt = Dxt
25System (A,D) is detectable if all the unobservable modes are asymptotically stable.
26 System (A,D) is observable if the state xN can be determined from the system model,

its inputs and outputs for a finite number of steps.

4.4. Infinite horizon LQ control 67

• Since Q is positive semidefinite it will always be possible to find a D

defined by Q = D>D. As an example if Q =

[
0 0
0 1

]
� 0 we choose

D =
[

0 1
]
.27

The two conditions in Theorem 6 do have an intuitive interpretation.
The stabilizability condition tells us that we must be able to influence all
unstable modes. A system with unstable modes that cannot be influenced
by the control input will namely remain unstable for all control designs. The
objective function must be sensitive to all the unstable modes to satisfy the
detectability condition. In the opposite case a state may go to infinity without
influencing the value of the objective function. Hence, unboundedness of such
a state cannot be guaranteed in this situation.

Example 13 (Stability on an infinite horizon LQ controller)
To elaborate on Theorem 6 we study the following system

xt+1 =

[
1.2 0
0 0.8

]
xt +

[
b1

b2

]
ut, x0 =

[
1
1

]
(4.34)

with the weight matrices

Q = I =

[
1 0
0 1

]
, R = 1 (4.35)

It may be noted that (4.34) is an open loop unstable system since one of
the eigenvalues is outside the unit circle.

If b1 6= 0 and b2 6= 0 the system (A,B) is stabilizable. It is even control-

lable. Further, (A,D) is detectable, and also observable since Q =

[
1 0
0 1

]
and thereby D =

[
1 0
0 1

]
. Therefore the infinite LQ controller will stabilize

the system, i.e., the eigenvalues of (A−BK) will lie inside the unit circle.
The system will not be stabilizable if b1 = 0 since the first state will grow

independently of the control action, i.e., x1,t → ±∞ as t → ∞ provided
x0 6= 0. As a side remark one may note that the system is stabilizable, but
not controllable, if b1 6= 0 and b2 = 0.

The objective function will not be influenced by the first state x1,t if Q

is changed to Q =

[
0 0
0 1

]
since system (A,D), where D =

[
0 1

]
, will

27Since rank(Q) = 1 in this case, D will be a 1× 2 matrix. Hence, a 2× 2 matrix is no
valid decomposition as opposed to (4.35) where rank(Q) = 2.

68 Chapter 4. Optimal control

not be detectable. In the latter case D is a 2 × 2 matrix. If Q =

[
1 0
0 0

]
then D =

[
1 0

]
and (A,D) is detectable. The system is, however, not

observable in this case.
4

A further analysis of the closed loop system, provided Theorem 6 is sat-
isfied, can be of interest. The infinite horizon LQ controller has excellent
stability margins. Safonov and Athans (1977) showed that the controller has
a 60 degree phase margin and 6 dB gain margin. This result depends on one
critical assumption, however, a state feedback controller. As argued in the
MPC section the states must be estimated and thus an output feedback al-
gorithm, similar to Algorithm 3, will in practice be the only realistic option.
In this case nominal stability can be proven, although without any stability
margin. This was shown in an elegant paper by Doyle (1978). The combi-
nation of an LQ controller and a Kalman filter is usually denoted a linear
quadratic Gaussian (LQG) controller since the Kalman filter initially was
based on stochastic linear models with Gaussian white noise.

4.4.2 Output feedback infinite horizon LQ control

To gain further insight on LQ control we analyze the output feedback case in
an LTI setting. We combine the system (4.31b)–(4.31c) with a measurement
model yt = Cxt, the output feedback LQ controller ut = −Kx̂t, and the
Kalman filter (4.8).

xt+1 = Axt +But (4.36a)
yt = Cxt (4.36b)
ut = −Kx̂t (4.36c)
x0 = given (4.36d)

x̂t+1 = Ax̂t +But +KF (yt − ŷt) (4.36e)
ŷt = Cx̂t (4.36f)
x̂0 = given (4.36g)

These equations can be rewritten in a compact form

ξt+1 =

[
xt+1

x̃t+1

]
=

[
A−BK BK

0 A−KFC

]
ξt (4.37)

x̃t = xt − x̂t
ξ0 = given

4.4. Infinite horizon LQ control 69

where the dimension of the augmented state is given by

ξt ∈ R2nx

and x̃t refers to the error in the state estimates. The overall structure of the
LQG controller is shown in Figure 4.7.

xt+1

A

CB−K

x̂t+1

A

CB

KF

xt

x̂t

yt

ŷt

ut

−

System

Estimator

Controller

Figure 4.7: Structure of the LQG controller, i.e., output feedback LQ control.

Several comments and observations can be made from this.

• The dimension of the system and the state estimator is 2 · nx, i.e.,
double the size of the original system. This reason is that the estimator
introduces dynamics. To repeat, in the state feedback case the closed
loop system has nx eigenvalues while in the output feedback case the
closed loop system has 2 · nx eigenvalues.

• The dynamics of the matrix in (4.37) are given by the eigenvalues of
A − BK and A − KFC, respectively, since there is a 0 matrix in the
lower left corner. Hence the eigenvalues are given by the dynamics of
state feedback LQ control, i.e., A − BK, and the estimator dynamics
A − KFC. This simplifies tuning since the estimator and controller
can be tuned separately. As discussed earlier the estimator dynamics
should be significantly faster than the LQ controller dynamics to limit
interaction between these loops.

• (4.37) defines the system dynamics in an idealized case since the esti-
mator model equals the system model. In practice there will always be

70 Chapter 4. Optimal control

model errors. Model errors corrupt the matrix structure by for instance
introducing non negative terms in the lower left matrix. Nevertheless,
separation of dynamics according to (4.37) provide guidelines for tun-
ing the estimator and controller provided the model is of a reasonable
quality.

• The equation ξ0 = given deserves a comment. The latter nx elements of
this vector defines the initial values for the errors in the state estimates.

4.4.3 Stability of linear MPC with infinite horizon LQ
control

Based on the infinite horizon LQ stability result in Theorem 6 we continue
the stability discussion of linear MPC in Section 4.2.2. We first simplify the
linear MPC formulation (4.1) by removing the linear terms and the ∆ut
term from the objective function, and select constant weight matrices and an
LTI system. Further, we assume state feedback. Finally, (4.1) is changed by
extending the prediction horizon to infinity.

min
z
f∞(z) =

∞∑
t=0

1

2
x>t+1Qxt+1 +

1

2
u>t Rut (4.38a)

subject to

xt+1 = Axt +But (4.38b)
x0 = given (4.38c)

xlow ≤ xt ≤ xhigh (4.38d)
ulow ≤ ut ≤ uhigh (4.38e)

where
Q � 0 (4.38f)
R � 0 (4.38g)
z> = (u>0 , . . . , u

>
∞, x

>
1 , . . . , x

>
∞) (4.38h)

We first note that the origin is the only stationary point for the system.
Otherwise the objective function will be unbounded.

This optimization problem may be split into two parts by dividing the
prediction horizon into two parts: {1, . . . , N −1} and {N,N + 1, . . .} (Muske
and Rawlings, 1993; Chmielewski and Manousiouthakis, 1996; Scokaert and

4.4. Infinite horizon LQ control 71

Rawlings, 1998). The idea is to choose N such that the problem is uncon-
strained on the latter infinite horizon {N,N + 1, . . .}. Provided the system
is controllable and N is large enough the system can be driven to a state
xN ∈ X ′.X ′ is a set from where the latter optimal trajectory is unconstrained
(Gilbert and Tan, 1991). This means that none of the state or control input
constraints are active. The optimal objective function value on the latter
horizon, usually referred to as the value function, is then given by

f∞N (z∗) =
1

2
x>NPxN (4.39a)

where

P = (A−BK)>P (A−BK) +K>RK +Q (4.39b)

K is the infinite horizon feedback gain, cf. (4.32b). The infinite horizon prob-
lem (4.38) may now be reformulated into a finite dimensional QP problem.

min
z
f∞(z) =

N−1∑
t=0

1

2
x>t+1Qxt+1 +

1

2
u>t Rut + f∞N (z∗) (4.40a)

subject to

xt+1 = Axt +But (4.40b)
x0 = given (4.40c)

xlow ≤ xt ≤ xhigh (4.40d)
ulow ≤ ut ≤ uhigh (4.40e)

where

z> = (u>0 , . . . , u
>
N−1, x

>
1 , . . . , x

>
N) (4.40f)

Provided the problem is feasible at all times stability is guaranteed, more
specifically the origin is asymptotically stable (Rawlings and Muske, 1993).
This is proved by showing that the value function for the whole horizon is a
Lyapunov function and that this function decays towards the origin.

The proof requires a choice for N , which is difficult, if not impossible,
in practice. A proof like this, and similar stability proofs, should therefore
be used to provide insight into problems and solutions rather than precisely
define an MPC algorithm.

72 Chapter 4. Optimal control

4.5 Nonlinear MPC

Similar to the open loop optimization case the extension from linear MPC
to nonlinear MPC is in principle straightforward. We rewrite (4.1) similar to
(3.51).

min
z∈Rn

f(z) =
N−1∑
t=0

1

2
x>t+1Qt+1xt+1 + dxt+1xt+1

+
1

2
u>t Rtut + dutut +

1

2
∆u>t R∆tut (4.41a)

subject to

xt+1 = g(xt, ut) (4.41b)
x0, u−1 = given (4.41c)

xlow ≤ xt ≤ xhigh (4.41d)
ulow ≤ ut ≤ uhigh (4.41e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (4.41f)
where

Qt � 0 (4.41g)
Rt � 0 (4.41h)
R∆t � 0 (4.41i)

The state feedback linear MPC algorithm is given by Algorithm 7. In the
output feedback case an estimate of the state is needed, i.e., x̂t.

Algorithm 7 Nonlinear MPC with state feedback
for t = 0, 1, 2, . . . do

Get the current state xt.
Solve the optimization problem (4.41) on the prediction horizon from t
to t+N with xt as the initial condition.
Apply the first control move ut from the solution above.

end for

It is beyond the scope of this note to discuss NMPC in any detail. We
will however provide a few comments.

The key difference, and in fact the only difference between (4.1) and
(4.41), is the nonlinear model (4.41b). This turns the convex QP problem

4.6. Comments 73

for linear MPC into a nonlinear and nonconvex problem. This complicates
solution procedures significantly since an NLP solver is needed instead of a
QP solver. This is exactly the same change as discussed in conjunction with
dynamic optimization of nonlinear systems in (3.51).

In the output feedback case state estimation plays a key role. Estima-
tors for nonlinear dynamic models tend to be more complex than for linear
models and an exact solution of the nonlinear state estimation problem is in
fact intractable. Hence, approximations must be made. The Kalman filter,
as discussed in Section 4.2.3, is also used for nonlinear systems. However,
alternatives that address nonlinear behavior directly and thereby improve
performance have been developed. The extended Kalman filter (EKF) was
proposed in order to apply the Kalman filter to nonlinear spacecraft naviga-
tion problems (Bellantoni and Dodge, 1967) and is probably the most used
method in applied nonlinear state estimation. The EKF is based on a lin-
earization of a nonlinear model at each time step. Hence, it uses the time
varying Jacobian matrices, cf. (3.6), to compute a new filter matrix at each
time step. Another approach, which approximates the nonlinear filter solu-
tion more accurately, is the unscented Kalman filter (UKF), see Julier and
Uhlmann (2004). The MHE, which was discussed in Section 4.2.3, is also
applicable to nonlinear systems.

4.6 Comments
There are many aspects of dynamic optimization and MPC, some of which
have been covered in the earlier sections. Subsequently we comment on some
important topics to provide further insight.

4.6.1 The control hierarchy and MPC

A control system is often structured according to layers as shown in Fig-
ure 4.8. The controlled system, at the bottom, provides realtime data to the
control system through sensors and communication channels to controllers in
the next layer, the regulatory control layer. The controllers are conventional
controllers, often PID controllers28, and they are used to control properties
like pressure, flow rate, temperature, power, voltage, speed and heading de-
pending on the application. These controllers are embedded in a distributed
control system (DCS) or industrial programmable logic controllers (PLCs).
The regulatory control layer needs setpoints, for instance for flow rates, tem-
peratures, power, voltages, position and heading. These setpoints are sup-

28A PID controller will often only activate its proportional and integral action.

74 Chapter 4. Optimal control

plied by the advanced process control (APC) layer where the use of MPC is
spreading rapidly (Qin and Badgwell, 2003). Hence, MPC controls a process
through a regulatory layer and may communicate with the DCS through a
network based on for instance the OPC communication protocol.

In Figure 4.8 the upper scheduling and optimization layer may include
production plans of different products based on some manual analysis tech-
nique or as an output from an optimization application. Such applications
are usually based on static models and the oil optimization case in Example 2
is an example of this.

Scheduling
and optimization

Advanced process control

Regulatory control

Sensors, transmitters, analyzers, actuators

Process

Figure 4.8: Typical control hierarchy.

As mentioned earlier MPC applications are located in the APC layer of
Figure 4.8. The information flow is such that measurements yt are passed from
the lower regulatory control layer while setpoints (γt) and (possibly) varying
constraints are transferred from the upper scheduling and optimization layer.
The output from the MPC application, i.e., the computed control inputs (ut),
are sent to the lower layer as setpoints for low level controls.

To elaborate further, the sampling frequency decreases upwards in the
hierarchy. Regulatory control may compute new control inputs every second
while the APC sampling time is a minute or more, and rescheduling may be
done once a day.

The control hierarchy is valid for many sectors and two examples are
given below.

• In refineries an optimization application based on static models may
be used to schedule production for a whole refinery. Such an applica-

4.6. Comments 75

tion solves a large LP or NLP problem where models of the complete
refinery are included. The APC layer will include linear MPC applica-
tions for controlling key parts of the refinery like distillation columns.
The APC layer also includes simpler control strategies, e.g., heuristic
based control logic. The solution from the upper optimization prob-
lem provides some of the setpoints and constraints that are used in the
APC layer. The regulatory control layer includes a large number of PID
controller for controlling basic variables like flow rates, pressures, tem-
perature, levels and concentrations where the setpoints are supplied by
the controllers in the APC layer.

• A ship or an airplane may use an optimization application to decide
on a route from A to B. This information is transferred to an MPC
application. Hence, the MPC controller may be used to keep the ship or
plane close to the initial trajectory, or it may even change the trajectory
based on recent information. The latter may for instance save time or
fuel. The regulatory control layer will include basic controllers, e.g., for
heading control and pitch control.

To home in on MPC applications a specific example is presented below.

Example 14 (MPC applications as part of a large control system)
To elaborate we use Figure 4.9, which shows the Ekofisk complex in the
North Sea. Much of this large installation is controlled by ABB DCS systems
that communicate with sensors and actuators, performs control operations
with PID controllers or other logic, include procedures for start-up and shut-
down of systems, to mention some important functions. Thus, the regulatory
layer is in its entirety implemented in the DCS system, and safety critical
controllers are for instance placed in this layer. Sensor data from more than
10000 tags are sampled every second. Some data is filtered and transferred
to an external realtime data base, in this case a PI realtime database29. This
data is used for different purposes.

If future MPC applications were installed, they would most probably com-
municate with a realtime database, rather than the a DCS system directly,
by reading appropriate tags from the database and checking data quality
before solving the appropriate optimization problems. Subsequently the re-
sult, i.e., the control input, would be written to the PI database. This data
is available to the DCS system, which can read it and adjust the appropri-
ate setpoints. Since the MPC applications are non-critical, communication
requirements are limited and the OPC protocol is typically used. The field

29The PI realtime database is a OSIsoft product.

76 Chapter 4. Optimal control

operators and field engineers would observe the MPC applications through
their conventional graphical user interface (GUI), i.e., there is no need for
additional screen pictures. It should be remembered, however, that a control
specialist might need special access to the MPC applications to reconfigure
the controllers by for instance changing constraints or models.

It may be added that MPC applications are rare in the upstream oil and
gas business, i.e., production systems that include oil and gas wells, mani-
folds and pipelines, and topside processes30. MPC technology has however
a significant potential in this area, similar to the process industries. Thus,
MPC is also expected to penetrate this sector. 4

MPC$
applica*ons$

Data$$
transfer$

Data$$
transfer$

Figure 4.9: This figure shows the Ekofisk offshore complex. ABB DCS systems
control part of this large offshore production system where some data is
stored in PI realtime databases. An probable architecture for a future MPC
application is included.

The APC layer may be missing, meaning that no automatic high-level
controllers are in use. In this case low-level setpoints are set manually by
operators instead of through APC applications.

The above seems to allude to the fact that MPC is unsuited for safety
critical applications and for fast applications where the sampling time is

30Topside processes include gas oil water separators, pumps, scrubbers, compressors etc,
and the key function is to separate reservoir fluid into gas, oil and water.

4.6. Comments 77

in the millisecond region or even faster. This is, however, untrue and there
is currently much research on moving MPC into safety critical and/or fast
applications. There are alternative solutions. One is obviously to embed MPC
applications in the DCS or PLC, which by design use highly reliable software,
communication protocols and hardware. Another option is tailored hardware.
See Ling et al. (2008) and Jerez et al. (2011) for a couple of examples of how
to run MPC algorithms on field-programmable gate arrays (FPGA) to gain
speed by massive parallelization. The latter paper also addresses the issue of
power consumption, which can be critical in certain applications. This line
of development opens new application areas for MPC like robotics, power
generation and distribution, vehicles, and low-level control such as stabilizing
controllers.

4.6.2 MPC performance

An important reason for the industrial success of MPC is improved perfor-
mance through increased disturbance rejection and better tracking perfor-
mance. Hence, MPC helps systems comply with tighter performance speci-
fications from worldwide competition and increasing constraints from envi-
ronmental and safety considerations, and thereby improves economy. We will
now elaborate further on this.

A well tuned MPC application usually improves control as illustrated in
Figure 4.10. In this case, after the MPC controller is switched on, control per-
formance improves since disturbance rejection increases significantly. Now,
given an operational limit, which must be satisfied, a constraint supplied by
the upper optimization layer may be increased due to improved control as
shown towards the end of the time interval. This is often called “squeeze and
shift”. The operational limit may for instance be temperature in an exother-
mic reactor, oil production rate, or the distance between a vessel and an oil
platform. In all these cases improved MPC performance may improve the
economics of the reactor, the oil production system or vessel operations. In
terms of the control hierarchy in Figure 4.8 this discussion is related to the
two upper layers where the MPC controller receives some of its inputs, in
particular some of its constraints, from the top layer.

Most processes are limited by constraints. A distillation column, for in-
stance, may be constrained by boiler capacity, limits on the pressure differ-
ential across the column, or product purity specifications. It is difficult, if
not impossible, to dynamically track the constraints that limit production
without resorting to mathematical optimization. In this sense MPC provides
a tool that automatically adjusts the control strategy to push against, and
thereby exploit, the constraints that limit production according to the chosen

78 Chapter 4. Optimal control

Figure 4.10: An MPC controller improves performance and may therefore
operate closer to an operational limit. This is often called “squeeze and shift”.
The setpoint is provided by a higher level in the control hierarchy.

4.6. Comments 79

objective function.
MPC performance also depends on the performance of the regulatory con-

trollers. It is always important to have well tuned controllers in the regulatory
control layer, e.g., well tuned PID controllers. The effect of this is shown in
Figure 4.11 and it is similar to the “squeeze and shift” effect discussed above.
The key observation is thus that all low level controller must be well tuned
to gain the full benefit of MPC.

Figure 4.11: The performance of an MPC controller depends on low-level
controller tuning. This figure compares the performance of a system with well
tuned low-level controllers from Figure 4.10 and with poorly tuned low-level
controllers (the red dashed output). Since the poor tuning of the regulatory
controllers lead to larger oscillations it is necessary to use a more conservative
setpoint to ensure that the operational limit is respected. The setpoints are
provided by a higher level in the control hierarchy.

4.6.3 Feedforward control

Feedforward control is an efficient way to improve performance when dis-
turbance measurements are available. This is commonly used in regulatory

80 Chapter 4. Optimal control

control where for instance a level controller for a tank may include a feed-
forward term from an upstream measurement. Thereby the level control can
react before a disturbance affects the tank level. Feedforward action can
easily be embedded into MPC by extending the dynamic model with a dis-
turbance model. Focussing on linear MPC, cf. (4.1), feedforward is included
by extending the linear model (4.1b) as shown below

xt+1 = Atxt +Btut + Cvt (4.42)

where vt are measured disturbances. The downside of this is a more com-
plex model since a disturbance model Cvt is needed. However, this extension
hardly affects computation time.

One example of feedforward MPC is its use in distillation column control
where the inflow rate, and possibly composition and temperature, is used as
feedforward measurements.

4.6.4 MPC models

An MPC controller needs a dynamic model. In this note we have focussed
on state space models. In principle there are two approaches to modeling;
experimental models31 and first principles models32. Experimental models
are developed from data and are popular in linear MPC applications, in
particular the step response model since this is a model that is easy to identify
from experimental data. These models are usually formulated in an input
output form rather than a state space model.

First principles models usually require more development cost than exper-
imental models (Foss et al., 1998). They do, however, have certain distinct
advantages. First, since these models are based on physics, e.g., mass and
energy conservation laws, they tend to provide better prediction capabilities
than experimental models, in particular beyond the operating range covered
by experimental data. Second, physics based models need less data for model
identification and validation.

4.6.5 Practical MPC formulations

The basic linear MPC problem (4.1) is not used directly in industrial appli-
cations. We have already discussed several extensions like ensuring feasibility
at all times and feedforward control. There are many other extension, some
of which are listed below.

31Experimental models are also called black box models and data driven models.
32First principles models are also called physics based models, mechanistic models and

white box models.

4.6. Comments 81

Control input blocking is commonly used and shown in Figure 4.12. It is
useful to compare this figure with the upper part of Figure 4.1 where the
number of control input decision variables is N · nu. Control input blocking
reduces this number considerably. N may typically be 20 while the number
of control moves with control input blocking may be 4 or 5. Control input
blocking reduces runtime. This reduction may however marginal for linear
MPC since the number of states is much large than the control input dimen-
sion as discussed in Section 3.3. Practice has shown, however, that control
input blocking works well. In NMPC applications control input blocking may
reduce runtime significantly and may therefore be an important contribution
to secure a robust NMPC application.

xt′

xt

ut

t

t′ t′ +N

← Past Future →

Present

Plant

xt′

xt

ut′

t′

ut

Solution to the open loop
optimization problem at t = t′

(measured history)
(most recent measurement)
(control history)
(most recent control input)

(most recent measurement)
(predicted)
(predicted)

First control input
ut′ from solution

Measured
state at t′

Figure 4.12: Illustration of the MPC with control input blocking.

Some terms that are extensively used in practice are explained below.

• CV refers to a controlled variable. This is equal to γt, which has been
discussed several times in this note. We emphasize again that CV, or
γt, differs from the measured data yt as discussed in conjunction with
(4.13).

82 Chapter 4. Optimal control

• MV refers to a manipulated variable and is the equivalent of the control
input ut.

• DV refers to a disturbance variable and equals the measured distur-
bance vt in (4.42).

Acknowledgments

We would like to thank Dr. Brage Rugstad Knudsen for proofreading, amend-
ing, and suggesting improvements to the manuscript. We also thank the nu-
merous students that have followed the course TTK4135 Optimization and
Control at the Department of Engineering Cybernetics at NTNU and pointed
out typographical errors in earlier versions of this text.

83

84 Acknowledgments

Bibliography

Anderson, B. D. O. and Moore, J. B. (1990). Optimal Control: Linear
Quadratic Methods. Prentice Hall.

Audet, C. and Dennis JR., J. E. (2006). Mesh adaptive direct search al-
gorithms for constrained optimization. SIAM Journal on Optimization,
17(1):188–217.

Bellantoni, J. F. and Dodge, K. W. (1967). A square root formulation of the
Kalman-Schmidt filter. AIAA Journal, 5(7):1309–1314.

Brown, R. G. and Hwang, P. Y. C. (2012). Introduction to Random Signals
and Applied Kalman Filtering. Wiley, fourth edition.

Chen, C.-T. (1999). Linear System Theory and Design. Oxford Universtiy
Press, third edition.

Chmielewski, D. and Manousiouthakis, V. (1996). On constrained infinite-
time linear quadratic optimal control. Systems & Control Letters,
29(3):121–129.

Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to
Derivative-Free Optimization. SIAM.

Cutler, C. R. and Ramaker, B. L. (1980). Dynamic matrix control — A
computer control algorithm. In Joint Automatic Control Conference, San
Francisco, CA.

Doyle, J. C. (1978). Guaranteed margins for LQG regulators. IEEE Trans-
actions on Automatic Control, 23(4):756–757.

Foss, B. A., Lohmann, B., and Marquardt, W. (1998). A field study of the
industrial modeling process. Journal of Process Control, 8(5-6):325–338.

85

86 BIBLIOGRAPHY

Gilbert, E. G. and Tan, K. T. (1991). Linear systems with state and control
constraints: the theory and application of maximal output admissible sets.
IEEE Transactions on Automatic Control, 36(9):1008–1020.

Goodwin, G. C., Seron, M. M., and Doná, J. A. (2004). Constrained Control
and Estimation: An Optimisation Approach. Springer.

Hooke, R. and Jeeves, T. A. (1961). “Direct Search” solution of numerical
and statistical problems. Journal of the ACM, 8(2):212–229.

Imsland, L., Findeisen, R., Bullinger, E., Allgöwer, F., and Foss, B. A. (2003).
A note on stability, robustness and performance of output feedback non-
linear model predictive control. Journal of Process Control, 13(7):633–644.

Jerez, J. L., Constantinides, G. A., Kerrigan, E. C., and Ling, K. V. (2011).
Parallel MPC for real-time FPGA-based implementation. In 18th IFAC
World Congress, pages 1338–1343, Milan, Italy.

Julier, S. J. and Uhlmann, J. K. (2004). Unscented filtering and nonlinear
estimation. Proceedings of the IEEE, 92(3):401–422.

Kalman, R. E. (1960). A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82(1):35–45.

Khalil, H. K. (2002). Nonlinear Systems. Prentice-Hall, third edition.

Lewis, F. L. (1986). Optimal Control. Wiley.

Ling, K. V., Wu, B. F., and Maciejowski, J. M. (2008). Embedded model
predictive control (MPC) using a FPGA. In 17th IFAC World Congress,
pages 15250–15255, Seoul, Korea.

Maciejowski, J. M. (2002). Predictive Control with Constraints. Pearson
Prentice Hall.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000).
Constrained model predictive control: Stability and optimality. Automat-
ica, 36(6):789–814.

Muske, K. R. and Rawlings, J. B. (1993). Model predictive control with
linear models. AIChE Journal, 39(2):262–287.

Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and Combinatorial
Optimization. Wiley.

BIBLIOGRAPHY 87

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer,
second edition.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive
control technology. Control Engineering Practice, 11(7):733–764.

Rao, C. V., Rawlings, J. B., and Mayne, D. Q. (2003). Constrained state es-
timation for nonlinear discrete-time systems: Stability and moving horizon
approximations. IEEE Transactions on Automatic Control, 48(2):246–258.

Rawlings, J. B. and Mayne, D. Q. (2009). Model Predictive Control: Theory
and Design. Nob Hill Publishing.

Rawlings, J. B. and Muske, K. R. (1993). The stability of constrained
receding horizon control. IEEE Transactions on Automatic Control,
38(10):1512–1516.

Richalet, J., Rault, A., Testud, J. L., and Papon, J. (1978). Model pre-
dictive heuristic control: applications to industrial processes. Automatica,
14(5):413–428.

Rossiter, J. A. (2003). Model-Based Predictive Control: A Practical Approach.
CRC Press.

Safonov, M. G. and Athans, M. (1977). Gain and phase margin for multiloop
LQG regulators. IEEE Transactions on Automatic Control, 22(2):173–179.

Scokaert, P. O. M. and Rawlings, J. B. (1998). Constrained linear quadratic
regulation. IEEE Transactions on Automatic Control, 43(8):1163–1169.

Torzcon, V. (1997). On the convergence of pattern search algorithms. SIAM
Journal on Optimization, 7(1):1–25.

t

t , + N

t ,

t ,

Bjarne Foss and
Tor Aksel N. Heirung

Merging Optimization
and Control

	Contents
	Introduction
	Optimization
	Classes of optimization problems
	Solution methods

	Optimization of dynamic systems
	Discrete time models
	Objective functions for discrete time systems
	Dynamic optimization with linear models
	The choice of objective function in optimal control
	Norms in the objective function

	Optimal open loop optimization examples
	Dynamic optimization with nonlinear discrete time models

	Optimal control
	Model predictive control
	Linear MPC
	Ensuring feasibility at all times
	Stability of linear MPC
	Output feedback
	Reference tracking and integral action

	Linear Quadratic control
	Finite horizon LQ control
	Moving horizon LQ control

	Infinite horizon LQ control
	State feedback infinite horizon LQ control
	Output feedback infinite horizon LQ control
	Stability of linear MPC with infinite horizon LQ control

	Nonlinear MPC
	Comments
	The control hierarchy and MPC
	MPC performance
	Feedforward control
	MPC models
	Practical MPC formulations

	Acknowledgments
	Bibliography

