1-hour introduction to epidemiology

- What is epidemiology?
- What are the purposes of epidemiological studies?
- Some important measures of disease frequency
- Some important study designs
- Confounding

What is epidemiology?

- “The study of the occurrence of illness”
- The study of the distribution and determinants of disease in the population

Purposes of epidemiological research

- Identify causes of disease
 - environmental
 - genetic
 - interplay between factors
 \{ Mechanisms (targets for prevention or treatment) \}
- Evaluate the effect of interventions
 (diet, exercise, vaccines, treatment, screening...)
- Study the natural course of disease
- General health statistics - planning of health services

Purposes of epidemiological research

Descriptive epidemiology: describe the occurrence of disease

How many Norwegians have diabetes?
How many people get lung cancer every year?

Analytic epidemiology: identify causes of disease

Does smoking increase the risk of lung cancer?
Do high cholesterol levels lead to heart disease?
Exposure → Disease

Exposure → Disease

Lung cancer
Heart disease
Diabetes etc...

Common principle:
These are observational studies, where we observe the natural course of disease, as opposed to experiments / clinical trials, where we decide who is being exposed.

How do we measure disease occurrence?

Prevalence: How many are ill?
Incidence: How many fall ill?

Prevalence – How many are ill?
Prevalence: the proportion of the population having the disease at a specific point in time.
Examples:
- In 2012, 20% of adult Norwegians had high blood pressure.
- Today, 10% of the population of Trondheim suffer from a cold.

Incidence – How many fall ill?
Incidence expresses the number of new cases of a disease during a specified time period.
Examples:
- We follow 100,000 people for 1 year. 40 of them get lung cancer. Incidence of lung cancer = 40 / (100,000 persons x 1 year)
- Every year, 5% of elderly women in Trondheim get a hip fracture.
Risk - the probability of getting a disease

Risk expresses the proportion who get a disease during a specified period of time.

Example:
Does smoking cause myocardial infarction?

Is the risk of myocardial infarction different in smokers and non-smokers?

Risk among smokers: 10-year risk of MI = 5%
Risk among non-smokers: 10-year risk of MI = 2%
Relative risk = 5% / 2% = 2.5
Smokers have 2.5 times higher risk of myocardial infarction, compared to non-smokers.

Epidemiological measures - summary

Prevalence: How many people have a disease at a specific point in time?
Incidence: How many people get a disease during a specific time period?
Risk: What is the probability of getting a disease during a specific time period?
Relative risk: Compares risk between two groups (ratio between the risk among the exposed and the risk among the unexposed)
Types of observational studies

Cohort study:
Comparison of disease frequency between groups with different exposure.

Is the disease more common among exposed than among unexposed?

Case control study:
Comparison of exposure between people who have fallen ill (cases) and a comparison group without the disease (controls).

Is the exposure more common among cases than among controls?

Cohort study

- We identify a population (cohort) without the disease.
- We measure the exposure.
- We follow the population and observe who gets the disease.
- We compare the disease frequency between exposed and unexposed.

\[
\text{exposed incidence of disease} \quad \text{population} \quad \text{unexposed incidence of disease}
\]

Comparison

Smokers 5% 10 years myocardial infarction
Non-smokers 2%

Relative risk = 5% / 2% = 2.5

Case-control studies

In a cohort study, we start with the exposed and the unexposed.

\[
\text{Exposure} \quad \text{Disease} \quad \text{Exposure} \quad \text{Disease}
\]

In a case-control study, we start with those who have got the disease (cases). We then choose a group of people without the disease (controls).

We measure exposure in the two groups.

The controls tell us about the distribution of exposure in the population that the cases come from.
Is the association causal?

Marve Fleksnes once said: “I am probably allergic to leather because every time I have slept with my shoes on, I wake up the following morning having a headache.”

Systematic errors

Confounding and bias can lead to systematic errors in observational studies:

- Confounding
- Selection bias
- Information bias
- Both underestimation and overestimation can occur.
- The result is wrong regardless of the study size.

Beta-carotene and mortality from cardiovascular diseases

<table>
<thead>
<tr>
<th>Cohorts</th>
<th>Mortality from cardiovascular disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male health workers (US)</td>
<td>1.25</td>
</tr>
<tr>
<td>Male social insurance workers (Fin)</td>
<td>1.20</td>
</tr>
<tr>
<td>Female social insurance workers (Fin)</td>
<td>1.30</td>
</tr>
<tr>
<td>Male chemical workers (Switzerland)</td>
<td>1.10</td>
</tr>
<tr>
<td>Hypertensive men (US)</td>
<td>1.15</td>
</tr>
<tr>
<td>Nursing home residents (United States)</td>
<td>1.15</td>
</tr>
<tr>
<td>Cohorts combined</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Should we recommend carrots for prevention of heart disease?

Exposure

• Beta-carotene

Disease

• Mortality from cardiovascular disease

Confounder

Cardiovascular disease
Control for confounding

- We can control for confounding in the statistical analyses if the confounders are known and measured with adequate precision.
- We can seldom exclude the possibility of confounding or bias in observational studies - this limits the possibility to draw causal conclusions from observational studies.
- Randomization prevents systematic differences between the exposure groups (treatment groups) - therefore, it is possible to draw conclusions about causality.
- Randomized studies give the most robust evidence for treatment effects.
- So, why aren’t all studies randomized?

Summary

- In epidemiology, we observe disease occurrence in the population.
- The purpose is often to identify causes of disease.
- Some important measures: prevalence, incidence, relative risk.
- Some important study designs: cohort study and case control study.
- Confounding and bias can distort the results of observational studies.