Solution to problem 2.2

For the given equation of state, P (% — b) = RT, and by using the Maxwell relations, we find
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For an isothermal change, we find:
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This gives the same expression for AS as above.
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Consequently,
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AU = 0.

For the following derivative, we use the definition of the enthalpy H: U = H — PV
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Again we find that AU = 0.
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For an isothermal change, we find:
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The changes in Gibbs energy (G) and Helmholtz energy (A) are found from the definitions of G and A
and the results above:
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Since the entropy is constant, we may express the entropy as function of volume and temperature,

Solution to problem 2.5
differentiate, use some of the Maxwell relations, and require that the differential is equal to zero:
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The exhaust temperature cannot depend on the amount of substance flowing through the turbine, and
for convenience we choose one mole gas as basis in this calculation. With the Van der Waals equation, we
find for one mole gas:
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This gives the following differential equation between v and T at constant S:
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This is the adiabatic equation of state for a Van der Waals gas. Integration gives:
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where Thna and vgna are unknown. It is given that the final pressure is atmospheric, and by using the

equation of state, we could express vgna1 by Pana. This is, however, a little cumbersome, but since the
exhaust pressure is low, we try first by assuming that the exhaust gas is an ideal gas. This gives:
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where we have used this relation between cp and cy: cp = ¢y + R. With the given numbers, we find

] Thnal . _8.314 J K! mol! 82.06 cm® atm mol ™t K (350+273) K _ 1193
(350 +273) K N 33.5 J K- mol-! 1 atm (600-45) cm3 mol-! o
Tona = 623 Kexp(—1.123)= 203 K

Checking the ideal-gas assumption:

: Thina 2. 3 It Kt 203 K

Vﬁldc?l gas  _ Rfna _ 82.06 cm” atm mo 03K _ 16700 cm® mol™*
na Pﬁnal 1 atm
Vﬁ\g‘;})v = 16400 cm® mol™



(The Van der Waals result was found by an iterative solution of the cubic equation in V" at 203 K and 1
Vﬁ\ngV = 16400 cm?® mol! into the equation

atm.)
If we want to improve the ideal-gas assumption, we may insert

above:
Tin VAW _p 314 J K mol™! 16400 — 4 3 mol!
I ( Lfinal _ 7£1n v _ 83147 mol” (16400 — 45) cm® mo 1117
initial cv Vinitial — 0 25.2 J K-t mol! (600-45) cm3mol-!
Tona = 623 Kexp(—1.117) = 204 K

Solution to problem 2.6
The virial expansion of the compression factor is
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The compression factor for the Van der Waals gas is
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We recognize the first term on the right-hand side as the sum of a geometric series:
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Ordering the Van der Waals compression fcator in increasing powers of % gives
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and we conclude that
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Solution to problem 2.7
We start by recovering one result from Problem 2.2:

(57), (&), (&),

From the given equation of state, the volume is

,_Pv_  BP _RT( BPY_ RT b
" RT RT P RT) P T2
From this we find:
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Integration at the constant temperature 7 then gives:




