
Solution to problem 2.2

For the given equation of state, P
¡
V
n − b

¢
= RT , and by using the Maxwell relations, we Þnd:

µ
∂S

∂V

¶
T

=

µ
∂P

∂T

¶
V

=
R

V
n − b

=
P

T
.

For an isothermal change, we Þnd:

∆S =

Z µ
∂S

∂V

¶
T

dV =

Z
P

T
dV =

Z
R

V
n − b

dV = nR ln

µ
VÞnal − nb
Vinitial − nb

¶
= nR ln

µ
Pinitial
PÞnal

¶

µ
∂S

∂P

¶
T

= −
µ
∂V

∂T

¶
P

= −nR
P
.

This gives the same expression for ∆S as above.

µ
∂U

∂V

¶
T

= T

µ
∂P

∂T

¶
V

− P = 0.

Consequently,

∆U = 0.

For the following derivative, we use the deÞnition of the enthalpy H: U = H − PV :

µ
∂U

∂P

¶
T

=

µ
∂H

∂P

¶
T

−
µ
∂(PV )

∂P

¶
T

= V − T
µ
∂V

∂T

¶
P

− P
µ
∂V

∂P

¶
T

− V = −T nR
P
− P ∂

∂P

·
n

µ
RT

P
+ b

¶¸
T

= 0.

Again we Þnd that ∆U = 0.

µ
∂H

∂P

¶
T

= V − T
µ
∂V

∂T

¶
P

= V − T nR
P
= nb.

For an isothermal change, we Þnd:

∆H =

Z µ
∂H

∂P

¶
T

dP =

Z
nbdP = nb∆P.

The changes in Gibbs energy (G) and Helmholtz energy (A) are found from the deÞnitions of G and A
and the results above:

∆G = ∆H − T∆S = nb∆P − nRT ln
µ
Pinitial
PÞnal

¶
∆A = ∆U − T∆S = −nRT ln

µ
Pinitial
PÞnal

¶
Solution to problem 2.5
Since the entropy is constant, we may express the entropy as function of volume and temperature,

differentiate, use some of the Maxwell relations, and require that the differential is equal to zero:
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S = S(V, T )

dS =

µ
∂S

∂V

¶
T

dV +

µ
∂S

∂T

¶
V

dT =

µ
∂P

∂T

¶
V

dV +
CV
T
dT = 0

The exhaust temperature cannot depend on the amount of substance ßowing through the turbine, and
for convenience we choose one mole gas as basis in this calculation. With the Van der Waals equation, we
Þnd for one mole gas:

P =
RT

v − b −
a

v2
,

µ
∂P

∂T

¶
V

=
R

v − b
This gives the following differential equation between v and T at constant S:

dv

v − b = −
cV
R

dT

T

This is the adiabatic equation of state for a Van der Waals gas. Integration gives:

ln

µ
vÞnal − b
vinitial − b

¶
= −cV

R
ln

µ
TÞnal
Tinitial

¶
where TÞnal and vÞnal are unknown. It is given that the Þnal pressure is atmospheric, and by using the

equation of state, we could express vÞnal by PÞnal. This is, however, a little cumbersome, but since the
exhaust pressure is low, we try Þrst by assuming that the exhaust gas is an ideal gas. This gives:

ln

µ
TÞnal
Tinitial

¶
= − R

cV
ln

Ã
videal gas
final

− b
vinitial − b

!
≈ − R

cV
ln

µ
RT

final

PÞnal(vinitial − b)
¶

= − R
cV
lnT

final
− R

cV
ln

µ
R

PÞnal(vinitial − b)
¶

where we have approximated videal gasÞnal − b ≈ videal gasÞnal . Rearrangement gives

lnTÞnal +
R

cV
lnTÞnal = lnTinitial − R

cV
ln

µ
R

PÞnal(vinitial − b)
¶

µ
1 +

R

cV

¶
lnTÞnal =

µ
1 +

R

cV

¶
lnTinitial − R

cV
ln

µ
RTinitial

PÞnal(vinitial − b)
¶

ln

µ
TÞnal
Tinitial

¶
= − R

cP
ln

µ
RTinitial

PÞnal(vinitial − b)
¶

where we have used this relation between cP and cV : cP = cV +R. With the given numbers, we Þnd

ln

µ
TÞnal

(350 + 273) K

¶
= −8.314 J K

-1 mol-1

33.5 J K-1 mol-1
ln

µ
82.06 cm3 atm mol-1 K-1 (350+273) K

1 atm (600-45) cm3 mol-1

¶
= −1.123

TÞnal = 623 Kexp(−1.123)= 203 K

Checking the ideal-gas assumption:

V ideal gasÞnal =
RTÞnal
PÞnal

=
82.06 cm3 atm mol-1 K-1 203 K

1 atm
= 16700 cm3 mol-1

V VdWÞnal = 16400 cm3 mol-1
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(The Van der Waals result was found by an iterative solution of the cubic equation in V at 203 K and 1
atm.)
If we want to improve the ideal-gas assumption, we may insert V VdWÞnal = 16400 cm3 mol-1 into the equation

above:

ln

µ
TÞnal
Tinitial

¶
= − R

cV
ln

Ã
vVdW
final

− b
vinitial − b

!
= −8.314 J K

-1 mol-1

25.2 J K-1 mol-1
ln

µ
(16400− 45) cm3 mol-1
(600-45) cm3mol-1

¶
= −1.117

TÞnal = 623 Kexp(−1.117) = 204 K

Solution to problem 2.6
The virial expansion of the compression factor is

z =
Pv

RT
= 1 +

B

v
+
C

v2
+ .....

The compression factor for the Van der Waals gas is

zVdW =
v

RT

µ
RT

v − b −
a

v2

¶
=

1

1− b
v

− a

RT

1

v

We recognize the Þrst term on the right-hand side as the sum of a geometric series:

1

1− b
v

= 1 +
b

v
+

µ
b

v

¶2
+ ....

Ordering the Van der Waals compression fcator in increasing powers of 1v gives

zVdW = 1 +
³
b− a

RT

´ 1
v
+

µ
b

v

¶2
+ ....

and we conclude that

B = b− a

RT
.

Solution to problem 2.7
We start by recovering one result from Problem 2.2:

µ
∂U

∂P

¶
T

= −T
µ
∂V

∂T

¶
P

− P
µ
∂V

∂P

¶
T

.

From the given equation of state, the volume is

z =
Pv

RT
= 1 +

BP

RT
∴ v = RT

P

µ
1 +

BP

RT

¶
=
RT

P
+ a− b

T 2

From this we Þnd:

µ
∂V

∂T

¶
P

=
R

P
+
2b

T 3µ
∂V

∂P

¶
T

= −RT
P 2µ

∂U

∂P

¶
T

= −T
µ
R

P
+
2b

T 3

¶
− P

µ
−RT
P 2

¶
= − 2b

T 2

3



Integration at the constant temperature τ then gives:

∆U(τ) =

πZ
0

µ
∂U

∂P

¶
T=τ

dP= − 2b
τ2
π
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